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Abstract

In the presence of heteroscedasticity, OLS estimates are unbiased, but
the usual tests of significance are generally inappropriate and their use can
lead to incorrect inferences. Tests based on a heteroscedasticity consis-
tent covariance matrix (HCCM), however, are consistent even in the pres-
ence of heteroscedasticity of an unknown form. Most applications that
use a HCCM appear to rely on the asymptotic version known as HC0.
Our Monte Carlo simulations show that HC0 often results in incorrect
inferences when N ≤ 250, while three relatively unknown, small sample
versions of the HCCM, and especially a version known as HC3, work well
even for N ’s as small as 25. We recommend that: 1) data analysts should
correct for heteroscedasticity using a HCCM whenever there is reason to
suspect heteroscedasticity; 2) the decision to use a HCCM-based tests
should not be determined by a screening test for heteroscedasticity; and
3) when N ≤ 250, the HCCM known as HC3 should be used. Since HC3
is simple to compute, we encourage authors of statistical software to add
this estimator to their programs.

1 Introduction

It is well known that when the assumptions of the linear regression model are cor-

rect, ordinary least squares (OLS) provides efficient and unbiased estimates of the

parameters. Heteroscedasticity occurs when the variance of the errors varies across

1J. Scott Long is Chancellors’ Professor of Sociology at Indiana University. Laurie H. Ervin is a
fellow in the Social Psychology Traning Program in the Department of Sociology, Indiana University.
We thank Paul Allison, Ken Bollen, David Drukker, John Fox, Bill Greene, Lowell Hargens, David
James, and the reviewers for their comments. Technical details on the simulations can be found at:
www.indiana.edu/~jslsoc/hccm.htm .
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observations. When the errors are heteroscedastic, the OLS estimator remains unbi-

ased, but becomes inefficient. More importantly, the usual procedures for hypothesis

testing are no longer appropriate. Given that heteroscedasticity is common in cross-

sectional data, methods that correct for heteroscedasticity are essential for prudent

data analysis.

A variety of statistical methods correct for heteroscedasticity by weighting each

observation by the inverse of the standard deviation of the error (see, for example,

Greene 2000:512-157 or Carroll and Ruppert 1988:9-61). The resulting coefficient

estimates are efficient and unbiased, with unbiased estimates of the standard errors.

When the form and magnitude of heteroscedasticity are known, using weights to

correct for heteroscedasticity is very simply using generalized least squares. If the form

of heteroscedasticity involves a small number of unknown parameters, the variance

of each residual can be estimated first and these estimates can be used as weights

in a second step.In many cases, however, the form of heteroscedasticity is unknown,

which makes the weighting approach impractical.

When heteroscedasticity is caused by an incorrect functional form, it can be cor-

rected by making variance-stabilizing transformations of the dependent variable (see,

for example, Weisberg 1980:123-124) or by transforming both sides (Carroll and Rup-

pert 1988:115-173). While this approach can provide an efficient and elegant solution

to the problems caused by heteroscedasticity, when the results need to be interpreted

in the original scale of the variables, nonparametric methods may be necessary (Duan

1983; Carroll and Ruppert 1988:136-139). As noted by Emerson and Stoto (1983:

124), “...re-expression moves us into a scale that is often less familiar.” Further, if
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there are theoretical reasons to believe that errors are heteroscedastistic around the

correct functional form, transforming the dependent variable is inappropriate.

An alternative approach, which is the focus of our paper, is to use tests based

on a heteroscedasticity consistent covariance matrix, hereafter HCCM. The HCCM

provides a consistent estimator of the covariance matrix of the regression coefficients

in the presence of heteroscedasticity of an unknown form. This is particularly useful

when the interpretation of nonlinear models that reduce heteroscedasticity is difficult,

a suitable variance-stabilizing transformation cannot be found, or weights cannot be

estimated for use in GLS. Theoretically, the use of HCCM allows a researcher to easily

avoid the adverse effects of heteroscedasticity even when nothing is known about the

form of heteroscedasticity.

