Appendix A

Math Reviews 03Jan2007

Objectives

- 1. Review tools that are needed for studying models for CLDVs.
- 2. Get you used to the notation that will be used.

Readings

- 1. Read this appendix before class.
- 2. Pay special attention to the results marked with a *.
- 3. Review any other algebra text as needed.

A.1 From Simple to Complex

▶ With a simple equation:

x = y

▶ Or a complex equation:

 $y = b_0 + b_1 x_1 + b_2 x_2 + \dots + u$

▶ The same rules apply. Don't confuse messy and complex with hard and incomprehensible!

A.2 Basic Rules

Distributive law

$$\begin{aligned} a \times (b+c) &= (a \times b) + (a \times c) \tag{A.1} \\ 4 \times (2+3) &= (4 \times 2) + (4 \times 3) \\ (\phi_1 - \phi_2) \left(\beta_0 + \beta_1 x_1 + \beta_2 x_2\right) &= (\phi_1 - \phi_2) \Delta \tag{A.2} \\ &= \phi_1 \Delta - \phi_2 \Delta \\ &= \phi_1 \left(\beta_0 + \beta_1 x_1 + \beta_2 x_2\right) - \phi_2 \left(\beta_0 + \beta_1 x_1 + \beta_2 x_2\right) \\ &= [\phi_1 \beta_0 + \phi_1 \beta_1 x_1 + \phi_1 \beta_2 x_2] - [\phi_2 \beta_0 + \phi_2 \beta_1 x_1 + \phi_2 \beta_2 x_2] \end{aligned}$$

Multiplying by 1

$$\frac{a}{b} = 1 \times \frac{a}{b} = \frac{k}{k} \times \frac{a}{b} = \frac{ka}{kb}$$
(A.3)
$$\frac{2}{3} = 1 \times \frac{2}{3} = \frac{4}{4} \times \frac{2}{3} = \frac{4 \times 2}{4 \times 3} = \frac{8}{12} = \frac{2}{3}$$

A.3 Solving Equations

Let p be the probability of an event, and $\Omega = \frac{p}{1-p}$ the odds (*Note*: $\Omega = e^{x\beta}$). You should be able to work this derivation from Ω to p and from p to Ω without looking.

$\Omega = \frac{p}{1-p}$	$9 = \frac{.9}{.1}$
$\Omega\left(1-p\right) = p$	9(19) = .9
$\Omega - \Omega p = p$	9 - 9(.9) = .9
$\Omega = \Omega p + p$	9 = 9(.9) + .9
$\Omega = p\left(1 + \Omega\right)$	9 = .9(1+9)
$\frac{\Omega}{1+\Omega}=p$	$\frac{9}{1+9} = .9$
$e^{x\beta}$	

Therefore, $p = \frac{\Omega}{1 + \Omega} = \frac{e^{x\beta}}{1 + e^{x\beta}}.$

A.4 Exponents and Radicals

Zero exponent

$$a^{0} = 1$$
 (A.4)
 $3^{0} = 1$
 $2.718128^{0} = 1 = e^{0}$

Integer exponent

$$a^{k} = a \cdots (k) \cdots a$$
, where (k) means repeat k times (A.5)
 $2^{3} = 2 \times 2 \times 2 = 8$
 $e^{3} = 2.71828 \times 2.71828 \times 2.71828 = 20.086$

Negative integer exponent

$$a^{-k} = \frac{1}{a \cdots (k) \cdots a} = \frac{1}{a^k}$$
 (A.6)
 $2^{-3} = \frac{1}{2 \times 2 \times 2} = \frac{1}{8}$

Base e e = 2.71828182846... is a useful base. Notation is: e^x or exp(x).

$$e^{0} = 1$$
 $e^{1} = 2.718$ $e^{2} = e \times e = 7.389$ $e^{3} = e \times e \times e = 20.086$

* Product of powers: multiplying as the sum of powers

$$a^{M}a^{N} = [a \cdots (M+N) \cdots a] = a^{M+N}$$
(A.7)

$$2^{3}2^{4} = (2 \times 2 \times 2) (2 \times 2 \times 2 \times 2) = 2^{3+4} = 2^{7}$$

$$e^{3}e^{4} = (e \times e \times e) (e \times e \times e \times e) = e^{3+4} = e^{7}$$
(A.8)

