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Abstract

The comparison of groups in regression models for binary outcomes is

complicated by an identification problem inherent in these models. Tra-

ditional tests of the equality of coefficients across groups confound the

magnitude of the regression coefficients with residual variation. If the

amount of residual variation differs between groups, the test can lead

to incorrect conclusions (Allison 1999). Allison proposes a test for the

equality of regression coefficients that removes the effect of group differ-

ences in residual variation by adding the assumption that the regression

coefficients for some variables are identical across groups. In practice, a

researcher is unlikely to have either empirical or theoretical justification

for this assumption, in which case the Allison’s test can also lead to incor-

rect conclusions. An alternative approach, suggested here, uses predicted

probabilities. Since predicted probabilities are unaffected by residual vari-

ation, tests of the equality of predicted probabilities across groups can be

used for group comparisons without assuming the equality of the regres-

sion coefficients of some variables. Using predicted probabilities requires

researchers to think differently about comparing groups. With tests of the

equality of regression coefficients, a single test lets the researcher conclude

easily whether the effects of a variable are equal across groups. Testing the

equality of predicted probabilities requires multiple tests since group dif-

ferences in predictions vary with the levels of the variables in the model.

A researcher must examine group differences in predictions at multiple

levels of the variables often requiring more complex conclusions on how

groups differ in the effect of a variable.

1I thank Paul Allison, Ken Bollen, Rafe Stolzenberg, Pravin Trivedi, and Rich Williams for their

comments.
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Group comparisons in logit and probit
using predicted probabilities

1 Overview

The comparison of groups is fundamental to research in many areas and tests com-

paring groups have received a great deal of attention. Chow’s (1960) paper, declared

a “citation classic” (Garfield 1984), provides a general framework for group compar-

isons in the linear regression model. Suppose that we are comparing the effect of 

on  for women and men, where  and  are the coefficients of interest. If 0:

 =  is rejected, we conclude that the effect of  differs for men and women.

This approach to testing group differences can be applied to many types of regression

models as shown by Liao (2002). Allison (1999) points out a critical problem when

this test is used in models such as logit or probit. For these models, standard tests can

lead to incorrect conclusions since they confound the magnitude of the regression co-

efficients with the amount of residual variation. Allison proposes a test that removes

the effect of residual variation by assuming that the coefficients for at least one inde-

pendent variable are the same in both groups. Unfortunately, a researcher might lack

sufficient theoretical or empirical information to justify such an assumption. Making

an ad hoc decision that some regression coefficients are equal can lead to incorrect

conclusions. Tests of predicted probabilities provide an alternative approach for com-

paring groups that is unaffected by group differences in residual variation and does

not require assumptions about the equality of regression coefficients for some vari-

ables. Group comparisons are made by testing the equality of predicted probabilities

at different values of the independent variables.

This paper begins by reviewing why standard tests of the equality of regression

coefficients across groups are inappropriate in some types of models. I then show

why predicted probabilities are unaffected by residual variation and present a test

of the equality of predicted probabilities that can be used for group comparisons of

effects in models such as logit and probit. To illustrate this approach, I begin with

a model that includes a single independent variable, in which case all information

about group differences can be shown in a simple graph. I extend this approach to

models with multiple independent variables, which requires more complex analysis

due to the nonlinearity of the models.

2 Model identification in logit and probit

Discussions of the logit and probit model often note that the slope coefficients are

only identified up to a scale factor (Maddala 1983:23). This lack of identification is

why standard tests of the equality of regression coefficients across groups should not
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be used. To see how identification causes a problem in group comparisons and why

predicted probabilities are not affected by this problem, consider how these models are

derived using an underlying latent variable (see Long 1997: 40-50 for a full derivation).