The development of the HCCM can be traced to the early work of Eicker (1963,

1967) and Huber (1967). White (1980) introduced this idea to econometricians and

derived the asymptotically justified form of the HCCM known as HC0. In a later

paper, MacKinnon and White (1985) raised concerns about the performance of HC0

in small samples and presented three alternative estimators known as HC1, HC2,

and HC3. While these estimators are asymptotically equivalent to HC0, they were

expected to have superior properties in finite samples. Based on limited Monte Carlo

evidence, MacKinnon and White (1985) recommended that in small samples one

should use HC3. Based on further simulations, Davidson and MacKinnon (1993:554)

later recommended strongly that HC2 or HC3 should be used in favor of HC0.

In Section 3 we argue that researchers and software vendors are unaware of or

unconvinced by the limited evidence regarding the small sample properties of HC0.
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Our objective in this paper is to provide extensive and, we hope, convincing evidence

for the superiority of HC3. While no Monte Carlo simulation can cover all variations

that might influence the properties of the statistics being studied, our simulations

explore a wide range of situations that are common in cross-sectional data. The

next section begins by reviewing the effects of heteroscedasticity and defining four

versions of the HCCM for the linear regression model. Section 3 assesses current

practice in using HCCMs. Section 4 describes the simulations which are presented in

Section 5. Overall, our results indicate that data analysts should change the way in

which they use heteroscedasticity consistent standard errors. To this end, software

vendors need to make simple changes to their software that could result in substantial

improvements in the application of the linear regression model.

2 HCCM for the Linear Regression Model

Using standard notation, the linear regression model can be written as

y = Xβ + ε

where E (ε) = 0 and E (εε0) = Φ, a positive definite matrix. Under this specification,

the OLS estimator bβ = (X0X)−1X0y is best linear unbiased with:

Var
³bβ´ = (X0X)−1X0ΦX (X0X)−1 (1)

If the errors are homoscedastic, that is Φ = σ2I, Equation 1 simplifies to:

Var
³bβ´ = σ2 (X0X)−1 (2)
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Defining the residuals ei = yi − xibβ, where xi is the ith row of X, we can estimate
the OLS covariance matrix of estimates as:

OLSCM =

P
e2i

N −K (X0X)−1 (3)

where N is the sample size and K is the number of elements in β. The OLSCM is

appropriate for hypothesis testing and computing confidence intervals when the stan-

dard assumptions of the regression model, including homoscedasticity, hold. When

there is heteroscedasticity, tests based on the OLSCM are likely to be misleading

since Equation 2 will not generally equal Equation 1.

If the errors are heteroscedastistic and Φ is known, Equation 1 can be used to

correct for heteroscedasticity. More often, the form of heteroscedasticity is unknown

and a heteroscedasticity consistent covariance matrix (hereafter, HCCM) should be

used. The basic idea behind a HCCM estimator is to use e2i to estimate φii. This

can be thought of as estimating the variance of εi with a single observation: bφii =
(ei − 0)2 /1 = e2i . Then, let bΦ =diag[e2i ] , which results in:

HC0 = (X0X)−1X0 bΦX (X0X)−1 = (X0X)−1X0diag
£
e2i
¤
X (X0X)−1 (4)

HC0 is the most commonly used form of the HCCM and is referred to variously as the

White, Eicker, or Huber estimator. As shown by White (1980) and others, HC0 is a

consistent estimator of Var
³bβ´ in the presence of heteroscedasticity of an unknown

form.

MacKinnon and White (1985) considered three alternative estimators designed to

improve the small sample properties of HC0. The simplest adjustment, suggested by

Hinkley (1977), makes a degrees of freedom correction that inflates each residual by a
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factor of
p
N/ (N −K). With this correction, we obtain the version known as HC1:

HC1 = N
N−K (X

0X)−1X0diag
£
e2i
¤
X (X0X)−1 = N

N−KHC0

To understand the motivation for the second alternative, we need some basic

results from the analysis of outliers and influential observations (see, for example,

Belsley et al. 1980:13-19; Greene 1997:444-445). Recall that bΦ in Equation 4 is based
on the OLS residuals e, not the errors ε. Even if the errors are homoscedastistic, the

residuals will not be. Specifically, if we define hii = xi (X
0X)−1 x0i, then:

Var (ei) = σ
2 (1− hii) 6= σ2 (5)

Since 1/N ≤ hii ≤ 1 (Belsley et al. 1980:13-19), Var(ei) underestimates σ2. Equation

5 suggests that while e2i is a biased estimator of σ
2
i , e

2
i / (1− hii) will be less biased.