* Quotient of powers

$$\frac{a^{M}}{a^{N}} = \frac{[a\cdots(M)\cdots a]}{[a\cdots(N)\cdots a]} = a^{M-N}$$

$$\frac{e^{5}}{e^{3}} = \frac{e \times e \times e \times e \times e}{e \times e \times e} = e^{5-3} = e^{2}$$
(A.9)

Power of powers

$$(a^{M})^{N} = a^{MN}$$
(A.10)

$$(e^{2})^{5} = (e \times e) (e \times e) (e \times e) (e \times e) = e^{10} = e^{2 \times 5}$$

A.5 ** Natural Logarithms

Natural logarithms and exponentials are used extensively in statistics. A key reason is that they turn multiplication into addition. Here's why:

1. Every positive real number m can be written as

$$m = e^p$$

- 2. Example: Let m = 13. Find p such that $e^p = 13$.
 - (a) $e^2 = 7.389...$ and $e^3 = 20.086... \Rightarrow 2$
 - (b) $e^{2.5} = 12.128...$ and $e^{2.6} = 13.464... \Rightarrow 2.5$
 - (c) And so on until $e^{2.565...} = 13$
- 3. Definition of the Log
 - (a) If $m = e^p$, then $p = \ln m$:

The log of m is p.

(b) Or,

$$\ln m = p$$
 which is equivalent to $e^p = m$

(c) Which looks like:

4. * Log of Products

(a) Let

$$m = e^{p} \Longleftrightarrow \ln m = p$$
$$n = e^{q} \Longleftrightarrow \ln n = q$$

(b) Then, multiply m times n:

$$m \times n = e^p \times e^q$$
$$= e^{(p+q)}$$

(c) Taking the log of both sides:

$$\ln (m \times n) = \ln \left[e^{(p+q)} \right]$$
$$= p+q$$
$$= \ln m + \ln n$$

(d) For example:

$$2 \times 3 = 6$$

$$\ln (2 \times 3) = \ln 2 + \ln 3 =$$

$$= 0.69315... + 1.0986...$$

$$= 1.7918...$$

$$= \ln 6$$

5. * Log of Quotients

$$\ln\left(\frac{m}{n}\right) = \ln m - \ln n$$
$$\ln\left(\frac{3}{2}\right) = .40547 = \ln 3 - \ln 2 = 1.0986 - .69315$$
The logit:
$$\ln\left(\frac{p}{1-p}\right) =$$

- 6. Inverse operations
 - (a) $\ln(k)$ is that power of *e* that equals *k*:

$$k = e^{\ln k}$$

(b) $\ln(e^k)$ is that power of e that equals e^k , namely k:

$$\ln e^k = k$$

(c) and

$$e^{\ln k} = k$$

7. Log of Power

$$\ln m^{n} = n \ln m$$

$$\ln 3^{2} = \ln 9 = 2.1972 = 2 \ln 3 = 2 (1.0986)$$

- 8. Example from Regression
 - (a) Assume that

$$y = \alpha x_1^{\beta_1} x_2^{\beta_2} \varepsilon$$

(b) Taking logs:

$$\ln y = \ln \left(\alpha x_1^{\beta_1} x_2^{\beta_2} \varepsilon \right)$$
$$= \ln \alpha + \ln x_1^{\beta_1} + \ln x_2^{\beta_2} + \ln \varepsilon$$
$$= \ln \alpha + \beta_1 \ln x_1 + \beta_2 \ln x_2 + \varepsilon^*$$
$$= \alpha^* + \beta_1 x_1^* + \beta_2 x_2^* + \varepsilon^*$$

A.6 Vector Algebra

1. Consider the regression equation for observation i:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Vector multiplication allows us to write this more simply.

