## Appendix A

## Math Reviews ${ }_{\text {sas.anaor }}$

## Objectives

1. Review tools that are needed for studying models for CLDVs.
2. Get you used to the notation that will be used.

## Readings

1. Read this appendix before class.
2. Pay special attention to the results marked with a *.
3. Review any other algebra text as needed.

## A. 1 From Simple to Complex

- With a simple equation:

$$
x=y
$$

- Or a complex equation:

$$
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots+u
$$

- The same rules apply. Don't confuse messy and complex with hard and incomprehensible!


## A. 2 Basic Rules

## Distributive law

$$
\begin{align*}
a \times(b+c) & =(a \times b)+(a \times c)  \tag{A.1}\\
4 \times(2+3) & =(4 \times 2)+(4 \times 3) \\
\left(\phi_{1}-\phi_{2}\right)\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\right) & =\left(\phi_{1}-\phi_{2}\right) \Delta  \tag{A.2}\\
& =\phi_{1} \Delta-\phi_{2} \Delta \\
& =\phi_{1}\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\right)-\phi_{2}\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\right) \\
& =\left[\phi_{1} \beta_{0}+\phi_{1} \beta_{1} x_{1}+\phi_{1} \beta_{2} x_{2}\right]-\left[\phi_{2} \beta_{0}+\phi_{2} \beta_{1} x_{1}+\phi_{2} \beta_{2} x_{2}\right]
\end{align*}
$$

Multiplying by 1

$$
\begin{align*}
& \frac{a}{b}=1 \times \frac{a}{b}=\frac{k}{k} \times \frac{a}{b}=\frac{k a}{k b}  \tag{A.3}\\
& \frac{2}{3}=1 \times \frac{2}{3}=\frac{4}{4} \times \frac{2}{3}=\frac{4 \times 2}{4 \times 3}=\frac{8}{12}=\frac{2}{3}
\end{align*}
$$

## A. 3 Solving Equations

Let $p$ be the probability of an event, and $\Omega=\frac{p}{1-p}$ the odds (Note: $\Omega=e^{x \beta}$ ). You should be able to work this derivation from $\Omega$ to $p$ and from $p$ to $\Omega$ without looking.

$$
\begin{array}{ll}
\Omega=\frac{p}{1-p} & 9=\frac{.9}{.1} \\
\Omega(1-p)=p & 9(1-.9)=.9 \\
\Omega-\Omega p=p & 9-9(.9)=.9 \\
\Omega=\Omega p+p & 9=9(.9)+.9 \\
\Omega=p(1+\Omega) & 9=.9(1+9) \\
\frac{\Omega}{1+\Omega}=p & \frac{9}{1+9}=.9
\end{array}
$$

Therefore, $p=\frac{\Omega}{1+\Omega}=\frac{e^{x \beta}}{1+e^{x \beta}}$.

## A. 4 Exponents and Radicals

Zero exponent

$$
\begin{align*}
a^{0} & =1  \tag{A.4}\\
3^{0} & =1 \\
2.718128^{0} & =1=e^{0}
\end{align*}
$$

Integer exponent

$$
\begin{align*}
a^{k} & =a \cdots(k) \cdots a, \text { where }(k) \text { means repeat } k \text { times }  \tag{A.5}\\
2^{3} & =2 \times 2 \times 2=8 \\
e^{3} & =2.71828 \times 2.71828 \times 2.71828=20.086
\end{align*}
$$

Negative integer exponent

$$
\begin{align*}
a^{-k} & =\frac{1}{a \cdots(k) \cdots a}=\frac{1}{a^{k}}  \tag{A.6}\\
2^{-3} & =\frac{1}{2 \times 2 \times 2}=\frac{1}{8}
\end{align*}
$$

Base e $e=2.71828182846 \ldots$ is a useful base. Notation is: $e^{x} \operatorname{or} \exp (x)$.

$$
e^{0}=1 \quad e^{1}=2.718 \quad e^{2}=e \times e=7.389 \quad e^{3}=e \times e \times e=20.086
$$

* Product of powers: multiplying as the sum of powers

$$
\begin{align*}
a^{M} a^{N} & =[a \cdots(M+N) \cdots a]=a^{M+N}  \tag{A.7}\\
2^{3} 2^{4} & =(2 \times 2 \times 2)(2 \times 2 \times 2 \times 2)=2^{3+4}=2^{7} \\
e^{3} e^{4} & =(e \times e \times e)(e \times e \times e \times e)=e^{3+4}=e^{7} \tag{A.8}
\end{align*}
$$