Suppose that the latent ∗ is linearly related to an observed  through the structural
model

∗ = 0 + 1+ 

where I use a single independent variable for simplicity. The latent ∗ is linked to an
observed, binary  by the measurement equation

 =

½
1 if ∗  0
0 if ∗ ≤ 0  (1)

If ∗ is greater than 0,  is observed as 1. Otherwise,  is observed as 0. For example,
when a person’s propensity to be in the labor force exceeds 0, she joins the labor

force (i.e.,  = 1). If her propensity is at or below 0, she is not in the labor force (i.e.,

 = 0).

According to equation 1, the probability of  = 1 is the proportion of the distrib-

ution of ∗ that is above 0 at a given value of :

Pr ( = 1 | ) = Pr (∗  0 | )  (2)

Substituting ∗ = 0 + 1 +  and rearranging terms, we can write the probability

in terms of the distribution of the errors:

Pr( = 1 | ) = Pr( ≤ 0 + 1 | )

[ Figures 1 & 2 about here ]

Figure 1 illustrates the relationship between the structural model for ∗ and the
probability of  for specific values of the parameters labeled as set :

∗ = 
0 + 

1 +  (3)

= −6 + 1+  

Assume that  is normally distributed with mean 0 and variance 
2
 = 1, which are

the usual assumptions for the probit model. The probability of  = 1 at a given value

of  is the shaded portion of the error distribution in Figure 1 corresponding to

Pr ( = 1 | ) = Pr( ≤ 
0 + 

1  | ) (4)

If ∗ was observed, as in the linear regression model, we could estimate the variance of
. But, since both  and ∗ are unobserved, the variance of  is unidentified and
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must be assumed. The lack of identification can be shown by changing the parameters

in equation 3 by any non-zero factor :

∗ = 
0 + 

1 + .

For example, suppose that  = 2. Then

2∗ = 2

0 + 2


1 + 2.

Defining ∗ ≡ 2∗, 
0 ≡ 2

0 , 

1 ≡ 2

1 , and  ≡ 2, the structural equation can
be written as

∗ = 
0 + 

1 +  (5)

= −12 + 2+ 

where  = 2 = 2. While the slope, intercept, and standard deviation of the

errors in equations 3 and 5 differ by a factor of  = 2, the predicted probabilities are

unaffected since changing the parameters by a scale factor simply “stretches” Figure

1, as shown in Figure 2. With set  of parameters, we are multiplying the inequality

in equation 4 by  = 2, which does not change the probability of  = 1:

Pr ( = 1 | ) = Pr(2 ≤ 2
0 + 2


1  | )

= Pr( ≤ 
0 + 

1  | ) 

While the magnitude of the ’s and  are affected by the factor change, the predicted

probabilities are not. Even if the magnitude of the ’s and  are of substantive

interest, they cannot be estimated individually since all scale factors of the parameters

have the same predictions for the observed data. That is, the ’s are only identified

up to a scale factor. Typically, to identify the model, the variance of the errors are

assumed to have specific value.

This is the fundamental issue behind Allison’s critique of standard tests to compare

coefficients across groups in logit and probit models. To see this, consider a pair of

models for men and women:

Men: ∗ = 
0 + 

1 +  where  ∼ 
¡
0 2

¢
(6)

Women: ∗ = 
0 + 

1 +  where  ∼ 
¡
0 2

¢
(7)

Suppose that the slopes for  are identical, but that residual variation is greater for

women than men. That is, 
1 = 

1 and 
2
  2 . If 

∗ was observed, this would be
a pair of linear regressions with identical slopes for . Since the variance of the errors

is larger for women than men, the coefficient of determination 2 would be smaller

for women. But, since ∗ is latent, the variance of errors must be assumed. While
the variance could be fixed to any value, the usual (but arbitrary) assumption for
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probit is that 2 = 1 and for logit that 2 = 23. Here, for simplicity and without

loss of generality, I assume that 2 = 1. Critically, the same identifying assumption

is used for both men and women. That is, both men and women are assumed to have

the save variance for  and accordingly the same 2. To apply this assumption to

equation 6 (i.e., to force the variance of  to be 1), I divide the equation by  . For

men,
∗


=


0


+


1


+




.