2. For example, let $\beta' = \begin{pmatrix} \beta_0 & \beta_1 & \beta_2 \end{pmatrix}$ and $\mathbf{x} = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix}$, then

$$\mathbf{x}\boldsymbol{\beta} = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

3. More generally, consider $\beta_{K \times 1}$ and $\mathbf{x}_{1 \times K}$, then by definition:

$$\mathbf{x}\boldsymbol{\beta} = \boldsymbol{\beta}_0 + \sum_{i=1}^K \boldsymbol{\beta}_i x_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 x_1 + \boldsymbol{\beta}_2 x_2 + \boldsymbol{\beta}_3 x_3 + \cdots$$

A.7 Probability Distributions

▶ Let X be a random variable with discrete outcomes x. The frequency of those outcomes is the *probability distribution:*

$$f(x) = \Pr(X = x)$$

Bernoulli Distribution For example, let y indicate the outcome of a fair coin. Then, y = 0 or 1, and

 $\Pr(y=0) = .4$ and $\Pr(y=1) = .6$

- ▶ For all probability distributions:
 - 1. All probabilities are between zero and one: $0 \le f(x) \le 1$
 - 2. Probabilities sum to one: $\sum_{x} f(x_i) = 1$

- ▶ For a continuous random variable, f(x) is called a *probability density function* or *pdf*.
 - 1. f(x) = 0. Why? Pick any two numbers. Can you find a number in between them?

2.
$$\Pr(a \le x \le b) = \int_{-a}^{b} f(x) dx \ge 0$$

3. $\int_{-\infty}^{\infty} f(t) dt = 1$

Normal Distribution

1. The pdf mean μ and standard deviation $\sigma,\,x \sim \mathcal{N}\!(\mu,\sigma^2)\,,$ is:

$$f(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$
(A.11)

- 2. This defines the classic bell curve:
- 3. If $\mu = 0$ and $\sigma^2 = 1$:

$$\phi(x) = f(x \mid 0, 1) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right)$$
 (A.12)

A.7.1 Cumulative Distribution Function (cdf)

 \blacktriangleright The *cdf* is the probability of a value up to or equal to a specific value.

• For discrete random variables: $F(x) = \sum_{X \le x} f(x) = \Pr(X \le x)$

• For a continuous variable:
$$F(x) = \int_{-\infty}^{x} f(t)dt = \Pr(X \le x)$$

 \blacktriangleright For the cdf:

- 1. $0 \le F(x) \le 1$.
- 2. If x > y, then $F(x) \ge F(y)$.
- 3. $F(-\infty) = 0$ and $F(\infty) = 1$.

A.7.2 * Computing the Area Within a Distribution

• Consider the distribution f(x), where $F(x) = \Pr(X \le x)$:

$$\Pr\left(a \le X \le b\right) = \Pr\left(X \le b\right) - \Pr\left(X \le a\right) = F(b) - F(a)$$

A.7.3 * Expectation

 \blacktriangleright The mean of N sample values of X is:

$$\bar{x} = \frac{\sum_{i=1}^{N} X_i}{N}$$

For example:

$$\frac{1+1+4+10}{4} = \left(1 \times \frac{2}{4}\right) + \left(4 \times \frac{1}{4}\right) + \left(10 \times \frac{1}{4}\right) = 4$$

- ▶ The *expectation* is defined in terms of the population:
 - For discrete variables:

$$E(X) = \sum_{x} f(x)x = \sum_{x} Pr(X = x)x$$

• For continuous variables:

$$\mathcal{E}(X) = \int_{x} f(x) x \, dx$$

* Example of Expectation of Binary Variable If X has values 0 and 1 with probabilities $\frac{1}{4}$ and $\frac{3}{4}$, then

$$E(X) = \left(0 \times \frac{1}{4}\right) + \left(1 \times \frac{3}{4}\right) = \frac{3}{4} = \Pr(x = 1)$$
$$= \left[\operatorname{Value}_{1} \Pr(\operatorname{Value}_{1})\right] + \left[\operatorname{Value}_{2} \Pr(\operatorname{Value}_{2})\right]$$

* Expectation of Sums

 \blacktriangleright If X and Y are random variables, and a, b and c are constants, then

$$E(a + bX + cY) = a + bE(X) + cE(Y)$$
(A.13)

 \blacktriangleright Example: Let

$$y_i = \alpha + \sum_{k=1}^K \beta_k x_{ki} + \varepsilon_i$$

Then

$$E(y_i) = E\left(\alpha + \sum_{k=1}^{K} \beta_k x_{ki} + \varepsilon_i\right)$$
$$= E(\alpha) + E\left(\sum_{k=1}^{K} \beta_k x_{ki}\right) + E(\varepsilon_i)$$
$$= \alpha + \sum_{k=1}^{K} \beta_k E(x_{ik})$$

