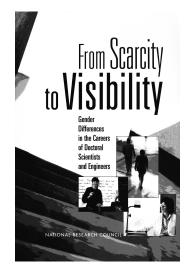
Comparing group effects in nonlinear models: Statistical problems and substantive insights

Scott Long, Indiana University

April 18, 2007

The problem

Women in science and statistical "fine points"



The statistical and substantive problem

Traditional methods don't work

A common solution for comparing groups is to:

- 1. Estimate a model for men
- 2. Estimate a model for women
- 3. Compare the coefficients

This approach with binary outcomes has two limitations:

- 1. The NRC committee thought that the coefficients did not have a clear link to the substance of the problems.
- Allison sent me a working paper that said: "Differences in the estimated coefficients tell us nothing about the differences in the underlying impact of [publications] on [tenure for] the two groups."

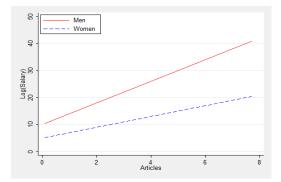
Objectives

Comparing groups in logit and probit

- 1. Comparing β 's across groups in the LRM.
- 2. Review of the logit and probit models for binary outcomes.
- 3. Focus on interpretation using predicted probabilities.
- 4. Discuss methods for comparing groups with binary logit and probit.
- 5. Consider problems with the usual test comparing β 's across groups.
- 6. Show how groups can be compared using predicted probabilities.

Group comparisons in the LRM - I

A Chow test comparing structural coefficients



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Group comparisons in the LRM - II

A Chow test comparing structural coefficients

1. Do men and women have the same return for education?

$$H_0: \; eta^m_{ extsf{articles}} = eta^w_{ extsf{articles}}$$

2. We compute a Chow test:

$$z = \frac{\widehat{\beta}_{articles}^{m} - \widehat{\beta}_{articles}^{w}}{\sqrt{Var\left(\widehat{\beta}_{articles}^{m}\right) + Var\left(\widehat{\beta}_{articles}^{w}\right)}}$$

3. Or, we might test:

$$H_0: \ \alpha^m = \alpha^w; \ \beta^m_{articles} = \beta^w_{articles}; \beta^m_{prestige} = \beta^w_{prestige}$$

This does not imply that $R_m^2 = R_w^2$.

Overview

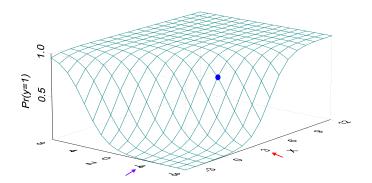
Group comparisons in logit and probit

- 1. While testing H_0 : $\beta_{articles}^m = \beta_{articles}^w$ is appropriate in LRM, it is not in the BRM.
- 2. Here, the test confounds:
 - 2.1 Group differences in the effect of x.
 - 2.2 Group differences in unobserved heterogeneity.
- 3. Allison's test assumes that the effects of other variables are equal across groups.
- 4. Alternatively, I propose tests based on comparing predicted probabilities.

Binary logit and probit

The challenge of nonlinearity

$$\Pr\left(y=1 \mid \mathbf{x}\right) = F\left(\beta_0 + \beta_x x + \beta_z z\right)$$



The mathematical model Binary logit and probit

Logit

$$\begin{aligned} \Pr\left(y=1\mid\mathbf{x}\right) &= & \Lambda\left(\beta_{0}+\beta_{x}x+\beta_{z}z\right) \\ &= & \frac{\exp\left(\beta_{0}+\beta_{x}x+\beta_{z}z\right)}{1+\exp\left(\beta_{0}+\beta_{x}x+\beta_{z}z\right)} \end{aligned}$$

Probit

$$\begin{aligned} \Pr\left(y=1\mid\mathbf{x}\right) &= \Phi\left(\beta_{0}+\beta_{x}x+\beta_{z}z\right) \\ &= \int_{-\infty}^{\beta_{0}+\beta_{x}x+\beta_{z}z} \frac{1}{\sqrt{2\pi}}\left(\frac{-t^{2}}{2}\right) dt \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: gender differences in tenure