To simplify notation, I use ’s for the rescaled parameters and  for the rescaled error:

∗


= 0 + 1 +  (8)

where the variance of  is 1. Similarly for women, I transform equation 7:

∗


=


0


+


1


+





= 0 + 1 +  (9)

where  also has a unit variance by construction.

Standard software for probit incorporates the identifying assumption that the

variance of the errors is 1 and estimates equations 8 and 9, not equations 6 and

7.2 That is, the software estimates the rescaled -parameters, not the original -

parameters. A standard test of the equality of regression coefficients across groups

evaluates the hypothesis

:

1


=


1



or equivalently

: 

1 = 1 ,

not the hypothesis

: 

1 = 

1 .

Moreover,  and  are only equivalent if  =  . This is why standard tests

confounds the slopes and the variances of the errors which can lead to incorrect

conclusions.

To test the cross group equality of the effect of  without confounding group dif-

ferences in residual variation, that is to test : 
1 = 

1 , requires information

about group differences in the variance of the errors. Allison’s test obtains this in-

formation by assuming that the coefficients for at least one variable are the same for

2Standard software for logit rescales the errors to  = √
3
so that Var() = 23
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both groups. For example, suppose that our model also include the predictor :

Men: ∗ = 
0 + 

1 + 
2  +  where  ∼ 

¡
0 2

¢
Women: ∗ = 

0 + 
1 + 

2  +  where  ∼ 
¡
0 2

¢


If the slope coefficient for  is the same for both groups (i.e., 
2 = 

2 = 2), then

the ratio of the rescaled -coefficients for  equals the ratio of the standard deviations

of the errors:
2

2
=

¡

2 

¢
(
2  )

=
(2)

(2 )
=




.

This provides the information needed to test : 

1 = 

1 .

[ Figure 3 about here ]

There are two issues to keep in mind when using Allison’s test. First, the test

depends critically on the assumption that the effects of at least one variable are equal

across groups. If the equality assumption is justified, Allison’s test allows you to test

the cross group equality of the -coefficients in logit and probit without contamination

by group differences in residual variation. In practice, however, I think it is unlikely

that researchers will have sufficient information to justify the assumption that the

effects of some variables are zero. If the equality assumption is unjustified, Allison’s

test can lead to incorrect conclusions. Second, the equality of regression coefficients

across groups has different implications in nonlinear models than in linear models.

In a linear model, if the coefficient for  is the same for men and women, both men

and women receive the same expected change in  for a given change in  holding

all other variables constant. For example, for each additional year of education both

men and women are expected to increase their wages by  dollars, holding all else

constant. In a nonlinear model, having the same  for two groups does not imply

that a change in  will have the same change in Pr ( = 1) for both groups. This is

shown in Figure 3 which plots a probit or logit model where men and women have

the same coefficient for  while the intercepts differ. As  increases from 2 to 3,

the change in predicted probability for men, ∆Men, is much larger than the change

∆Women for women. In nonlinear models, having equal regression parameters for a

given variable does not imply similar changes in the predicted probabilities.

3 Testing group differences in predicted probabil-

ities

While regression coefficients are affected by the identifying assumption for the vari-

ance of the errors, the predicted probabilities are not. Accordingly, if you estimate
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logit and probit models using the same data, the estimated ’s for the logit model will

be about 
√
3 times larger than those from the probit model because the assumed

standard deviation of the errors for logit is 
√
3 times larger than the assumed

standard deviation for probit. The predicted probabilities, however, will be nearly

identical. They differ only because the shape of the normal distribution used in probit

is slightly different than the shape of the logistic distribution assumed for logit. Since

predicted probabilities are not affected by group differences in residual variation, you

can compare groups by testing the equality of predicted probabilities at substantively

interesting values of the independent variables.