Conditional Expectations

- ▶ Conditioning means holding some things constant while something else changes.
- ► Example: Let \$ be income.
 - E(\$) tells us the mean \$, but is not useful for telling us how other variables affect \$.
 - Let S be the sex of the respondent. We might compute:

 $E(\$ \mid S = female) = Expected \$ for females$

- This allows us to see how the expectation varies by the level of other variables.
- ► Example: If $y = \mathbf{x}\boldsymbol{\beta} + \varepsilon$, then

$$E(y | \mathbf{x}) = E(\mathbf{x}\boldsymbol{\beta} + \varepsilon) = E(\mathbf{x}\boldsymbol{\beta}) + E(\varepsilon) = \mathbf{x}\boldsymbol{\beta}$$

A.7.4 The Variance

▶ The variance is defined as

$$s^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N}$$

- ► Variance for a Population: Let f(x) = Pr(X = x).
 - If x is discrete:

$$\operatorname{Var}(X) = \sum_{x} [x - \operatorname{E}(x)]^2 f(x)$$
 (A.14)

• If x is continuous:

$$\operatorname{Var}(X) = \int_{x} \left[x - \operatorname{E}(x) \right]^{2} f(x) dx \tag{A.15}$$

Example of Variance of Binary Variable If X has values 0 and 1 with probabilities $\frac{1}{4}$ and $\frac{3}{4}$, then $E(X) = \frac{3}{4}$, and

$$\operatorname{Var}(X) = \left(\left[0 - \frac{3}{4} \right]^2 \times \frac{1}{4} \right) + \left(\left[1 - \frac{3}{4} \right]^2 \times \frac{3}{4} \right)$$
$$= \left(\frac{9}{16} \times \frac{1}{4} \right) + \left(\frac{1}{16} \times \frac{3}{4} \right) = \frac{9}{64} + \frac{3}{64} = \frac{12}{64} = \frac{3}{16}$$
$$= \operatorname{E}(X) \left[1 - \operatorname{E}(X) \right]$$

* Variance of a Linear Transformation

 \blacktriangleright Let X be a random variable, and a and b be constants. Then,

$$Var(a+bX) = b^2 Var(X)$$
(A.16)

* Variance of a Sum

 \blacktriangleright Let X and Y be two random variables with constants a and b:

$$\operatorname{Var}(aX + bY) = a^{2}\operatorname{Var}(X) + b^{2}\operatorname{Var}(Y) + 2ab\operatorname{Cov}(X, Y)$$
(A.17)

▶ Let $Y = \sum_{i=1}^{K} X_i$. If the X's are uncorrelated, then

$$\operatorname{Var}(Y) = \operatorname{Var}(\sum_{i=1}^{K} X_i) = \sum_{i=1}^{K} \operatorname{Var}(X_i)$$
(A.18)

A.8 **Rescaling Variables

Often we want to use addition and multiplication to change a variable with mean μ and variance σ^2 into a variable with mean 0 and variance 1. This is called rescaling.

1. Consider X where

$$E(x) = \mu$$
 and $Var(x) = \sigma^2$

2. By subtracting the mean, the expectation becomes zero:

$$E(x - \mu) = E(x) - E(\mu) = \mu - \mu = 0$$

3. But the variance is unchanged:

$$\operatorname{Var}(x-\mu) = \operatorname{Var}(x) = \sigma^2$$

4. Dividing by σ :

$$\operatorname{E}\left(\frac{x}{\sigma}\right) = \operatorname{E}\left(\frac{1}{\sigma}x\right) = \frac{1}{\sigma}\operatorname{E}\left(x\right) = \frac{1}{\sigma}\mu = \frac{\mu}{\sigma}$$

5. Subtracting μ and dividing by σ does not change the mean:

$$\mathbf{E}\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma}\mathbf{E}\left(x-\mu\right) = \frac{1}{\sigma}\mathbf{0} = 0 \tag{A.19}$$