Descriptive statistics for data as career years

Variable	Mean	StdDev	Minimum	Maximum	Label
tenure female year yearsq select articles prestige presthi	$\begin{array}{c} 0.12\\ 0.38\\ 4.33\\ 28.29\\ 4.97\\ 7.21\\ 2.63\\ 0.05\\ \end{array}$	$\begin{array}{c} 0.33\\ 0.49\\ 3.09\\ 44.18\\ 1.43\\ 6.74\\ 0.77\\ 0.21\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 1.00\\ 1.00\\ 1.00\\ 0.00\\ 0.65\\ 0.00\\ \end{array}$	1.00 22.00 484.00 7.00 73.00	Is tenured? Scientist is female? Years in rank. Years in rank squared. Selectivity of bachelor's. Total number of articles. Prestige of department. Prestige is 4 or higher?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

N = 2945

Model 1: logit estimates

Using only a dummy variable for group membership

$$\Pr\left(\mathsf{tenure} = 1 \mid \mathbf{x}\right) = \Lambda \left(\begin{array}{c} \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{year} + \beta_3 \mathsf{yearsq} \\ + \beta_4 \mathsf{select} + \beta_5 \mathsf{articles} + \beta_6 \mathsf{presthi} \end{array}\right)$$

logit (N=2945): Factor Change in Odds

Odds of: Tenure vs NoTenure

	b	Z	P> z	e^b	e^bStdX	SDofX
female	-0.37354	-2.941	0.003	0.6883	0.8341	0.4856
year	0.93246	11.003	0.000	2.5407	17.8420	3.0903
yearsq	-0.05380	-8.936	0.000	0.9476	0.0928	44.1814
select	0.12314	2.876	0.004	1.1310	1.1931	1.4339
articles	0.05091	6.562	0.000	1.0522	1.4097	6.7449
presthi	-0.94447	-2.555	0.011	0.3889	0.8219	0.2077
constant	-5.77055	-16.379	0.000			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Odds ratios for interpretation

Model 1: a dummy variable for group membership

Odds:

Odds
$$(x, z) = \frac{\Pr(y = 1 | x, z)}{\Pr(y = 0 | x, z)}$$

Odds ratios:

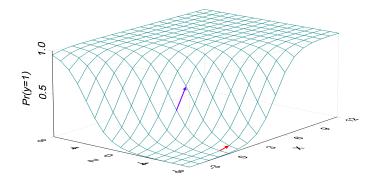
$$rac{{\operatorname{\mathsf{Odds}}}\left({x + 1,z}
ight)}{{\operatorname{\mathsf{Odds}}}\left({x,z}
ight)} = \exp \left({eta _x}
ight)$$

- 1. For articles: $\exp{(\beta_{\text{articles}})} = 1.05$.
 - For each additional article, the odds of tenure increase by a factor of 1.05, holding all other variables constant.
- 2. For female: exp $(\beta_{\text{female}}) = 0.69$.
 - Being a female scientist decreases the odds of tenure by a factor of .69, holding all other variables constant.

(日) (同) (三) (三) (三) (○) (○)

Odds ratios compared to changes in probabilities Binary logit

Both arrows are the same factor change in the odds.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Predicted probabilities at a given x

Model 1: a dummy variable for group membership

1. The predicted probability at specific values of the independent variables:

$$\Pr\left(\mathsf{tenure} = 1 \mid \mathbf{x}\right) = \Lambda \left(\begin{array}{c} \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{year} + \beta_3 \mathsf{yearsq} \\ + \beta_4 \mathsf{select} + \beta_5 \mathsf{articles} + \beta_6 \mathsf{presthi} \end{array}\right)$$

2. For example, the probability of tenure for non-publishing women in year 7, with selectivity 4 and low prestige:

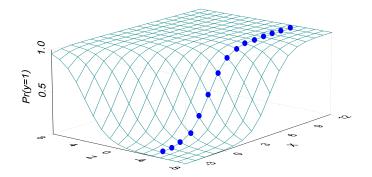
$$0.16 = \Lambda \left(\begin{array}{c} \beta_0 + \beta_1 \left(1 \right) + \beta_2 \left(7 \right) + \beta_3 \left(49 \right) \\ + \beta_4 \left(4 \right) + \beta_5 \left(0 \right) + \beta_6 \left(.05 \right) \end{array} \right)$$

