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Math Reviews 03Jan2007

Objectives

1. Review tools that are needed for studying models for CLDVs.

2. Get you used to the notation that will be used.

Readings

1. Read this appendix before class.

2. Pay special attention to the results marked with a *.

3. Review any other algebra text as needed.

A.1 From Simple to Complex

I With a simple equation:
x = y

I Or a complex equation:
y = b0 + b1x1 + b2x2 + � � �+ u

I The same rules apply. Don�t confuse messy and complex with hard and incomprehensible!

i
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A.2 Basic Rules

Distributive law

a� (b+ c) = (a� b) + (a� c) (A.1)

4� (2 + 3) = (4� 2) + (4� 3)

(�1 � �2) (�0 + �1x1 + �2x2) = (�1 � �2)� (A.2)

= �1�� �2�
= �1 (�0 + �1x1 + �2x2)� �2 (�0 + �1x1 + �2x2)
= [�1�0 + �1�1x1 + �1�2x2]� [�2�0 + �2�1x1 + �2�2x2]

Multiplying by 1

a

b
= 1� a

b
=
k

k
� a
b
=
ka

kb
(A.3)

2

3
= 1� 2

3
=
4

4
� 2
3
=
4� 2
4� 3 =

8

12
=
2

3

A.3 Solving Equations

Let p be the probability of an event, and 
 =
p

1� p the odds (Note: 
 = e
x�). You should

be able to work this derivation from 
 to p and from p to 
 without looking.


 =
p

1� p 9 =
:9

:1


 (1� p) = p 9 (1� :9) = :9


� 
p = p 9� 9 (:9) = :9


 = 
p+ p 9 = 9 (:9) + :9


 = p (1 + 
) 9 = :9 (1 + 9)




1 + 

= p

9

1 + 9
= :9

Therefore, p =



1 + 

=

ex�

1 + ex�
:
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A.4 Exponents and Radicals

Zero exponent

a0 = 1 (A.4)

30 = 1

2:7181280 = 1 = e0

Integer exponent

ak = a � � � (k) � � � a; where (k) means repeat k times (A.5)

23 = 2� 2� 2 = 8

e3 = 2:71828� 2:71828� 2:71828 = 20:086

Negative integer exponent

a�k =
1

a � � � (k) � � � a =
1

ak
(A.6)

2�3 =
1

2� 2� 2 =
1

8

Base e e = 2:71828182846 : : : is a useful base. Notation is: ex or exp(x).

e0 = 1 e1 = 2: 718 e2 = e� e = 7:389 e3 = e� e� e = 20:086

* Product of powers: multiplying as the sum of powers

aMaN = [a � � � (M +N) � � � a] = aM+N (A.7)

2324 = (2� 2� 2) (2� 2� 2� 2) = 23+4 = 27

e3e4 = (e� e� e) (e� e� e� e) = e3+4 = e7 (A.8)

* Quotient of powers

aM

aN
=

[a � � � (M) � � � a]
[a � � � (N) � � � a] = a

M�N (A.9)

e5

e3
=

e� e� e� e� e
e� e� e = e5�3 = e2
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Power of powers

(aM)N = aMN (A.10)�
e2
�5

= (e� e) (e� e) (e� e) (e� e) (e� e) = e10 = e2�5

A.5 ** Natural Logarithms

Natural logarithms and exponentials are used extensively in statistics. A key reason is that
they turn multiplication into addition. Here�s why:

1. Every positive real number m can be written as

m = e p

2. Example: Let m = 13. Find p such that ep = 13:

(a) e2 = 7:389 : : : and e3 = 20:086 : : : ) 2 < p < 3.

(b) e2:5 = 12:128 : : : and e2:6 = 13:464 : : : ) 2:5 < p < 2:6.