* Quotient of powers

$$
\begin{align*}
\frac{a^{M}}{a^{N}} & =\frac{[a \cdots(M) \cdots a]}{[a \cdots(N) \cdots a]}=a^{M-N}  \tag{A.9}\\
\frac{e^{5}}{e^{3}} & =\frac{e \times e \times e \times e \times e}{e \times e \times e}=e^{5-3}=e^{2}
\end{align*}
$$

## Power of powers

$$
\begin{align*}
\left(a^{M}\right)^{N} & =a^{M N}  \tag{A.10}\\
\left(e^{2}\right)^{5} & =(e \times e)(e \times e)(e \times e)(e \times e)(e \times e)=e^{10}=e^{2 \times 5}
\end{align*}
$$

## A. 5 ** Natural Logarithms

Natural logarithms and exponentials are used extensively in statistics. A key reason is that they turn multiplication into addition. Here's why:

1. Every positive real number $m$ can be written as

$$
m=e^{p}
$$

2. Example: Let $m=13$. Find $p$ such that $e^{p}=13$.
(a) $e^{2}=7.389 \ldots$ and $e^{3}=20.086 \ldots \Rightarrow 2<p<3$.
(b) $e^{2.5}=12.128 \ldots$ and $e^{2.6}=13.464 \ldots \Rightarrow 2.5<p<2.6$.
(c) And so on until $e^{2.565 \ldots}=13$
3. Definition of the Log
(a) If $m=e^{p}$, then $p=\ln m$ :

The $\log$ of $m$ is $p$.
(b) Or, $\ln m=p$ which is equivalent to $e^{p}=m$
(c) Which looks like:



4. * Log of Products
(a) Let

$$
\begin{aligned}
m & =e^{p} \Longleftrightarrow \ln m=p \\
n & =e^{q} \Longleftrightarrow \ln n=q
\end{aligned}
$$

(b) Then, multiply $m$ times $n$ :

$$
\begin{aligned}
m \times n & =e^{p} \times e^{q} \\
& =e^{(p+q)}
\end{aligned}
$$

(c) Taking the log of both sides:

$$
\begin{aligned}
\ln (m \times n) & =\ln \left[e^{(p+q)}\right] \\
& =p+q \\
& =\ln m+\ln n
\end{aligned}
$$

(d) For example:

$$
\begin{aligned}
2 \times 3 & =6 \\
\ln (2 \times 3) & =\ln 2+\ln 3= \\
& =0.69315 \ldots+1.0986 \ldots \\
& =1.7918 \ldots \\
& =\ln 6
\end{aligned}
$$

5.     * Log of Quotients

$$
\begin{aligned}
& \ln \left(\frac{m}{n}\right)=\ln m-\ln n \\
& \ln \left(\frac{3}{2}\right)=.40547=\ln 3-\ln 2=1.0986-.69315
\end{aligned}
$$

$$
\text { The logit: } \quad \ln \left(\frac{p}{1-p}\right)=
$$

6. Inverse operations
(a) $\ln (k)$ is that power of $e$ that equals $k$ :

$$
k=e^{\ln k}
$$

(b) $\ln \left(e^{k}\right)$ is that power of $e$ that equals $e^{k}$, namely $k$ :

$$
\ln e^{k}=k
$$

(c) and

$$
e^{\ln k}=k
$$

7. Log of Power

$$
\begin{aligned}
\ln m^{n} & =n \ln m \\
\ln 3^{2} & =\ln 9=2.1972=2 \ln 3=2(1.0986)
\end{aligned}
$$

8. Example from Regression
(a) Assume that

$$
y=\alpha x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \varepsilon
$$

(b) Taking logs:

$$
\begin{aligned}
\ln y & =\ln \left(\alpha x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \varepsilon\right) \\
& =\ln \alpha+\ln x_{1}^{\beta_{1}}+\ln x_{2}^{\beta_{2}}+\ln \varepsilon \\
& =\ln \alpha+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+\varepsilon^{*} \\
& =\alpha^{*}+\beta_{1} x_{1}^{*}+\beta_{2} x_{2}^{*}+\varepsilon^{*}
\end{aligned}
$$

## A. 6 Vector Algebra

1. Consider the regression equation for observation $i$ :

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i}
$$

Vector multiplication allows us to write this more simply.
2. For example, let $\boldsymbol{\beta}^{\prime}=\left(\begin{array}{lll}\beta_{0} & \beta_{1} & \beta_{2}\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{lll}1 & x_{1} & x_{2}\end{array}\right)$, then

$$
\mathbf{x} \boldsymbol{\beta}=\left(\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