6. But, the variance becomes one:

$$\operatorname{Var}\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma^2} \operatorname{Var}\left(x-\mu\right) = \frac{1}{\sigma^2} \operatorname{Var}\left(x\right) = 1 \tag{A.20}$$

Stata: Standardizing Variables

. use sci . sum pub	ience2 o9	, clean	2			
Variable	I	Obs	Mean	Std. Dev.	Min	Max
pub9	1	308	4.512987	5.315134	0	33
. gen p9_ . sum p9_	_mn = ; _mn	pub9 -	r(mean)			
Variable		Obs	Mean	Std. Dev.	Min	Max
p9_mn	1	308	-5.71e-09	5.315134	-4.512987	28.48701
. gen p9_ . gen p9_ . egen p9 . sum p9_	_sd = _ _sd2 = 9_sdez _sd p9	p9_mn/8 (pub9 = std0 _sd2 p8	5.315134 - 4.512987) (pub9) 9_sdez	/5.315134		
Variable		Obs	Mean	Std. Dev.	Min	Max
p9_sd p9_sd2 p9_sdez		308 308 308	4.02e-09 2.18e-10 -6.77e-10	.99999999 .99999999 1	8490825 8490825 8490825	5.359604 5.359604 5.359604

A.9 Distributions

A.9.1 Bernoulli

 \blacktriangleright X has a Bernoulli distribution if it has two possible outcomes:

 $\Pr(X = 1) = p$ and $\Pr(X = 0) = 1 - p$

► Then:

$$f(x \mid p) = p^{x}(1-p)^{1-x} = \Pr(X = x \mid p)$$

► That is:

$$f(0 \mid p) = p^{0}(1-p)^{1} = 1-p$$
 and $f(1 \mid p) = p^{1}(1-p)^{0} = p$

 \blacktriangleright It can be shown that

$$E(X) = p \quad \text{and} \quad Var(X) = p(1-p) \tag{A.21}$$

▶ Note how the variance is related to the mean:

$\mathrm{E}(X) = p$	$\operatorname{Var}\left(X\right) = p\left(1-p\right)$
0.1	0.090
0.2	0.160
0.3	0.210
0.4	0.240
0.5	0.250
0.6	0.240
0.7	0.210
0.8	0.160
0.9	0.090
	1

A.9.2 Normal

▶ The pdf for a normal distribution with mean μ and standard deviation σ is

$$f(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$
(A.22)

▶ If x is distributed normally with mean μ and standard deviation σ :

$$x \sim \mathcal{N}(\mu, \sigma^2)$$

▶ The cdf is defined as

$$F(x \mid \mu, \sigma) = \int_{-\infty}^{x} f(t \mid \mu, \sigma) dt$$

Standardized Normal

▶ If $x \sim \mathcal{N}(0, 1)$, we define:

pdf:
$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right)$$
 cdf: $\Phi(x) = \int_{-\infty}^x \phi(t) dt$

▶ You can move from an unstandardized to a standardized normal distribution.

- Let $x \sim \mathcal{N}(0, \sigma^2)$
- Then,

$$f(x \mid 0, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$$
$$= \frac{1}{\sigma} \frac{1}{\sqrt{2\pi}} \exp\left(-\left(\frac{x}{\sigma}\right)^2/2\right)$$
$$= \frac{1}{\sigma} \phi\left(\frac{x}{\sigma}\right)$$
(A.23)

Area Under the Curve

▶ If $x \sim \mathcal{N}(0, 1)$, then

$$\Pr\left(a \le x \le b\right) = \Phi(b) - \Phi(a) \tag{A.24}$$

Linear Transformation of a Normal

► If

 \blacktriangleright Then

$$a + bx \sim \mathcal{N}(a + b\mu, b^2 \sigma^2)$$
 (A.25)

Sums of Normals

• Let $\operatorname{Cor}(x_1, x_2) = \rho$, where

 $x_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $x_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

 $x \sim \mathcal{N}(\mu, \sigma^2)$

 \blacktriangleright Then

$$\alpha_1 x_1 + \alpha_2 x_2 \sim \mathcal{N}([\alpha_1 \mu_1 + \alpha_2 \mu_2], [\alpha_1^2 \sigma_1^2 + \alpha_2^2 \sigma_2^2 + 2\rho \alpha_1 \alpha_2 \sigma_1 \sigma_2])$$
(A.26)