Tests of predicted probabilities can be computed with the delta method (Xu and

Long 2005). The delta method computes the variance of functions of maximum

likelihood estimates by creating a linear approximation of a function and computing

the variance of the simpler, linear function (Cameron and Trivedi 2005:227-233). Letbβ be a vector of maximum likelihood estimates and let  () be a function of β, such
as predicted probabilities. Using a Taylor series expansion, (bβ) ≈ (β)+

()

0 (
bβ−

β). Under standard assumptions, (bβ) is distributed normally around (β) with a

variance of

Var
h
(bβ)i = (bβ)

bβ0  (bβ)(bβ)
bβ  (10)

where  (bβ) is the covariance matrix for the estimated parameters.
To apply the delta method to predicted probabilities, it helps to use the shorthand

notation that  (x) ≡ Pr ( = 1 | x). If  (β) =  (x) =  (x0β) where  () is the
cdf for the standard normal distribution for the probit model and the standardized

logistic distribution for the logit model. Then

(β)

β
=

 (x0β)
β

=  (x0β)x

where  () is the pdf. Then,

Var [ (x)] =
 (x0β)

β0
 (bβ) (x0β)

β

=  (x0β)x
0
 (

bβ)x (x0β) 
The variance of the group differences in probabilities is

Var
h
 (x∗1)

Group 1 −  (x∗2)
Group 2

i
= Var

h
 (x∗1)

Group 1
i
+Var

h
 (x∗2)

Group 2
i


where x∗1 and x
∗
2 indicate values of the ’s for the two groups. These values could be

identical (e.g., test the predicted probabilities for the same levels of all variables) or

7



different (e.g., test the predicted probabilities when the values of the ’s for group 1

are the means for group 2 and vice versa). The -statistic to test 0:  (x
∗
1)
Group 1

=

 (x∗2)
Group 2

is

 =
 (x∗1)

Group 1 −  (x∗2)
Group 2r

Var
h
 (x∗1)

Group 1 −  (x∗2)
Group 2

i , (11)

which has an asymptotic normal distribution. Defining ∆ (x) ≡  (x∗1)
Group 1 −

 (x∗2)
Group 2

, a 95% confidence interval can be constructed such that

Pr
³
∆ (x)Lower Bound ≤ ∆ (x) ≤ ∆ (x)Upper Bound

´
= 95 

Further details on the derivation are provided in the appendix.

4 Example

The following example is based on 301 male and 177 female biochemists who obtained

Ph.D.s in the late 1950s and early 1960s and who held faculty positions in graduate

departments (see Long, Allison, and McGinnis (1993) for further details). Following

Allison (1999), the unit of analysis is person-years with each observation correspond-

ing to one year in rank for one scientist with multiple records for each scientist (one

record for each year a scientist is an assistant professor). The dependent variable is

coded 1 if a scientist obtained tenure in the given year, else 0. Independent variables

include the number of years a scientist has been in the rank of assistant professor,

the selectivity of the scientist’s undergraduate institution, the cumulative number of

articles published by the end of each person-year, and the prestige of the department

in which the scientist is working. Descriptive statistics are given in Table 1. Using

these data, three increasingly complex models are estimated and groups differences

examined. Model 1 uses only gender and the number of articles to predict tenure.

Model 2 adds a binary indictor of having a job in a distinguished department. Model

3 includes year, year-squared, selectivity, total articles, and departmental prestige.

Analysis are done using Stata Version 10 (2007) along with Long and Freese’s (2005)

SPost commands.3

[ Tables 1 & 7 and Figures 4 & 5 about here ]

Model 1 uses only the number of articles to predict tenure:

 (articles) = Λ(0 + 1 articles)

 (articles) = Λ(0 + 1 articles)

3The GC (group comparison) package by Long(2009) is a wrapper for the SPost command

prvalue that makes estimating group comparisons much simpler.
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with estimated ’s given in Table 2. Based on these estimates, the predicted prob-

ability of tenure for men with 15 articles is .23 and for women is .14, a difference of

.09. To test if the difference is significant, I compute a -test using equation 11:

 =
b (articles=15 )− b (articles=15 )q

Var
£b (articles=15 )− b (articles=15 )¤

= 411

I reject the null hypothesis 0: 
 (articles=15 ) =  (articles=15 ) at the .01 level.