(c) And so on until e2:565::: = 13

3. De�nition of the Log

(a) If m = e p, then p = lnm:
The log of m is p:

(b) Or,
lnm = p which is equivalent to ep = m

(c) Which looks like:
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4. * Log of Products

(a) Let

m = ep () lnm = p

n = eq () lnn = q

(b) Then, multiply m times n:

m� n = ep � eq

= e(p+q)

(c) Taking the log of both sides:

ln (m� n) = ln
�
e(p+q)

�
= p+ q

= lnm+ lnn

(d) For example:

2� 3 = 6

ln (2� 3) = ln 2 + ln 3 =

= 0: 69315:::+ 1:0986:::

= 1:7918:::

= ln 6

5. * Log of Quotients

ln
�m
n

�
= lnm� lnn

ln

�
3

2

�
= : 40547 = ln 3� ln 2 = 1: 0986� : 69315

The logit: ln

�
p

1� p

�
=

6. Inverse operations

(a) ln(k) is that power of e that equals k:

k = eln k

(b) ln(ek) is that power of e that equals ek, namely k:

ln ek = k
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(c) and
eln k = k

7. Log of Power

lnmn = n lnm

ln 32 = ln 9 = 2: 1972 = 2 ln 3 = 2 (1: 0986)

8. Example from Regression

(a) Assume that
y = �x

�1
1 x

�2
2 "

(b) Taking logs:

ln y = ln
�
�x

�1
1 x

�2
2 "
�

= ln�+ lnx
�1
1 + lnx

�2
2 + ln "

= ln�+ �1 lnx1 + �2 lnx2 + "
�

= �� + �1x
�
1 + �2x

�
2 + "

�

A.6 Vector Algebra

1. Consider the regression equation for observation i:

yi = �0 + �1xi1 + �2xi2 + "i

Vector multiplication allows us to write this more simply.

2. For example, let �0 =
�
�0 �1 �2

�
and x =

�
1 x1 x2

�
, then

x� =
�
1 x1 x2

�0@ �0
�1
�2

1A = �0 + �1x1 + �2x2

3. More generally, consider �K�1 and x1�K , then by de�nition:

x� = �0 +

KX
i=1

�ixi = �0 + �1x1 + �2x2 + �3x3 + � � �



A.7. PROBABILITY DISTRIBUTIONS vii

A.7 Probability Distributions

I Let X be a random variable with discrete outcomes x. The frequency of those outcomes
is the probability distribution:

f(x) = Pr(X = x)

Bernoulli Distribution For example, let y indicate the outcome of a fair coin. Then,
y = 0 or 1, and

Pr (y = 0) = :4 and Pr (y = 1) = :6

I For all probability distributions:

1. All probabilities are between zero and one: 0 � f(x) � 1

2. Probabilities sum to one:
P

x f(xi) = 1
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I For a continuous random variable, f(x) is called a probability density function or pdf.

1. f(x) = 0. Why? Pick any two numbers. Can you �nd a number in between them?

2. Pr(a � x � b) =
Z b

a

f(x)dx � 0

3.
Z 1

�1
f(t)dt = 1

Normal Distribution

1. The pdf mean � and standard deviation �, x� N(�; �2) ; is:

f(x j �; �) = 1p
2��

exp

 
� (x� �)2

2�2

!
(A.11)

2. This de�nes the classic bell curve:

3. If � = 0 and �2 = 1:

� (x) = f(x j 0; 1) = 1p
2�
exp

�
�x2
2

�
(A.12)
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A.7.1 Cumulative Distribution Function (cdf)

I The cdf is the probability of a value up to or equal to a speci�c value.

� For discrete random variables: F (x) =
P

X�x f(x) = Pr (X � x)

� For a continuous variable: F (x) =
Z x

�1
f(t)dt = Pr (X � x)

I For the cdf:

1. 0 � F (x) � 1 .

2. If x > y, then F (x) � F (y) .

3. F (�1) = 0 and F (1) = 1 .

A.7.2 * Computing the Area Within a Distribution

I Consider the distribution f (x), where F (x) = Pr (X � x):

Pr (a � X � b) = Pr (X � b)� Pr (X � a) = F (b)� F (a)
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A.7.3 * Expectation

I The mean of N sample values of X is:

�x =

PN
i=1Xi

N

For example:
1 + 1 + 4 + 10

4
=

�
1� 2

4

�
+

�
4� 1

4

�
+

�
10� 1

4

�
= 4

I The expectation is de�ned in terms of the population:

� For discrete variables:

E(X) =
X
x

f(x)x =
X
x

Pr(X = x)x

� For continuous variables:
E(X) =

Z
x

f(x)x dx

* Example of Expectation of Binary Variable If X has values 0 and 1 with proba-
bilities 1