This led MacKinnon and White (1985), based on work by Horn, Horn, and Duncan

(1975), to propose:

HC2 = (X0X)−1X0diag
·

e2i
1− hii

¸
X (X0X)−1

A third variation approximates a more complicated jackknife estimator of Efron

(1982, as cited by MacKinnon and White 1985):

HC3 = (X0X)−1X0diag
·

e2i
(1− hii)2

¸
X (X0X)−1

Dividing e2i by (1− hii)2 further inflates e2i , which is thought to adjust for the “over-

influence” of observations with large variances.

All four HCCM estimators are easy to program since they are functions of statistics

routinely computed by standard regression packages.2 Regardless of the number of

2Greene (1999) reports that adding HC2 and HC3 to LIMDEP only added 4 lines of code.
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observations or variables in the model, HCCM tests should less than doubles the

computing time required. For example, in Stata 6 it took 90% longer to compute

HC2 or HC3 compared to OLSCM and 10% longer compared to HC1. In a test

version of LIMDEP (Greene 1999), it took 66% longer to compute any of the HCCMs

compared to OLSCM. Clearly, the added time to compute these estimates is feasible

given current computing power.

3 Current Practice

The number of applications that use HCCMs is increasing rapidly, especially in the

social sciences. However, MacKinnon and White’s recommendation against using

HC0 in small samples appears to be unknown or unconvincing to most researchers

and software vendors. Our conclusion is based on several sources of information.

First, Table 1 shows that HC0 is the most common form of the HCCM estimated

by 12 statistical packages, including a range of general and specialized packages.3

HC2 and HC3 are available only in Stata and TSP. While all forms of the HCCM

can be programmed in packages such as LIMDEP, S-Plus, or GAUSS, it is unlikely

that many users will do this. Second, in the 1996 edition of Social Science Citation,

White’s (1980) paper which discusses only HC0 was cited 235 times compared to only

8 citations to MacKinnon and White (1985). Third, while many recent texts discuss

HC0 (e.g., Amemiya 1994; Fox 1997; Goldberger 1991; Gujarati 1995; Judge et al.

3Table 1 is based on our familiarity with these packages as well as a review of documentation,

web sites for the packages, and, in some cases, calls to technical support. We apologize for missing

any features of the software.
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Package Version HC0 HC1 HC2 HC3

BMDP 7 ® ® ® ®
GAUSS 3.2 ¥ ¤ ¤ ¤
GLIM 4 ® ® ® ®

LIMDEP 7 ¥ ¤ ¤ ¤
Microfit 4 ® ¥ ® ®
Minitab 11 ® ® ® ®

SAS 6.11 ¥ ¤ ¤ ¤
SPSS 10 ® ® ® ®
Systat 8 ¥ ® ® ®
S-Plus 2000 ¤ ¤ ¤ ¤
Stata 6 £ ¥ £ £
TSP 4.4 £ £ ¥ £

Note: ¥=default option; £=yes; ¤=can be
progammed; ®=not available.

Table 1: Types of Heteroscedasticity Consistent Covariance Matrices Estimated by

Statistical Packages that Estimate the Linear Regression Model.

1988; and Maddala 1992), we found only two that discuss the small sample properties

of HC0 (Davidson and MacKinnon 1993; Greene 1997). Finally, we reviewed 32 of the

240 articles in the 1996 Social Science Citation Index that cited either White (1980)

or MacKinnon and White (1985). Only one paper used a small sample version of the

HCCM, even though half of the papers had samples that our results suggest are too

small to justify the use of HC0. We now turn to those simulations.

4 Monte Carlo Experiments

Monte Carlo simulations were used to examine the small sample behavior of tests us-

ing the OLSCM and the four versions of the HCCM presented above. Each simulation
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was based on the model:

yi = 1 + 1x1i + 1x2i + 1x3i + 0x4i + τεi (6)

where characteristics of the x’s and ε’s were varied to simulate data typically found

in cross-sectional research. The independent variables had a variety of distributions,

including uniform, bell-shaped, skewed (to increase the likelihood of sampling points

of high leverage), bimodal, and binary. Correlations among the x’s ranged from .2 to

.8. And, the effect of the variance of the errors was examined by running simulations

with R2’s ranging from .2 to .7.