Since the logit model is nonlinear, gender differences in the predicted probability

of tenure vary by the number of articles. This is shown in Figure 4 which plots

the probability of tenure for men and women with articles ranging from 0 to 50.

Differences in probability are small for scientists with fewer publications. For example,

for scientists with 7 publications, the difference is only .016 which is not significantly

different from 0 ( = 132). To examine gender differences throughout the range of

articles, I can plot b (articles)−b (articles) along with the 95% confidence interval
as shown in Figure 5. If the confidence interval extends below 0, the difference

is not significant. Overall, gender differences in the probability of tenure are not

significant for those with less than 10 publications and get steadily larger until about

40 publications at which point they level off with a difference of about .45.

This simple example illustrates a critical difference between tests of regression co-

efficients and tests using predicted probabilities. With tests of regression coefficients,

there is a single test of whether the effect of a variable differs across groups.4 With

predicted probabilities, there are multiple tests for different levels of the independent

variables. As we just saw, the group differences can be significant at some values of

the predictor, while not significant at others. This complicates things for the data

analyst since there might not be a simple answer to the question of whether the effects

of a variable are the same for both groups. But there are also advantages. First, using

probabilities avoids assumptions about the equality of the effects of other variables.

Second, the more complex answer to whether the effects of a variable differ across

groups could be a more realistic representation of the phenomenon being modeled. In

this example, it makes substantive sense that gender differences are small and non-

significant at lower levels of productivity since neither men nor women are likely to

be tenured if they have not been productive, but there could gender discrimination

at higher levels of productivity where tenure is more likely.

[ Table 3 and Figures 6, 7 & 8 about here ]

With a single independent variable, a simple graph shows all of the differences be-

tween men and women in the effect of articles on tenure. With additional variables,

4Note that Allison’s test can not be used with a single predictor since there is no other variable

in the model whose effect can be assumed equal across groups.

9



interpretation is more complicated since group differences in predictions differ by the

level of all variables in the model. This is a critical point for understanding how

probabilities are used to compare groups. To show this, Model 2 retains the number

of articles and adds a binary variable indicating whether a scientist is located in a

distinguished department, leading to the estimates in Table 3. While my substantive

interest may be in how productivity affects tenure for men and women, gender differ-

ences in the probability of tenure for a given number of articles depends on whether a

faculty member is in a distinguished department. To show this, Figure 6 plots gender

differences in the probability of tenure for those not in distinguished departments

while Figure 7 plots differences for those in distinguished departments. These figures

show that gender differences in the probability of tenure are noticeably larger in dis-

tinguished departments for faculty with more than twenty-five articles. To combine

the two figures and to introduce a technique that is essential for more complex models,

I use a bold line to plot gender differences for those from distinguished departments

and a thin line for those who are not. If the difference in probability is significant, the

line is solid; if the difference is not significant, the line is dashed. Figure 8 shows how

the prior graphs can be combined. With two predictors, not only isn’t there a single

test of the effect of articles, but now the tests for differences in probabilities depend

on the level of articles and the prestige of the department. This complexity, however,

may also provide interesting insights into the tenure process, suggesting that gender

differences in the tenure process are greater in more prestigious departments.