3. Extending this idea, plots of probabilities can be constructed...

Plotting predicted probabilities as one variable changes

For a simple model with two predictors

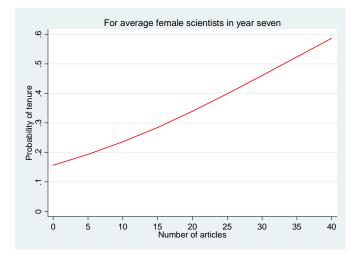
$$\Pr\left(y=1 \mid \mathbf{x}\right) = F\left(\beta_0 + \beta_x x + \beta_z z\right)$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plotting predicted probabilities as one variable changes

Model 1: a dummy variable for group membership



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Confidence intervals for predicted probabilities Binary logit and probit

1. Confidence intervals for predictions:

$$\left[\mathsf{Pr}\left(y=1 \mid \mathbf{x}
ight)_{\mathsf{LowerBound}}$$
 , $\, \mathsf{Pr}\left(y=1 \mid \mathbf{x}
ight)_{\mathsf{UpperBound}}
ight]$

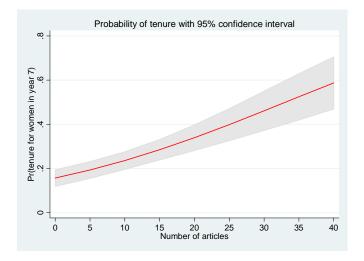
2. Delta method is easy is fast:

$$Var\left[\widehat{\mathsf{Pr}}\left(y=1 \mid \mathbf{x}\right)\right] = \left[\frac{\partial F\left(\mathbf{x}\widehat{\boldsymbol{\beta}}\right)}{\partial\widehat{\boldsymbol{\beta}}}\right]^{T} Var(\widehat{\boldsymbol{\beta}}) \left[\frac{\partial F\left(\mathbf{x}\widehat{\boldsymbol{\beta}}\right)}{\partial\widehat{\boldsymbol{\beta}}}\right]$$

 Bootstrap method requires at least 1,000 replications to get reliable results.

Confidence intervals for predicted probabilities

Model 1: a dummy variable for group membership



◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Group comparisons

Methods for comparing groups

Approaches for making group comparisons:

1. Include a dummy variable for group.

 $\beta_{\rm female}$ in the prior model.

2. Allow the effects of the x's to differ by group.

Let $\beta^{\rm m}_{\rm articles}$ and $\beta^{\rm w}_{\rm articles}$ differ.

2.1 Test the equality of coefficients.

$$\beta_{\rm articles}^{\rm m}=\beta_{\rm articles}^{\rm w}$$

2.2 Compare predictions by across groups.

$$\Pr\left(y=1 \mid \mathbf{x}\right)_{m} = \Pr\left(y=1 \mid \mathbf{x}\right)_{w}$$

Group comparisons in the BRM Binary logit and probit

1. In the BRM:

$$\begin{array}{ll} \text{Men:} & \Pr\left(y=1\right) = \Lambda\left(\alpha^m + \beta^m_{articles} articles + \beta^m_{prestige} prestige\right) \\ \text{Women:} & \Pr\left(y=1\right) = \Lambda\left(\alpha^w + \beta^w_{articles} articles + \beta^w_{prestige} prestige\right) \\ \end{array}$$

2. Can we use a Chow-type test?

$$H_0: \beta^m_{articles} = \beta^w_{articles}$$

3. Due to an identification problem Allison (1999) argues that this test tell us nothing about the underlying impact of x for the two groups.

Regression on a latent y^* - I

Binary logit and probit

1. Structural model with a latent y^* :

$$y^* = \alpha + \beta x + \varepsilon$$

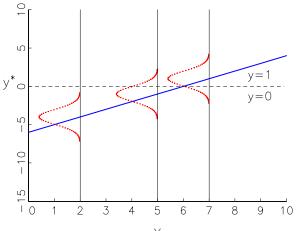
- 2. Error ε is normal(0,1) for probit; ε is logistic(0, $\pi^2/3$) for logit.
- 3. Observed y and latent y* are linked by:

$$y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{if } y^* \le 0 \end{cases}$$