3. More generally, consider $\boldsymbol{\beta}_{K \times 1}$ and $\mathbf{x}_{1 \times K}$, then by definition:

$$
\mathbf{x} \boldsymbol{\beta}=\beta_{0}+\sum_{i=1}^{K} \beta_{i} x_{i}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots
$$

## A. 7 Probability Distributions

Let $X$ be a random variable with discrete outcomes $x$. The frequency of those outcomes is the probability distribution:

$$
f(x)=\operatorname{Pr}(X=x)
$$

Bernoulli Distribution For example, let $y$ indicate the outcome of a fair coin. Then, $y=0$ or 1 , and

$$
\operatorname{Pr}(y=0)=.4 \quad \text { and } \quad \operatorname{Pr}(y=1)=.6
$$

- For all probability distributions:

1. All probabilities are between zero and one: $0 \leq f(x) \leq 1$
2. Probabilities sum to one: $\sum_{x} f\left(x_{i}\right)=1$

- For a continuous random variable, $f(x)$ is called a probability density function or $p d f$.

1. $f(x)=0$. Why? Pick any two numbers. Can you find a number in between them?
2. $\operatorname{Pr}(a \leq x \leq b)=\int_{a}^{b} f(x) d x \geq 0$
3. $\int_{-\infty}^{\infty} f(t) d t=1$

## Normal Distribution

1. The pdf mean $\mu$ and standard deviation $\sigma, x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, is:

$$
\begin{equation*}
f(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \tag{A.11}
\end{equation*}
$$

2. This defines the classic bell curve:
3. If $\mu=0$ and $\sigma^{2}=1$ :

$$
\begin{equation*}
\phi(x)=f(x \mid 0,1)=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2}\right) \tag{A.12}
\end{equation*}
$$

## A.7.1 Cumulative Distribution Function (cdf)

- The $c d f$ is the probability of a value up to or equal to a specific value.
- For discrete random variables: $F(x)=\sum_{X \leq x} f(x)=\operatorname{Pr}(X \leq x)$
- For a continuous variable: $F(x)=\int_{-\infty}^{x} f(t) d t=\operatorname{Pr}(X \leq x)$
- For the cdf:

1. $0 \leq F(x) \leq 1$.
2. If $x>y$, then $F(x) \geq F(y)$.
3. $F(-\infty)=0$ and $F(\infty)=1$.

## A.7.2 * Computing the Area Within a Distribution

- Consider the distribution $f(x)$, where $F(x)=\operatorname{Pr}(X \leq x)$ :

$$
\operatorname{Pr}(a \leq X \leq b)=\operatorname{Pr}(X \leq b)-\operatorname{Pr}(X \leq a)=F(b)-F(a)
$$

## A.7.3 * Expectation

- The mean of $N$ sample values of $X$ is:

$$
\bar{x}=\frac{\sum_{i=1}^{N} X_{i}}{N}
$$

For example:

$$
\frac{1+1+4+10}{4}=\left(1 \times \frac{2}{4}\right)+\left(4 \times \frac{1}{4}\right)+\left(10 \times \frac{1}{4}\right)=4
$$

- The expectation is defined in terms of the population:
- For discrete variables:

$$
\mathrm{E}(X)=\sum_{x} f(x) x=\sum_{x} \operatorname{Pr}(X=x) x
$$

- For continuous variables:

$$
\mathrm{E}(X)=\int_{x} f(x) x d x
$$

* Example of Expectation of Binary Variable If $X$ has values 0 and 1 with probabilities $\frac{1}{4}$ and $\frac{3}{4}$, then

$$
\begin{aligned}
\mathrm{E}(X) & =\left(0 \times \frac{1}{4}\right)+\left(1 \times \frac{3}{4}\right)=\frac{3}{4}=\operatorname{Pr}(x=1) \\
& =\left[\text { Value }_{1} \operatorname{Pr}\left(\text { Value }_{1}\right)\right]+\left[\text { Value }_{2} \operatorname{Pr}\left(\text { Value }_{2}\right)\right]
\end{aligned}
$$

## * Expectation of Sums

- If $X$ and $Y$ are random variables, and $a, b$ and $c$ are constants, then

$$
\begin{equation*}
\mathrm{E}(a+b X+c Y)=a+b \mathrm{E}(X)+c \mathrm{E}(Y) \tag{A.13}
\end{equation*}
$$