[ Table 4 and Figures 9, 10 & 11 about here ]

As a more realistic example, I estimate the full model used in Allison (1999) with

estimates shown in Table 4. Gender differences in the probability of tenure differ by

the levels of five variables. Even with only five variables, which is a small number

compared to the number of variables in many applications, it is impractical to examine

all combinations of the variables. Instead, you must focus on those regions of the data

space that are substantively most interesting. For example, in most universities tenure

decisions are made in the seventh year in rank, so I compute predicted probabilities

holding year at 7 and year-squared at 49. As with Model 2, I am interested in the

effects of articles and prestige. Since prestige is nowmeasured as a continuous variable

ranging from 1 to 5, I extend Figure 8 for Model 2 to show gender differences at five

levels of prestige over a range of articles from 0 to 50. While I want to control for the

selectivity of the baccalaureate, I am not particularly interested in its effect, so I hold

this variables at the mean. Predictions are made by varying the number of articles
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and the level of prestige in these equations:

 (articles, prestige) = Λ(0 + 1 (7) + 2 (49) + 3 selectivity

+4 articles + 5 prestige)

 (articles, prestige) = Λ(0 + 1 (7) + 2 (49) + 3 selectivity

+4 articles + 5 prestige)

Varying articles for five levels of prestige leads to Figure 9.5 Gender differences are

smaller at lower levels of productivity, but the less prestigious the department the

greater the difference. Since less prestigious departments are likely to require fewer

publications for tenure than more prestigious departments, this is what would be

expected. At higher levels of productivity, the differences are larger, with larger

differences at more prestigious departments. This figure contains information on how

both productivity and prestige affect tenure and our interpretation reflects the effects

of both variables. To better understand how the effects differ by both prestige and

productivity, I can plot the same predictions letting prestige vary continuously from

1 to 5 at fixed levels of productivity. This is shown Figure 10. In my experience, most

people who first look at Figure 9 are surprised by Figure 10. When examining graphs

of differences in predicted probabilities it is important to keep in mind that the curves

are generated by the differences between two cumulative density functions that have

different parameters. The complex nature of the nonlinearity is illustrated in Figure

11. In this three-dimensional figure, each dark or light band corresponds to .10 on

the vertical axis. Broken lines indicate that the confidence interval at the prediction

crosses 0. If you trace a curve as articles increase from 0 to 50 with prestige held at

5, you obtain the solid curve in Figure 9. Other curves from that figure are created

by holding prestige constant at other levels. The curves in Figure 10 can be created

in a similar fashion.

5 Conclusions

The comparison of groups in regression models for binary outcomes is complicated by

the identification problem inherent in these models. Traditional tests of the equality

of regression coefficients across groups confound the magnitude of the regression coef-

ficients with residual variation. If the amount of variation differs between groups, the

test can lead to incorrect conclusions. The test proposed by Allison (1999) takes into

account group differences in residual variation by incorporating the assumption that

the effects of some variables are the same across groups. In practice, researchers might

not have a basis for making this assumption, in which case the conclusions from this

test could also be misleading. The approach advocated in this paper is to compare

5Color versions of these graphs are available at www.indiana.edu/~jslsoc/research_groupdif.htm.
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predicted probabilities across groups as levels of one variable change holding other

variables constant. Since predicted probabilities are not affected by residual varia-

tion, testing the equality of predictions is not affected by the identification problem.

Using predicted probabilities is not, however, without costs. Tests of the equality

of regression coefficients across groups requires a single test and provides a simple

answer to the question of whether a variable has the same effect for both groups.

With predicted probabilities, you must examine group differences at many values to

see how groups differ in the way that changes in predictors affect the outcome.

My proposal for comparing groups allows you to show if there are significant dif-

ferences in the predicted outcomes and whether these differences vary with the level

of an independent variables. This information does not correspond to a test of the

equality of regression coefficients across groups. In models such as logit or probit,

tests of group differences in probabilities do not allow us to determine whether these

differences are due to differences between groups in their regression coefficients, to

differences in residual variation, or to a combination of both. However, using proba-

bilities allows us to show if there are significant differences in the predicted outcomes

and whether these differences vary with the level of the independent variables. For

many purposes, this information is critical for understanding the process being stud-

ied.