4
and 3

4
, then

E(X) =

�
0� 1

4

�
+

�
1� 3

4

�
=
3

4
= Pr (x = 1)

= [Value1 Pr (Value1)] + [Value2 Pr (Value2)]



A.7. PROBABILITY DISTRIBUTIONS xi

* Expectation of Sums

I If X and Y are random variables, and a, b and c are constants, then

E(a+ bX + cY ) = a+ bE(X) + cE(Y ) (A.13)

I Example: Let

yi = �+
KX
k=1

�kxki + "i

Then

E(yi) = E

 
�+

KX
k=1

�kxki + "i

!

= E (�) + E

 
KX
k=1

�kxki

!
+ E ("i)

= �+
KX
k=1

�kE(xik)

Conditional Expectations

I Conditioning means holding some things constant while something else changes.

I Example: Let $ be income.

� E($) tells us the mean $; but is not useful for telling us how other variables a¤ect $.

� Let S be the sex of the respondent. We might compute:

E($ j S = female) = Expected $ for females

� This allows us to see how the expectation varies by the level of other variables.

I Example: If y = x� + ", then

E(y j x) = E(x� + ") = E(x�) + E(") = x�
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A.7.4 The Variance

I The variance is de�ned as
s2 =

PN
i=1(xi � x)2

N

I Variance for a Population: Let f(x) = Pr(X = x).

� If x is discrete:
Var(X) =

X
x

[x� E(x)]2 f(x) (A.14)

� If x is continuous:
Var(X) =

Z
x

[x� E(x)]2 f(x)dx (A.15)

Example of Variance of Binary Variable If X has values 0 and 1 with probabilities 1
4

and 3
4
, then E(X) = 3

4
, and

Var(X) =

 �
0� 3

4

�2
� 1
4

!
+

 �
1� 3

4

�2
� 3
4

!

=

�
9

16
� 1
4

�
+

�
1

16
� 3
4

�
=
9

64
+
3

64
=
12

64
=
3

16

= E (X) [1� E (X)]

* Variance of a Linear Transformation

I Let X be a random variable, and a and b be constants. Then,

Var(a+ bX) = b2Var(X) (A.16)

* Variance of a Sum

I Let X and Y be two random variables with constants a and b:

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X; Y ) (A.17)

I Let Y =
PK

i=1Xi. If the X�s are uncorrelated, then

Var(Y ) = Var(
KX
i=1

Xi) =
KX
i=1

Var(Xi) (A.18)
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A.8 **Rescaling Variables

Often we want to use addition and multiplication to change a variable with mean � and
variance �2 into a variable with mean 0 and variance 1. This is called rescaling.

1. Consider X where
E (x) = � and Var (x) = �2

2. By subtracting the mean, the expectation becomes zero:

E (x� �) = E (x)� E (�) = �� � = 0

3. But the variance is unchanged:

Var (x� �) = Var (x) = �2

4. Dividing by �:

E
�x
�

�
= E

�
1

�
x

�
=
1

�
E (x) =

1

�
� =

�

�

5. Subtracting � and dividing by � does not change the mean:

E
�
x� �
�

�
=
1

�
E (x� �) = 1

�
0 = 0 (A.19)

6. But, the variance becomes one:

Var
�
x� �
�

�
=
1

�2
Var (x� �) = 1

�2
Var (x) = 1 (A.20)
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Stata: Standardizing Variables

. use science2, clear

. sum pub9

Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
pub9 | 308 4.512987 5.315134 0 33

. gen p9_mn = pub9 - r(mean)

. sum p9_mn

Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
p9_mn | 308 -5.71e-09 5.315134 -4.512987 28.48701

. gen p9_sd = p9_mn/5.315134

. gen p9_sd2 = (pub9 - 4.512987)/5.315134

. egen p9_sdez = std(pub9)

. sum p9_sd p9_sd2 p9_sdez

Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
p9_sd | 308 4.02e-09 .9999999 -.8490825 5.359604
p9_sd2 | 308 2.18e-10 .9999999 -.8490825 5.359604
p9_sdez | 308 -6.77e-10 1 -.8490825 5.359604
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A.9 Distributions