Table 2 lists the error structures that were considered. Structure 0 includes three

distributions of homoscedastistic errors: skewed (χ25), fat-tailed (t5), and normal (z).

Heteroscedasticity was introduced by allowing the variance of the errors to depend

on the independent variables in six ways, corresponding to Structures 1 through 6.

As a simple measure of the extent of heteroscedasticity, we sorted the data by each

Average Ratio of Standard

Skedasticity Deviations for 85-95 and

Structure Function 5-15 Percentiles of ε

0 εi = ε
∗
i (no heteroscedasticity) 1.0

1 εi =
√
xi1ε

∗
i 1.2

2 εi =
√
xi3 + 1.6ε∗i 1.3

3 εi =
√
xi3
√
xi4 + 2.5ε

∗
i 2.2

4 εi =
√
xi1
√
xi2 + 2.5

√
xi3ε

∗
i 2.8

5 εi =

(
1.5ε∗i if xiD = 1

ε∗i if xiD = 0
1.5

6 εi =

(
4ε∗i if xiD = 1

ε∗i if xiD = 0
3.2

Note: ε∗ had either a z, t5, or χ25 distribution.

Table 2: Error Structures Used in the Simulations.
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independent variable and computed the ratio of the standard deviations of the errors

within the 5th to 15th percentiles of the sorted x’s to those within the 85th to 95th

percentiles. The upper and lower 5th percentiles were dropped to eliminate the effects

of extreme observations. The average ratio across all x’s appears in the last column.

We also computed the percent of times out of 1,000 replications that the Breusch-

Pagan test for heteroscedasticity was statistically significant at N = 25, 50, and 100.

These percentages, which are not reported, tracked closely with our simple measures

of the ratio of the variances.

For each error structure and combination of types of variables, we ran simulations

as follows:

Data Generation of the Population: 100,000 observations for the independent

variables (x’s) were constructed and saved to disk. Random errors ε were generated

according to the error structure being evaluated. These were used to construct the

dependent variable y according to Equation 6.

Simulations: 1,000 random samples without replacement were drawn forN = 25,

50, 100, 250, 500, and 1,000. Regressions were estimated and hypothesis tests were

computed for each sample at each sample size. The estimates of the β’s and t-statistics

using the OLSCM and the four HCCMs were saved.

Evaluating Size and Power. To evaluate size, the null hypothesis was H0: βk =

β∗k, where β
∗
k is the population value from a regression using all 100,000 observations.

We compared the nominal significance level to the proportion of times that the correct

H0 was rejected over the 1,000 replications at a given sample size. For power, the

empirical significance level is the proportion of times the false hypothesis H0: βk = 0
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was rejected over 1,000 replications. Power curves for values from 2 below to 2 above

the population value were also computed. While size and power were examined at

the .05 and .10 nominal levels, the findings were similar so only results for the .05

level are presented.

These simulations were used to evaluate three situations in which the HCCMmight

be used. First, we examine the cost of using a HCCM-based test when errors are ho-

moscedastic. Second, we compare results using OLSCM tests and the HCCM tests

when there is heteroscedasticity. Finally, we use examine the consequences of using a

test for heteroscedasticity to determine whether HCCM tests should be used. For each

application, we present a few results that highlight our major findings. Full details, in-

cluding computer code, are available at http://www.indiana.edu/~jslsoc/hccm.htm

4.1 Homoscedastistic Errors

The first question is to consider the consequences of correcting unnecessarily for

heteroscedasticity when the errors are homoscedastic. Figure 1 uses results from a

population with homoscedastic χ25 errors to illustrate our findings. The horizontal

axis indicates the size of the sample used in the simulation; the vertical axis indicates

the proportion of times that H0 was rejected out of 1,000 replications. The nominal

significance level is indicated by a horizontal line at .05. The proportion of times that

the null hypotheses is rejected using tests based on the standard OLSCM is indicated

by a ¤; the proportion rejected by each type of HCCM is indicated by a number: 0

for HC0, 1 for HC1, and so on.
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Figure 1: Size and Power of t-tests of β3 for Homoscedastistic χ
2
5 Errors.

Size. The left side of Figure 1 illustrates our key findings regarding size.