Using group differences in predictions requires a great deal of planning about which

comparisons are most interesting and at which values you want to hold other variables

in the model constant. As with logit and probit in general, the effect of a variable (in

this case the effect of group membership) depends on the level of all variables in the

model. Further, as you plan where you want to examine the predictions of your model,

it is important to limit you explorations to those regions of the data space that are

both substantively reasonable and where there are a sufficient observations to justify

your conclusions. To illustrate this problem, consider Model 3 and the graphs showing

gender differences in tenure by departmental prestige and the number of articles.

While these differences are largest for those with high productivity in distinguished

departments, the sample used was for scientists with degrees in the late 1950s and

early 1960s. During this period there were few women in prestigious departments and

hence the region of the data space where we find the largest gender differences has

relatively few individuals. Still, the results are strong and consistent with historical

findings about tenure at distinguished departments during this period (Rossiter 1982,

1995).

Finally, the approach taken in this paper is not limited to binary logit and probit.

The same methods can be used with ordinal and nominal models where similar issues

of identification occur. Moreover, our approach is also valuable in models where it is

possible to test regression coefficients across groups, such as a linear regression model.

Examining group differences in the predicted outcome at specific values may provide

insights that cannot be gained from a single test comparing coefficients.

12
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7 Appendix

The test in the paper is a special case of a more general test that is considered here.

The logit or probit models are defined as

Pr ( = 1 | x) =  (x0β)

where  () is the cdf for the standard normal distribution for the probit model and the

standardized logistic distribution for the logit model. Let  (β) be the difference in

the predicted probabilities at two sets of values of the independent variables contained

in the vectors x and x:

 (β) = Pr ( = 1 | x)− Pr ( = 1 | x)
=  (x0β)−  (x0β) 

This formulation is more general than the case considered in the text since it can be

applied to any two sets of values of x, not only comparisons between groups. For

example, if the model is

Pr ( = 1 | x) =  (0 + 11 + 22 + 33)

for a single group,  (β) could be the difference in the predicted probability when

1 = 1, 2 = 2, and 3 = 2 and when 1 = 2, 2 = 3, and 3 = 1.

The paper estimates a model in which dummy variables and interactions are used

to include both groups in the same equation. For example, consider a single indepen-

dent variable  and two groups. Let  = 1 for women, else 0; let  = 1 for men, else

0; and let  =  ×  and  = × . Next, estimate the model

Pr ( = 1 | x) = Λ ( + + + )

where no constant is included. For women,  = 1 and  = 0 which simplifies the

equation to

Pr ( = 1 | x) = Λ ( + )

and for men  = 0 and  = 1 so that

Pr ( = 1 | x) = Λ ( + ) 

Group difference in the predicted probabilities at a given value of  equal


³bβ´ = Pr ( = 1 |  = 1 = 0 )− Pr ( = 1 |  = 0 = 1 )

= Λ(b + b+ b0 + b0)− Λ
³b0 + b0 + b+ b

´
= Λ(b + b)− Λ

³b + b
´

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Returning to the general formulation of the problem,

(β)

β
=

 (x0β)
β

−  (x0β)
β

where
 (x0β)

β
=
h

Λ(x0)
0

Λ(x0)
1

· · · Λ(x0)


i0
=  (x0β)x

Then,

Var [Pr ( = 1 | x)− Pr ( = 1 | x)] =
∙
 (β|x)

β0
 (bβ) (β|x)

β

¸
+

∙
Λ(β|x)

β0
 (bβ)Λ(β|x)

β

¸
−2
∙
 (β|x)

β0
 (bβ) (β|x)

β

¸


The last term in the equation drops out when interactions are used to include both

groups in the same equations and x and x are used to specify the values for each

group. A −statistic to test 0: Pr ( = 1 | x) = Pr ( = 1 | x) can be computed
as

 =
Pr ( = 1 | x)− Pr ( = 1 | x)p
Var [Pr ( = 1 | x)− Pr ( = 1 | x)]

which has an asymptotic normal distribution. Or, we can construct a confidence

interval around ∆ (xx) = Pr ( = 1 | x) − Pr ( = 1 | x). For example, the 95%
confidence interval for the difference in probabilities ∆ (xx) includes upper and

lower bounds such that

Pr (∆ (xx)LB ≤ ∆ (xx) ≤ ∆ (xx)UB) = 95

Since the covariance term
 (|x)