A.9.1 Bernoulli

I X has a Bernoulli distribution if it has two possible outcomes:

Pr(X = 1) = p and Pr(X = 0) = 1� p

I Then:
f(x j p) = px(1� p)1�x = Pr(X = x j p)

I That is:

f(0 j p) = p0(1� p)1 = 1� p and f(1 j p) = p1(1� p)0 = p

I It can be shown that

E(X) = p and Var (X) = p (1� p) (A.21)

I Note how the variance is related to the mean:

E(X) = p Var (X) = p (1� p)
0.1 0.090
0.2 0.160
0.3 0.210
0.4 0.240
0.5 0.250
0.6 0.240
0.7 0.210
0.8 0.160
0.9 0.090
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A.9.2 Normal

I The pdf for a normal distribution with mean � and standard deviation � is

f(x j �; �) = 1p
2��

exp

 
� (x� �)2

2�2

!
(A.22)

I If x is distributed normally with mean � and standard deviation �:

x� N
�
�; �2

�
I The cdf is de�ned as

F (x j �; �) =
Z x

�1
f(t j �; �)dt
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Standardized Normal

I If x� N(0; 1), we de�ne:

pdf: �(x) = 1p
2�
exp

�
�x2
2

�
cdf: �(x) =

R x
�1 �(t)dt

I You can move from an unstandardized to a standardized normal distribution.

� Let x� N(0; �2)

� Then,

f(x j 0; �) =
1p
2��

exp

�
�x2
2�2

�

=
1

�

1p
2�
exp

�
�
�x
�

�2
=2

�

=
1

�
�
�x
�

�
(A.23)

Area Under the Curve

I If x� N(0; 1), then
Pr (a � x � b) = �(b)� �(a) (A.24)

Linear Transformation of a Normal

I If
x� N

�
�; �2

�
I Then

a+ bx� N
�
a+ b�; b2�2

�
(A.25)

Sums of Normals

I Let Cor(x1; x2) = �, where

x1� N
�
�1; �

2
1

�
and x2� N

�
�2; �

2
2

�
I Then

�1x1 + �2x2� N([�1�1 + �2�2] ;
�
�21�

2
1 + �

2
2�
2
2 + 2��1�2�1�2

�
) (A.26)

I When � = 0:
�1x1 + �2x2� N([�1�1 + �2�2] ;

�
�21�

2
1 + �

2
2�
2
2

�
)



xviii APPENDIX A. MATH REVIEWS 03JAN2007

A.9.3 Chi-square

I Let �i (i = 1 to df) be independent, standard normal variates.

I De�ne:

X2
df �

dfX
i=1

�2i � �2df

I The chi-square distribution is de�ned as the sum of independent squared normal variables.

I The mean and variance:

E
�
X2
df

�
= df and Var

�
X2
df

�
= 2df

Adding Chi-squares

� Let x � �2df x and y � �
2
df y

� If x and y are independent:
x+ y � �2df x+df y

Shape

� With 1 df, the distribution is highly skewed.

� As df!1, the chi-square becomes distributed normally.

Question from Intro to Statistics Consider the chi-square test in contingency tables:

X2 =
X
all cells

(obs� exp)2
exp

� X2
df with df = (#rows� 1)(#columns� 1)

� Why would this be distributed as chi-square? Why those degrees of freedom?

A.9.4 F-distribution

I Let X1 and X2 be independent chi-square variables with degrees of freedom r1 and r2.

I The F -distribution is de�ned as:

Fr1;r2 �
X1=r1
X2=r2
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A.9.5 t-distribution

I Consider z � � and x � �df , where z and x are independent.

I Then the t-distribution with df degrees of freedom is de�ned as:

tdf �
zp
x=df

A.9.6 Relationships among normal, t, chi-square and F

1. z = t1

2. z2 = X2
1 = F1;1 = t

2
1

3. t2df = F1;df

4.
X2
df

df
= Fr;1
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A.10 Calculus

I The two central ideas in calculus are the derivative and the integral.