1) OLSCM-based tests have the best size properties, as would be expected since the

errors are homoscedastistic. 2) The size properties of HC3 tests are nearly as good

as those for OLSCM tests, even at N = 25. 3) Tests based on HC2, HC1, and HC0

have increasingly large size distortion for N ≤ 100. 4) For N ≥ 250, all tests have

nearly identical size properties. These conclusions were also supported in simulations

using homoscedastistic errors with z or t5 distributions.

Power. The right panel of Figure 1 shows the power of the various tests for the

false hypothesis H0: β3 = 0. This example illustrates our overall findings from all

simulations: 1) HC3 and OLSCM have less power than HC0, HC1, and HC2 until

N ≥ 250. 2) If the power estimates for HC0, HC1, and HC2 are adjusted for the

tendency of these tests to over-reject, their power advantage is reduced by about half.

3) Power curves (not shown) for tests that βk has values ranging from 2 below to 2

above the true value show that the results in Figure 1 hold for other false hypotheses.

12



Summary. Overall, the greatest size distortion is seen for HC0 with small sam-

ples. At N = 25, HC0 rejects the true null hypothesis over twice as often as it should.

HC1 cuts the size distortion in half, and HC2 and HC3 have distortion of less than

.02. By N = 100, the properties of the HCCM tests are nearly identical to those using

OLSCM, with the exception of HC0. By N = 1, 000, the results from all types of

tests are indistinguishable. Thus, for tests with samples of 250 or more, there is very

little distortion introduced by using any of the HCCM-based tests when the errors

are homoscedastistic. For smaller samples, HC3 performs nearly as well as OLSCM.

4.2 Heteroscedastistic Errors

While OLSCM tests are superior to the HCCM-based tests when errors are ho-

moscedastistic, for the types of heteroscedasticity that we consider, OLSCM tests

are biased. Figure 2 plots the size properties of each test when the errors have a χ25

distribution with the scedasticity function: εi = τ
√
xi3 + 1.6 ε

∗. This error structure

(Structure 2 in Table 2) has a moderate amount of heteroscedasticity.

Size. The four panels of Figure 2 correspond to tests of the four βk’s from Equa-

tion 6. While the findings in this figure are for a single error structure, they are

representative of the results for other heteroscedastistic structures. The key findings

are: 1) Heteroscedasticity does not affect tests of each coefficient to the same de-

gree. In general, HC3 is superior for tests of coefficients that are most affected by

heteroscedasticity (e.g., β3). HC2 is somewhat better for tests of coefficients that are

least affected by heteroscedasticity (e.g., β1). 2) When size distortion is found in

OLSCM tests, it does not decrease as the sample size increases. For example, the
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Figure 2: Size of t-test for χ25 Errors with Heteroscedasticity Associated with x3.

empirical size of the OLSCM test of β3 increases to nearly .15 as the sample increases.

3) For N ≤ 50, OLSCM tests always do better than HC0-based tests and generally

do as well or better than tests using HC1.

By comparing the results from simulations with each of the heteroscedasticity

structures described in Table 2, we conclude: 1) With milder forms of heteroscedas-

ticity (e.g., Structures 1 and 2), tests using OLSCM work quite well for all sample

sizes. 2) With more extreme forms of heteroscedasticity (e.g., Structures 3 and 4),

OLSCM tests have size distortion that increases with sample size.

Power. Figure 3 plots power curves for tests of H0: β1 = 0 and H0: β3 = 0

for heteroscedastistic χ25 errors associated with x3 and x4 (Structure 3). This figure

reflects several key results that are also found with other data structures and for
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Figure 3: Power of t-test of β1 and β3 for χ
2
5 Errors with Heteroscedasticity Associated

with x3 and x4.

testing other hypotheses (results not included): 1) OLSCM tests are most powerful,

but this is because of the size distortion of these tests. For N ≥ 250, the size adjusted
power is smaller for the OLSCM tests than for other tests. 2) HC3 tests are the least

powerful of the HCCM tests, followed by HC2 and HC1. These differences are largest

for tests of β3. However, after adjusting the power for size distortion, these differences

are greatly reduced. 3) For N ≥ 250, there are no significant differences in the power
of tests based on different forms of the HCCM.