► When $\rho = 0$:

$$\alpha_1 x_1 + \alpha_2 x_2 \sim \mathcal{N}([\alpha_1 \mu_1 + \alpha_2 \mu_2], [\alpha_1^2 \sigma_1^2 + \alpha_2^2 \sigma_2^2])$$

A.9.3 Chi-square

- ▶ Let ϕ_i (*i* = 1 to *df*) be *independent*, standard normal variates.
- ► Define:

$$X_{df}^2 \equiv \sum_{i=1}^{df} \phi_i^2 \sim \chi_{df}^2$$

- ▶ The chi-square distribution is defined as the sum of independent squared normal variables.
- ▶ The mean and variance:

$$\operatorname{E}\left(X_{df}^{2}\right) = df$$
 and $\operatorname{Var}\left(X_{df}^{2}\right) = 2df$

Adding Chi-squares

- Let $x \sim \chi^2_{df_x}$ and $y \sim \chi^2_{df_y}$
- If x and y are independent:

$$x + y \sim \chi^2_{df_x + df_y}$$

Shape

- With 1 df, the distribution is highly skewed.
- As $df \rightarrow \infty$, the chi-square becomes distributed normally.

Question from Intro to Statistics Consider the chi-square test in contingency tables:

$$X^{2} = \sum_{\text{all cells}} \frac{(\text{obs} - \exp)^{2}}{\exp} \sim X_{df}^{2} \quad \text{with } df = (\#\text{rows} - 1)(\#\text{columns} - 1)$$

• Why would this be distributed as chi-square? Why those degrees of freedom?

A.9.4 F-distribution

▶ Let X_1 and X_2 be independent chi-square variables with degrees of freedom r_1 and r_2 .

 \blacktriangleright The *F*-distribution is *defined* as:

$$F_{r_1,r_2} \equiv \frac{X_1/r_1}{X_2/r_2}$$

A.9.5 *t*-distribution

- \blacktriangleright Consider $z\sim\phi$ and $x\sim\chi_{df}$, where z and x are independent.
- \blacktriangleright Then the *t*-distribution with *df* degrees of freedom is *defined* as:

$$t_{df} \equiv \frac{z}{\sqrt{x/df}}$$

A.9.6 Relationships among normal, t, chi-square and F

1. $z = t_{\infty}$ 2. $z^2 = X_1^2 = F_{1,\infty} = t_{\infty}^2$ 3. $t_{df}^2 = F_{1,df}$ 4. $\frac{X_{df}^2}{df} = F_{r,\infty}$

A.10 Calculus

▶ The two central ideas in calculus are the derivative and the integral.

▶ **Derivative**: The derivative is the slope of a curve y = f(x):

$$\frac{dy}{dx} = f'(x) \tag{A.27}$$

▶ The second derivative indicates how quickly the slope of the curve is changing:

$$\frac{d^2y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = f''(x) \tag{A.28}$$

▶ If the curve is defined as y = f(x, z), we write the *partial derivative* with respect to x as

. . .

$$\frac{\partial f(x,z)}{\partial x} \tag{A.29}$$

- Imagine half of a hard boiled egg setting on a table; slice it from the top to the table.
- The partial derivative is the slope on the resulting curve.
- ▶ **Integral**: The integral is the area under a curve.

▶ For example, if a curve is defined as y = f(x), the area under the curve from point *a* to point *b* is computed with the integral:

$$\int_{b}^{a} f(t) dt$$

A.11 Matrix Algebra

A.11.1 Basic Definitions

Matrix is an array of numbers, arranged in *rows* and *columns*:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

A.11.2 Transposing a Matrix

▶ The transpose is indicated by the prime or superscript T. For example: \mathbf{A}' or \mathbf{A}^{T} .