I Derivative: The derivative is the slope of a curve y = f (x):
dy

dx
= f 0 (x) (A.27)

I The second derivative indicates how quickly the slope of the curve is changing:
d2y

dx2
=
d
�
dy
dx

�
dx

= f 00 (x) (A.28)

I If the curve is de�ned as y = f(x; z), we write the partial derivative with respect to x as
@f(x; z)

@x
(A.29)

� Imagine half of a hard boiled egg setting on a table; slice it from the top to the table.

� The partial derivative is the slope on the resulting curve.

I Integral: The integral is the area under a curve.

I For example, if a curve is de�ned as y = f(x), the area under the curve from point a to
point b is computed with the integral:

aZ
b

f (t) dt
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A.11 Matrix Algebra

A.11.1 Basic De�nitions

Matrix is an array of numbers, arranged in rows and columns:

A =

�
a11 a12 a13
a21 a22 a23

�
A.11.2 Transposing a Matrix

I The transpose is indicated by the prime or superscript T. For example: A0 or AT:

If A =

�
11 12
21 22

�
, then A0 =

�
11 21
12 22

�
I Transposing the Transpose

A00 = A (A.30)

I If A is a symmetric matrix, then A0 = A

A.11.3 Addition and Subtraction

I Addition:
A+B = farc + brcg�

1 2
4 5

�
+

�
1 3
7 11

�
=

�
1 + 1 2 + 3
4 + 7 5 + 11

�
I Transposes of added matrices:

(A+B)0 = A0 +B0 (A.31)��
1 2
4 5

�
+

�
1 3
7 11

��0
=

�
1 2
4 5

�0
+

�
1 3
7 11

�0
=

�
1 4
2 5

�
+

�
1 7
3 11

�
=

�
2 11
5 16

�
I Subtraction of matrices:

A�B = farc � brcg�
1 2
4 5

�
�
�
1 3
7 11

�
=

�
1� 1 2� 3
4� 7 5� 11

�
A.11.4 Scalar Multiplication

�A = � farcg = f�� arcg

3

�
1 2
4 5

�
=

�
3� 1 3� 2
3� 4 3� 5

�
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A.11.5 Matrix Multiplication

Vector is a matrix with one dimension equal to one.

I A column vector is an R� 1 matrix:

c =

24 12
3

35 or c0 =
�
1 2 3

�

I A row vector is a 1� C matrix:

r =
�
1 2 3 4

�
* Vector Multiplication Consider �K�1 and x1�K , then by de�nition:

x� =
3X
i=1

�ixi = �1x1 + �2x2 + �3x3

I For example, let �0 =
�
�0 �1 �2

�
and x =

�
1 x1 x2

�
, then

x� =
�
1 x1 x2

�0@ �0
�1
�2

1A = �0 + �1x1 + �2x2

Matrix Multiplication For AR�K and BK�C , the matrix product CR�C = AB equals:

fcrcg =
(

KX
i=1

aribic

)
I Note that element crc is the vector multiplication of row r from A and column c from B.

I Example:�
1 2 3
4 5 6

�24 a b c
d e f
g h i

35 = � 1a+ 2d+ 3g 1b+ 2e+ 3h 1c+ 2f + 3i
4a+ 5d+ 6g 4b+ 5e+ 6h 4c+ 5f + 6i

�
I Example from Regression:

y = X� + "264 y1
...
yN

375 =

264 1 x11 x12
...

...
...

1 xN1 xN2

375
24 �0�1
�2

35+
264 "1

...
"N

375
=

264 �0 + �1x11 + �2x12 + "1
...

�0 + �1xN1 + �2xN2 + "N

375
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A.11.6 Inverse

I An identity matrix is a square matrix with 1�s on the diagonal, and 0�s elsewhere.

I If A is square, then A�1 is the inverse of A if and only if

AA�1 = I (A.32)

�
1 2
4 5

� �
�12

3
2
3

11
3
�1
3

�
=

�
1 0
0 1

�
1. If A�1exists, it is unique.

2. If A�1does not exist, A is called singular.

A.11.7 Rank

I Rank is the size of the largest submatrix that can be inverted.

I A matrix is of full rank if the rank is equal to the minimum of the number of rows and
columns.

I Problems occur in estimation when a matrix is encountered that is not of full rank.

I When this occurs, messages such as the following are generated:

� Matrix is not of full rank.

� Singular matrix encountered.

� Matrix cannot be inverted.

� An inverse does not exist.