Summary. Overall, for N ≥ 500, there is little difference among tests using

different forms of the HCCM. For N ≤ 250, tests based on HC2 and HC3 perform

much better than those based on HC1 or HC1. In tests of those coefficients which

are most affected by heteroscedasticity, HC3-based tests were almost always superior

to those based on HC2, HC1, and HC0. This is a major advantage of HC3.
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4.3 Screening for Heteroscedasticity

Before making our final recommendations on how the data analyst should correct for

heteroscedasticity, we consider the consequences of using a test for heteroscedasticity

to determine whether HCCMs should be used. To this end, we ran the following two-

step simulation that models the process we have seen frequently in applied papers.

First, we compute a White test for heteroscedasticity.4 Second, if the White test

is significant at the .05 level, we use a HCCM-based test; if the White test is not

significant, we use the OLSCM test.

White Test at .05 Level
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Figure 4: Power of White Test for Heteroscedasticity at .05 Level and Size of t-tests of
β3 after Screening with a White Test. Note: Errors have are χ

2
5 with heteroscedasticity

associated with x3 and x4.

Figure 4 shows the effects of screening when there is moderate heteroscedasticity

(Structure 3). The left panel shows that the White test has low power to detect

heteroscedasticity in small samples. The right panel shows the size properties for a

test of β3. The ¤’s plot the results of the standard OLSCM test; the 4’s plot results
of an HC3 test applied regardless of the outcome of the screening test. The numbers

4We also used the Glejser (1969) and Breush and Pagan (1979) tests and obtained similar results.
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correspond to results from a two-step procedure. For example, 3’s plot the results

when an HC3 test was used if the White test detected heteroscedasticity, otherwise an

OLSCM tests was used. Since the White test has less power in small samples, the two-

step process uses the OLSCM test more frequently when N is smaller. Consequently,

for small N ’s the two-step tests have similar size properties to the standard OLSCM

test. As the power of the screening test increases along with the sample size, the size

of the two-step tests converge to those of HC3 tests. The overall conclusion is clear: a

test for heteroscedasticity should not be used to determine whether HCCM-based tests

should used. Far better results are obtained by using HC3 all of the time.

5 Summary and conclusions

In this paper, we have explored the small sample properties of tests using four versions

of the HCCM in the linear regression model. Our results lead us to the following

conclusions:

1. If there is an a priori reason to suspect that there is heteroscedasticity, HCCM-

based tests should be used.

2. For samples less than 250, HC3 should be used; when samples are 500 or larger,

other versions of the HCCM can be used. The superiority of HC3 over HC2 lies

in its better properties when testing coefficients that are most strongly affected

by heteroscedasticity.

3. The decision to correct for heteroscedasticity should not be based on the results
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of a screening test for heteroscedasticity.

Given the relative costs of correcting for heteroscedasticity using HC3 when there is

homoscedasticity and using OLSCM tests when there is heteroscedasticity, we recom-

mend that HC3-based tests should be used routinely for testing individual coefficients

in the linear regression model. While no Monte Carlo study can include all possible

situations that can be encountered in practice, the consistency of our results across a

wide variety of structures adds credence to our recommendations. The biggest prac-

tical obstacle to following our advice is the lack of software to estimate HC3. Even

though it is quite simple to program HC3, it is not available in most statistical pack-

ages and is the default in only one package. We hope that our results will encourage

authors of statistical software to add this estimator to their programs.

6 References

Amemiya, T. (1994), Introduction to Statistics and Econometrics. Cambridge, MA:

Harvard University Press.

Aptech Systems, Inc. (1992), Gauss Version 3.0 Applications: Linear Regression.

Maple Valley, WA: Aptech Systems.

Belsley, D.A., Kuh, E., and Welsch, R.E. (1980), Regression Diagnostics: Identifying

Influential Data and Sources of Collinearity. New York: Wiley.

Breusch, T.S. and A.R. Pagan. (1979) A simple test for heteroscedasticity and

random coefficient variation. Econometrica, 47, 1287-1294.

18



Davidson, R. and J.G. MacKinnon. (1993) Estimation and inference in economet-

rics. New York: Oxford University Press.

Carroll, R.J. and D. Ruppert. (1988) Transformation and Weighting in Regression.

New York: Chapman and Hall.

Chesher, A. and G. Austin. (1991) The finite-sample distributions of heteroscedas-

ticity robust Wald statistics. Journal of Econometrics, 47, 153-173.

Dixon, W.J. (editor), (1992), BMDP Statistical Software Manual, Version 7. Berke-

ley, CA: University of California Press.