4. Graphically,

Regression on a latent y* - II

Binary logit and probit



Х

<ロト <回ト < 注ト < 注ト

æ

Regression on a latent y* - III Binary logit and probit

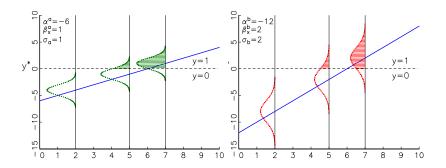
5. **Pr(y=1)** depends on the error distribution *and* the coefficients:

$$\begin{aligned} \Pr\left(y = 1 \mid x\right) &= & \Pr\left(y^* > 0 \mid x\right) \\ &= & \Pr\left(\varepsilon < \left[\alpha + \beta x\right] \mid x\right) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

6. There is an **identification problem** that can be illustrated graphically.

Regression on a latent y* - IV Binary logit and probit



7. In terms of Pr(y = 1), these are empirically indistinguishable:

Green A change in x of 1 when $\beta_x^a = 1$ and $\sigma_a = 1$. Red A change in x of 1 when $\beta_x^b = 2$ and $\sigma_b = 2$.

Identification and group comparisons - I

Identification of betas, error variance and probabilities

1. Let y^* be the latent variable associated with receipt of tenure:

$$\begin{array}{ll} \text{Men:} & y^* = \alpha^m + \beta^m_{\text{articles}} \text{articles} + \varepsilon_m \\ \text{Women:} & y^* = \alpha^w + \beta^w_{\text{articles}} \text{articles} + \varepsilon_w \end{array}$$

2. Assume the coefficients for articles are equal:

$$eta^m_{\mathsf{articles}} = eta^w_{\mathsf{articles}}$$

3. But, assume women have more unobserved heterogeneity:

$$\sigma_w > \sigma_m$$

4. Now estimate the model...

Identification and group comparisons - II

Identification of betas, error variance and probabilities

5. Software makes implicit assumptions:

Logit:
$$Var(\varepsilon) = \frac{\pi^2}{3}$$

Probit: $Var(\varepsilon) = 1$

- 6. What is the effect of these assumptions?
- 7. With probit, ε is rescaled so that:

$$Var\left(rac{arepsilon}{\sigma}
ight)=Var\left(\widetilde{arepsilon}
ight)=1$$

Identification and group comparisons - III

Identification of betas, error variance and probabilities

8. For men, the estimated model for probit is:

$$\begin{array}{lcl} \displaystyle \frac{y^{*}}{\sigma_{m}} & = & \displaystyle \frac{\alpha^{m}}{\sigma_{m}} + \displaystyle \frac{\beta^{m}_{\rm articles}}{\sigma_{m}} {\rm articles} + \displaystyle \frac{\varepsilon_{m}}{\sigma_{m}} \\ & = & \displaystyle \widetilde{\alpha}^{m} + \displaystyle \widetilde{\beta}^{m}_{\rm articles} {\rm articles} + \displaystyle \widetilde{\varepsilon}_{m}, \ {\rm where} \ \displaystyle \widetilde{\sigma}_{m} = 1 \end{array}$$

9. For women, the estimated model for probit is:

$$\begin{array}{ll} \frac{y^{*}}{\sigma_{w}} & = & \frac{\alpha^{w}}{\sigma_{w}} + \frac{\beta^{w}_{\mathsf{articles}}}{\sigma_{w}} \mathsf{articles} + \frac{\varepsilon_{w}}{\sigma_{w}} \\ & = & \widetilde{\alpha}^{w} + \widetilde{\beta}^{w}_{\mathsf{articles}} \mathsf{articles} + \widetilde{\varepsilon}_{w}, \text{ where } \widetilde{\sigma}_{w} = 1 \end{array}$$

Identification and group comparisons - IV

Identification of betas, error variance and probabilities

10. We want to test:

$$H_0: \beta^m_{\text{articles}} = \beta^w_{\text{articles}}$$

11. But, we test:

$$H_0: \; {\widetilde eta}^m_{ ext{articles}} = {\widetilde eta}^w_{ ext{articles}}$$

12. Unless
$$\sigma_m^2 = \sigma_w^2$$
,

$$\widetilde{\boldsymbol{\beta}}_{\mathsf{articles}}^m = \widetilde{\boldsymbol{\beta}}_{\mathsf{articles}}^w$$

does not imply

$$\beta^m_{\text{articles}} = \beta^w_{\text{articles}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Identification and group comparisons - V