If
$$\mathbf{A} = \begin{bmatrix} 11 & 12 \\ 21 & 22 \end{bmatrix}$$
, then $\mathbf{A}' = \begin{bmatrix} 11 & 21 \\ 12 & 22 \end{bmatrix}$

▶ Transposing the Transpose

$$\mathbf{A}'' = \mathbf{A} \tag{A.30}$$

▶ If A is a symmetric matrix, then $\mathbf{A}' = \mathbf{A}$

A.11.3 Addition and Subtraction

► Addition:

$$\mathbf{A} + \mathbf{B} = \{a_{rc} + b_{rc}\}$$

$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 7 & 11 \end{bmatrix} = \begin{bmatrix} 1+1 & 2+3 \\ 4+7 & 5+11 \end{bmatrix}$$

▶ Transposes of added matrices:

$$(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$$

$$\left(\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 7 & 11 \end{bmatrix} \right)' = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}' + \begin{bmatrix} 1 & 3 \\ 7 & 11 \end{bmatrix}'$$

$$= \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 7 \\ 3 & 11 \end{bmatrix} = \begin{bmatrix} 2 & 11 \\ 5 & 16 \end{bmatrix}$$

$$(A.31)$$

1)

► Subtraction of matrices:

$$\mathbf{A} - \mathbf{B} = \{a_{rc} - b_{rc}\}$$

$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 7 & 11 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 2 - 3 \\ 4 - 7 & 5 - 11 \end{bmatrix}$$

c

A.11.4 Scalar Multiplication

$$\alpha \mathbf{A} = \alpha \{a_{rc}\} = \{\alpha \times a_{rc}\}$$
$$3 \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 3 \times 2 \\ 3 \times 4 & 3 \times 5 \end{bmatrix}$$

A.11.5 Matrix Multiplication

Vector is a matrix with one dimension equal to one.

▶ A column vector is an $R \times 1$ matrix:

$$\mathbf{c} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad \text{or} \quad \mathbf{c}' = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

• A row vector is a $1 \times C$ matrix:

$$\mathbf{r} = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \end{array} \right]$$

* Vector Multiplication Consider $\beta_{K \times 1}$ and $\mathbf{x}_{1 \times K}$, then by definition:

$$\mathbf{x}\boldsymbol{\beta} = \sum_{i=1}^{3} \beta_i x_i = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

► For example, let $\beta' = (\beta_0 \ \beta_1 \ \beta_2)$ and $\mathbf{x} = (1 \ x_1 \ x_2)$, then

$$\mathbf{x}\boldsymbol{\beta} = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Matrix Multiplication For $\mathbf{A}_{R \times K}$ and $\mathbf{B}_{K \times C}$, the matrix product $\mathbf{C}_{R \times C} = \mathbf{A}\mathbf{B}$ equals:

$$\{c_{rc}\} = \left\{\sum_{i=1}^{K} a_{ri}b_{ic}\right\}$$

▶ Note that element c_{rc} is the vector multiplication of row r from **A** and column c from **B**.

► Example:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 1a + 2d + 3g & 1b + 2e + 3h & 1c + 2f + 3i \\ 4a + 5d + 6g & 4b + 5e + 6h & 4c + 5f + 6i \end{bmatrix}$$

► Example from Regression:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} \\ \vdots & \vdots & \vdots \\ 1 & x_{N1} & x_{N2} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 + \beta_1 x_{11} + \beta_2 x_{12} + \varepsilon_1 \\ \vdots \\ \beta_0 + \beta_1 x_{N1} + \beta_2 x_{N2} + \varepsilon_N \end{bmatrix}$$

A.11.6 Inverse

- ▶ An *identity matrix* is a square matrix with 1's on the diagonal, and 0's elsewhere.
- ▶ If A is square, then A^{-1} is the *inverse* of A if and only if

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} -1\frac{2}{3} & \frac{2}{3} \\ 1\frac{1}{3} & -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(A.32)

- 1. If \mathbf{A}^{-1} exists, it is unique.
- 2. If \mathbf{A}^{-1} does not exist, \mathbf{A} is called *singular*.

A.11.7 Rank

 \blacktriangleright Rank is the size of the largest submatrix that can be inverted.

 \blacktriangleright A matrix is of *full rank* if the rank is equal to the minimum of the number of rows and columns.

- ▶ Problems occur in estimation when a matrix is encountered that is not of full rank.
- ▶ When this occurs, messages such as the following are generated:
 - Matrix is not of full rank.
 - Singular matrix encountered.
 - Matrix cannot be inverted.
 - An inverse does not exist.