Duan, N. (1983), Smearing Estimate: A Nonparametric Retransformation Method.

Journal of the American Statistical Association 78:605-610.

Efron, B. (1982), The jackknife, the bootstrap and other resampling plans. Society

for Industrial and Applied Mathematics, Philadelphia, PA.

Eicker, F. (1963), Asymptotic normality and consistency of the least squares esti-

mator for families of linear regressions. Annals of Mathematical Statistics, 34,

447-456.

Eicker, F. (1967), Limit theorems for regressions with unequal and dependent errors.

Pp. 59-82 in Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability. Berkeley: University of California Press.

Emerson, J.D. and M.A. Stoto. 1983. Transforming Data. Pp. 97-128 in Under-

standing Robust and Explanatory Data Analysis, edited by D. C. Hoaglin, F.

19



Mosteller, and J. W. Tukey. New York: Wiley.

Fox, J. (1997), Applied Regression Analysis, Linear Models, and Related Methods.

Thousand Oaks, CA: Sage Publications.

Glejser, H. (1969), A new test of heteroskedasticity. Journal of American Statistical

Association, 64, 314-323.

Goldberger, A.S. (1991), A Course in Econometrics. Cambridge, MA: Harvard

University Press.

Greene, W.H. (1995), LIMDEP Version 7.0 User’s Manual. Bellport, NY: Econo-

metric Software, Inc.

Greene, W.H. (1997), Econometric Analysis (3rd Ed.). Upper Saddle River, NJ:

Prentice Hall.

Greene, W.H. (1999), E-mail to J. Scott Long, October 16, 1999.

Gujarati, D.N. (1995), Basic Econometrics (3rd Ed.). New York: McGraw-Hill.

Hall, B.H., C. Cummins and R. Schnake. (1995) TSP Reference Manual, Version

4.3. Palo Alto, CA: TSP International.

Hartley, H.O., J.N.K. Rao, and G. Keifer. (1969), Variance estimation with on unit

per stratum. Journal of the American Statistical Association, 64, 841-851.

Hinkley, D.V. (1977), Jackknifing in unbalanced situations. Technometrics, 19, 285-

292.

20



Horn, S.D., R.A. Horn, and D.B. Duncan. (1975), Estimating heteroscedastic vari-

ances in linear model. Journal of the American Statistical Association, 70,

380-385.

Huber, P.J. (1967), The behavior of maximum likelihood estimates under non-

standard conditions. Pp. 221-233 in Proceedings of the Fifth Berkeley Sym-

posium on Mathematical Statistics and Probability. Berkeley: University of

California Press.

Judge, G.G., R.C. Hill, W.E. Griffiths, H. Lütkepohl, and T-C. Lee. (1988), In-

troduction to the Theory and Practice of Econometrics (2nd Ed.). New York:

Wiley.

MacKinnon, J.G. and H. White. (1985), Some heteroskedasticity consistent co-

variance matrix estimators with improved finite sample properties. Journal of

Econometrics, 29, 53-57.

Maddala, G.S. (1992), Introduction to Econometrics (2nd Ed.). New York: Macmil-

lan.

Minitab, Inc. (1996) Minitab Reference Manual, Release 11 for Windows. State

College,PA: Minitab, Inc.

NAG, Inc. (1993), GLIM4: The Statistical System for Generalized Linear Interactive

Modelling.Oxford: Clarendon Press.

Pesaran, M.H. and B. Pesaran. (1997), Working with Microfit 4.0: Interactive

Econometric Analysis. Cambridge: Camfit Data LTD.

21



SAS Institute Inc. (1989), SAS/STAT User’s Guide: Version 6, Fourth Edition,

Volume 2. Cary, NC: SAS Institute, Inc.

SPSS, Inc. (1998), SYSTAT 8.0 Statistics, Chicago, IL: SPSS, Inc.

SPSS, Inc. (1999), SPSS 10 for Windows. Chicago, IL: SPSS, Inc.

StataCorp. (1999), Stata Statistical Software: Release 6. College Station, TX: Stata

Corporation.

Weisberg, S. (1980), Applied Linear Regression. New York: Wiley.

White, H. (1980), A heteroskedastic-consistent covariance matrix estimator and a

direct test of heteroskedasticity. Econometrica, 48, 817-838.

22