Identification of betas, error variance and probabilities

Aside: rescaling errors in logit

1. The model is:

$$y^* = lpha + eta_{ ext{articles}} ext{articles} + arepsilon$$

2. We rescale the errors so that:

$$Var\left(\widetilde{arepsilon}
ight)=rac{\pi^{2}}{3}$$
 rather than 1 for probit

3. This leads to the equation that is estimated:

$$\frac{\pi}{\sqrt{3}}\frac{y^*}{\sigma} = \frac{\pi}{\sqrt{3}}\frac{\alpha}{\sigma} + \frac{\pi}{\sqrt{3}}\frac{\beta_{\text{articles}}}{\sigma} \text{articles} + \frac{\pi}{\sqrt{3}}\frac{\varepsilon}{\sigma}$$

Alternatives for testing group differences - I Binary logit and probit

Two distinct approaches address the identification problem.

1. Allison's test of H_0 : $\beta_x^m = \beta_x^w$, disentangles the β 's and $Var(\varepsilon)$.

1.1 The test requires the strong assumption:

$$eta_z^m=eta_z^w$$
 or equivalently $rac{eta_z^m}{eta_z^w}=1$

1.2 Then, the ratio of estimated $\tilde{\beta}$ gives us information on the unobserved variances:

$$\frac{\widetilde{\beta}_{z}^{m}}{\widetilde{\beta}_{z}^{w}} = \frac{\beta_{z}^{m}/\sigma_{m}}{\beta_{z}^{w}/\sigma_{w}} = \frac{\sigma_{w}}{\sigma_{m}}$$

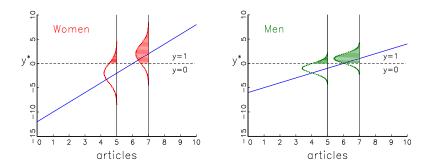
1.3 This provides leverage to test:

$$H_0:\beta_x^m=\beta_x^w$$

Alternatives for testing group differences - II Binary logit and probit

2. Alternatively, since the probabilities are invariant to $Var(\varepsilon)$, I propose testing

*H*₀:
$$\Pr(y = 1 | \mathbf{x})_m = \Pr(y = 1 | \mathbf{x})_w$$



・ロト ・聞ト ・ヨト ・ヨト

э

Setting up the model to compare groups

Comparing groups using logit and probit

1. Let w = 1 for women, else 0 and $wx = w \times x$; let m = 1 for men, else 0 and $mx = m \times x$.

$$\Pr(y=1) = F(\alpha^{w}w + \beta_{x}^{w}wx + \alpha^{m}m + \beta_{x}^{m}mx)$$

2. Then:

$$\Pr(y = 1 | \mathbf{x})_{w} = F(\alpha^{w} + \beta_{x}^{w}x) \text{ if } w = 1, m = 0$$

$$\Pr(y = 1 | \mathbf{x})_{m} = F(\alpha^{m} + \beta_{x}^{m}x) \text{ if } w = 0, m = 1$$

3. The gender difference in the probability of tenure is:

$$\Delta_{m-w} (\mathbf{x}) = \Pr(y = 1 \mid \mathbf{x})_m - \Pr(y = 1 \mid \mathbf{x})_w$$

Model 2: Logit estimates and Chow-type test Articles only by group

Start with a simple model with only publications predicting tenure:

logit (N=2945): Factor Change in Odds

Odds of: Tenure vs NoTenure

MEN		b	z	P> z	e^b	e^bStdX	SDofX
	constant	-2.69315	-23.000	0.000	0.0677	0.2704	0.4856
	articles	0.09810	9.928	0.000	1.1031	1.7854	5.9089
WOM	EN	b	Z	P> z	e^b	e^bStdX	SDofX
	constant	-2.47327	-18.299	0.000	0.0843	0.3009	0.4856
	articles	0.04215	4.259	0.000	1.0430	1.2855	5.9592

Comparing groups with predicted probabilities and CIs - I Model 2: articles only by group

To compare groups at different levels of articles:

1. Compute differences:

$$\begin{array}{lll} \Delta_{m-w} \mbox{ (articles)} & = & \Pr\left(y=1 \mid {\rm articles}\right)_m \\ & & -\Pr\left(y=1 \mid {\rm articles}\right)_w \end{array}$$