0  (bβ) (|x)


is zero when comparing groups,

any software that computes confidence intervals and the standard error of the predic-

tion can be used. For the more general case, the SPost commands (Long and Freese

2005; Xu and Long 2005) can be used for logit and probit as well as other models.
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8 Tables and Figures

Table 1: Descriptive statistics for male and female biochemists using person-year

observations.

Women Men Combined

Variable Mean SD Mean SD Mean SD

Is tenured? tenure 0.109 0.312 0.132 0.338 0.123 0.328

Year year 3.974 2.380 3.784 2.252 3.856 2.303

Year-squared yearsq 21.457 23.137 19.388 21.501 20.169 22.151

Bachelor’s selectivity select 5.001 1.475 4.992 1.365 4.995 1.407

Total articles articles 7.415 7.430 6.829 5.990 7.050 6.576

Distinguished job? distinguished 0.058 0.233 0.040 0.197 0.047 0.211

Prestige of job prestige 2.658 0.765 2.640 0.784 2.647 0.777

N 1,056 1,741 2,797

Table 2: Logit model 1 predicting tenure for male and female biochemists using only

the number of articles.

Women Men

Variable  exp ()   exp () 

constant -2.501 -17.96 -2.721 -22.4

articles 0.047 1.048 4.49 0.102 1.102 9.76

log-likelihood -353.758 -628.282

N 1,056 1,741
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Table 3: Logit model 2 predicting tenure for male and female biochemists using

articles and an indicator of having a high prestige job.

Women Men

Variable  exp ()   exp () 

constant -2.604 -17.32 -2.715 -22.27

articles 0.068 1.070 5.36 0.106 1.111 9.89

distinguished -1.984 0.138 -2.69 -0.945 0.389 -2.06

log-likelihood -348.344 -625.672

N 1056 1,741

Table 4: Logit models predicting tenure for male and female biochemists.

Women Men

Variable  exp ()   exp () 

constant -5.842 -6.75 -7.680 -11.27

year 1.408 4.087 5.47 1.909 6.745 8.92

yearsq -0.096 0.909 -4.36 -0.143 0.867 -7.70

select 0.055 1.057 0.77 0.216 1.241 3.51

articles 0.034 1.035 2.69 0.074 1.076 6.37

prestige -0.371 0.690 -2.38 -0.431 0.650 -3.96

log-likelihood -306.191 -526.545

N 1056 1741
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Figure 1: The link between ∗ = −6 + 1 +  with  = 1 and Pr ( = 1 | ) for
parameter Set A.

Figure 2: The link between ∗ = −12 + 2 +  with  = 2 and Pr ( = 1 | ) for
parameter Set B.
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Figure 3: Changes in probabilities for men and women with the same coefficient for

 but different intercepts.
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Figure 4: The probability of tenure for men and women by the number of articles

using Model 1.

Figure 5: Gender differences in the probability of tenure by the number of articles

using Model 1.
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Figure 6: Gender differences in the probability of tenure by the number of articles for

scientists who are not in distinguished departments using Model 2.

Figure 7: Gender differences in the probability of tenure by the number of articles for

scientists who are in distinguished departments using Model 2.
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Figure 8: Gender differences in the probability of tenure by the number of articles

and by prestige of department using Model 2.
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Figure 9: Gender differences in the probability of tenure by the number of articles at

different levels of departmental prestige using Model 3.

Figure 10: Gender differences in the probability of tenure by prestige at different

levels of productivity using Model 3.
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Figure 11: Gender differences in the probability of tenure by prestige and number of

articles using Model 3.
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