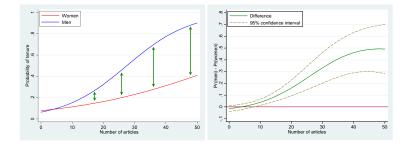
2. Compute confidence intervals by delta or bootstrap:

$$\left[\Delta_{m-w} \left(\mathsf{articles}\right)_{\mathsf{LowerBound}}, \, \Delta_{m-w} \left(\mathsf{articles}\right)_{\mathsf{UpperBound}}\right]$$

3. With one RHS variable, we can plot all comparisons.

Comparing groups with predicted probabilities and CIs - II Model 2: articles only by group

4. Moving from predictions for each group to differences in predictions:



Logit and probit with additional independent variables - I

Effects of additional variables for predicted probabilities

Adding variables introduces substantial complications for interpretation:

1. With two independent variables:

$$\Pr(y = 1 \mid x, z) = F(\alpha + \beta_x x + \beta_z z)$$

2. Setting $z = Z^*$ changes the intercept in an equation with only x:

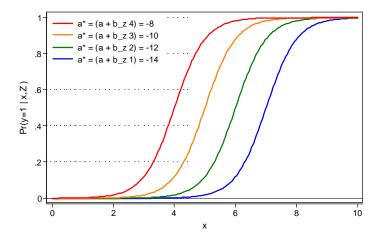
$$Pr(y = 1 | x, Z^*) = F(\alpha + \beta_x x + \beta_z Z^*)$$
$$= F([\alpha + \beta_z Z^*] + \beta_x x)$$
$$= F(\alpha^* + \beta_x x)$$

3. Predictions depend on the levels of each variable in the model.

Logit and probit with additional independent variables - II

Effects of additional variables for predicted probabilities

Graphically, predictions at a single x depend on z:



▲□▶ ▲圖▶ ▲注▶ ▲注▶ … 注: 釣ぬ()

Comparing groups with additional independent variables Control variables change the intercept

1. For a given z = Z:

Men:
$$\Pr(y = 1 \mid x, Z^*)_m = F(\alpha^{*m} + \beta_x^m x)$$

Women: $\Pr(y = 1 \mid x, Z^*)_w = F(\alpha^{*w} + \beta_x^m x)$

2. Differences in probabilities for a given x depends on the level of other variables:

$$\Delta_{m-w}(x, Z^{*}) = \Pr(y = 1 \mid x, Z^{*})_{m} - \Pr(y = 1 \mid x, Z^{*})_{w}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Model 3: logit estimates

Articles and prestige by group

Using a dummy variable indicating high prestige jobs:

logit (N=2945): Factor Change in Odds

Odds of: Tenure vs NoTenure

MEN	b	z	P> z	e^b	e^bStdX	SDofX
constant	-2.68452	-22.871	0.000	0.0683	0.2715	0.4856
articles	0.10011	10.014	0.000	1.1053	1.8068	5.9089
presthi	-0.72952	-1.713	0.087	0.4821	0.8934	0.1545
WOMEN	b	Z	P> z	e^b	e^bStdX	SDofX
WOMEN constant	b -2.54377	z -17.900	P> z 0.000	e^b 0.0786	e^bStdX 0.2907	SDofX 0.4856
	~	-				

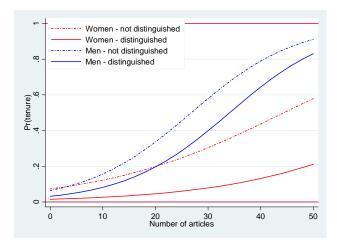
Chow tests: $X_{\text{articles}}^{2}(1) = 1.1$, p = .30; $X_{\text{presthi}}^{2}(1) = .03$, p = .86. Allison tests: $X_{\text{articles}}^{2}(1) = 1.7$, p = .19; $X_{\text{presthi}}^{2}(1) = 1.6$, p = .21.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Predicted probabilities by group and prestige level - I

Model 3: articles and prestige by group

This shows all predictions from this model.

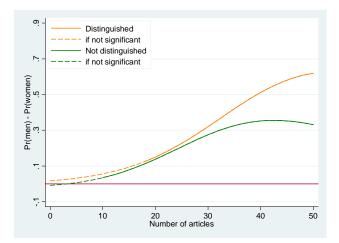


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Predicted probabilities by group and prestige level - II

Model 3: articles and prestige by group

Alternatively, we can plot Δ_{m-w} (articles, presthi):



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Model 4: logit estimates

logit (N=2945): Factor Change in Odds

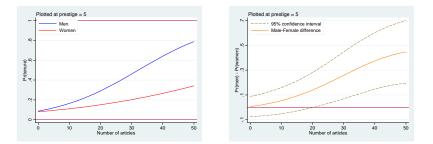
All variables by group

Odds of: Tenure vs NoTenure MEN b P>|z| e^b e^bStdX SDofX z constant -5.82375 -11.5510.000 0.0030 0.0591 0.4856 1.07188 9.084 0.000 2.9209 year 27.7967 3.1019 -0.06540 -7.5130.000 0.9367 0.1043 34.5630 yearsq 1.2346 select 0.21072 3.687 0.000 1.7448 2.6416 0.07355 6.836 0.000 1.0763 1.5444 5.9089 articles prestige -0.37700 -3.645 0.000 0.6859 0.5865 1.4151 WOMEN b z P>|z| e^b e^bStdX SDofX -4.20721 -6.6750.000 0.0149 0.1296 0.4856 constant 0.76851 6.123 0.000 2.1565 9.9209 2.9858 year -0.04176 -4.9300.000 0.9591 0.2430 33.8754 yearsq 0.03444 0.614 1.0350 2.5975 select 0.504 1.0936 articles 0.03570 2.982 0.003 1.0363 1.2371 5.9592 prestige -0.34818-2.2880.022 0.7060 0.6212 1.3673

Chow tests: $X_{articles}^{2}(1)=1.1$, p=.30. $X_{prestige}^{2}(1)=.03$, p=.86. Allison tests: $X_{articles}^{2}(1)=1.7$, p=.19. $X_{prestige}^{2}(1)=1.6$, p=.21

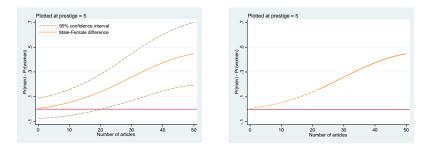
Plotting probabilities and group differences I Model 4: all variables by group

Moving from by group predicted probabilities to group differences:



Plotting probabilities and group differences II Model 4: all variables by group

A dashed line indicates the differences is not significant:

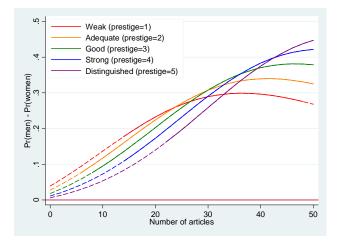


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Discrete change as prestige and articles varies - I

Model 4: all variables by group

Holding all other variables constant:

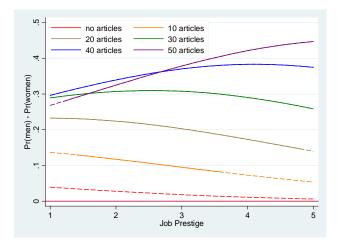


▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Discrete change as prestige and articles varies - II

Model 4: all variables by group

Or, reversing job prestige and articles in the graph:

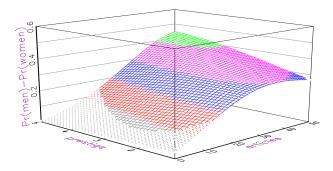


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Discrete change as prestige and articles varies - III

Model 4: all variables by group

Equivalently, in three dimensions:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

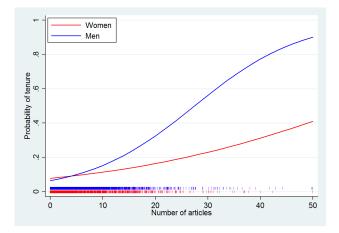
Summary

Basic issues in group comparison in logit and probit

- 1. In the LRM we can use standard test to compare coefficients across groups.
- 2. In the BRM, these tests are problematic due to identification issues.
- 3. We can make stronger assumptions to test the coefficients.
- 4. Tests comparing predicted probabilities are unaffected by the identification problem.
- 5. But you must deal with the interpretation of nonlinear models since a single test is not possible.

Is there sufficient data to draw conclusions?

The distribution of articles



▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ ─ 差 … のへで

Installing the SPost programs in Stata

In Stata while connected to the internet:

```
findit spost9
```

and follow instructions to install the packages:

spost9_ado : Stata 9 SPost ado files.
spost_nd : Long - ND 2007 sample files.

References

- Allison, Paul D. 1999. "Comparing Logit and Probit Coefficients Across Groups." Sociological Methods and Research 28:186-208.
- 2. Chow, G.C. 1960. "Tests of equality between sets of coefficients in two linear regressions." Econometrica 28:591-605.
- 3. Long, J.S. 2005. Comparing Groups using Predicted Outcomes. Working paper.
- Long, J.S. and Freese, J. 2005. Regression Models for Categorical and Limited Dependent Variables with Stata. Second Edition. College Station, TX: Stata Press.
- Long, J. Scott, Paul D. Allison, and Robert McGinnis. 1993. "Rank Advancement in Academic Careers: Sex Differences and the Effects of Productivity." American Sociological Review 58:703-722.
- Xu, Jun and Long, J. 2005, Confidence intervals for predicted outcomes in regression models for categorical outcomes. The Stata Journal 5: 537-559.

Confidence intervals for predictions - I

Cls computed by delta method or bootstrap

Delta

1. Take a Taylor series expansion of $G(\widehat{\boldsymbol{\beta}}) = \Pr(y = 1 | \mathbf{x})$ = $F(\mathbf{x}\boldsymbol{\beta})$: $G(\widehat{\boldsymbol{\beta}}) \approx G(\boldsymbol{\beta}) + (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T G'(\boldsymbol{\beta})$

2. Where

$$G'(\boldsymbol{\beta}) = \begin{bmatrix} \frac{\partial F(\mathbf{x}\boldsymbol{\beta})}{\partial \beta_0} & \frac{\partial F(\mathbf{x}\boldsymbol{\beta})}{\partial \beta_1} & \cdots & \frac{\partial F(\mathbf{x}\boldsymbol{\beta})}{\partial \beta_K} \end{bmatrix}^T$$

3. Under standard assumptions, $G(\hat{\beta})$ is distributed normally around $G(\beta)$ with a variance

$$Var\left[G(\widehat{\boldsymbol{eta}})
ight] = G'(\widehat{\boldsymbol{eta}})^T Var(\widehat{\boldsymbol{eta}})G'(\widehat{\boldsymbol{eta}})$$

Confidence intervals for predictions - II

Cls computed by delta method or bootstrap

4. Or:

$$Var\left[\widehat{\mathsf{Pr}}\left(y=1\mid \mathbf{x}\right)\right] = \left[\frac{\partial F\left(\mathbf{x}\widehat{\boldsymbol{\beta}}\right)}{\partial\widehat{\boldsymbol{\beta}}}\right]^{T} Var(\widehat{\boldsymbol{\beta}}) \left[\frac{\partial F\left(\mathbf{x}\widehat{\boldsymbol{\beta}}\right)}{\partial\widehat{\boldsymbol{\beta}}}\right]$$

5. For discrete change:

$$\begin{aligned} &\operatorname{Var}\left[F(\widehat{\boldsymbol{\beta}}|\mathbf{x}_{a}) - F\left(\widehat{\boldsymbol{\beta}}|\mathbf{x}_{b}\right)\right] \\ &= \left\{ \left[\frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{a})}{\partial \boldsymbol{\beta}^{T}} \operatorname{Var}(\widehat{\boldsymbol{\beta}}) \frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{a})}{\partial \boldsymbol{\beta}}\right] - \left[\frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{a})}{\partial \boldsymbol{\beta}^{T}} \operatorname{Var}(\widehat{\boldsymbol{\beta}}) \frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{b})}{\partial \boldsymbol{\beta}}\right] \right\} \\ &- \left\{ \left[\frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{b})}{\partial \boldsymbol{\beta}^{T}} \operatorname{Var}(\widehat{\boldsymbol{\beta}}) \frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{a})}{\partial \boldsymbol{\beta}}\right] - \left[\frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{b})}{\partial \boldsymbol{\beta}^{T}} \operatorname{Var}(\widehat{\boldsymbol{\beta}}) \frac{\partial F(\boldsymbol{\beta}|\mathbf{x}_{b})}{\partial \boldsymbol{\beta}}\right] \right\} \end{aligned}$$

Bootstrap

To get stable results, you need to use at least 1,000 replications.