- Example: Let

$$
y_{i}=\alpha+\sum_{k=1}^{K} \beta_{k} x_{k i}+\varepsilon_{i}
$$

Then

$$
\begin{aligned}
\mathrm{E}\left(y_{i}\right) & =\mathrm{E}\left(\alpha+\sum_{k=1}^{K} \beta_{k} x_{k i}+\varepsilon_{i}\right) \\
& =\mathrm{E}(\alpha)+\mathrm{E}\left(\sum_{k=1}^{K} \beta_{k} x_{k i}\right)+\mathrm{E}\left(\varepsilon_{i}\right) \\
& =\alpha+\sum_{k=1}^{K} \beta_{k} \mathrm{E}\left(x_{i k}\right)
\end{aligned}
$$

## Conditional Expectations

- Conditioning means holding some things constant while something else changes.
- Example: Let \$ be income.
- $\mathrm{E}(\$)$ tells us the mean $\$$, but is not useful for telling us how other variables affect $\$$.
- Let $S$ be the sex of the respondent. We might compute:

$$
\mathrm{E}(\$ \mid S=\text { female })=\text { Expected } \$ \text { for females }
$$

- This allows us to see how the expectation varies by the level of other variables.
- Example: If $y=\mathbf{x} \boldsymbol{\beta}+\varepsilon$, then

$$
\mathrm{E}(y \mid \mathbf{x})=\mathrm{E}(\mathbf{x} \boldsymbol{\beta}+\varepsilon)=\mathrm{E}(\mathbf{x} \boldsymbol{\beta})+\mathrm{E}(\varepsilon)=\mathbf{x} \boldsymbol{\beta}
$$

## A.7.4 The Variance

- The variance is defined as

$$
s^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N}
$$

- Variance for a Population: Let $f(x)=\operatorname{Pr}(X=x)$.
- If $x$ is discrete:

$$
\begin{equation*}
\operatorname{Var}(X)=\sum_{x}[x-\mathrm{E}(x)]^{2} f(x) \tag{A.14}
\end{equation*}
$$

- If $x$ is continuous:

$$
\begin{equation*}
\operatorname{Var}(X)=\int_{x}[x-\mathrm{E}(x)]^{2} f(x) d x \tag{A.15}
\end{equation*}
$$

Example of Variance of Binary Variable If $X$ has values 0 and 1 with probabilities $\frac{1}{4}$ and $\frac{3}{4}$, then $\mathrm{E}(X)=\frac{3}{4}$, and

$$
\begin{aligned}
\operatorname{Var}(X) & =\left(\left[0-\frac{3}{4}\right]^{2} \times \frac{1}{4}\right)+\left(\left[1-\frac{3}{4}\right]^{2} \times \frac{3}{4}\right) \\
& =\left(\frac{9}{16} \times \frac{1}{4}\right)+\left(\frac{1}{16} \times \frac{3}{4}\right)=\frac{9}{64}+\frac{3}{64}=\frac{12}{64}=\frac{3}{16} \\
& =\mathrm{E}(X)[1-\mathrm{E}(X)]
\end{aligned}
$$

* Variance of a Linear Transformation
- Let $X$ be a random variable, and $a$ and $b$ be constants. Then,

$$
\begin{equation*}
\operatorname{Var}(a+b X)=b^{2} \operatorname{Var}(X) \tag{A.16}
\end{equation*}
$$

## * Variance of a Sum

- Let $X$ and $Y$ be two random variables with constants $a$ and $b$ :

$$
\begin{equation*}
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y) \tag{A.17}
\end{equation*}
$$

- Let $Y=\sum_{i=1}^{K} X_{i}$. If the $X^{\prime}$ 's are uncorrelated, then

$$
\begin{equation*}
\operatorname{Var}(Y)=\operatorname{Var}\left(\sum_{i=1}^{K} X_{i}\right)=\sum_{i=1}^{K} \operatorname{Var}\left(X_{i}\right) \tag{A.18}
\end{equation*}
$$

## A. $8{ }^{* *}$ Rescaling Variables

Often we want to use addition and multiplication to change a variable with mean $\mu$ and variance $\sigma^{2}$ into a variable with mean 0 and variance 1 . This is called rescaling.

1. Consider $X$ where

$$
\mathrm{E}(x)=\mu \quad \text { and } \quad \operatorname{Var}(x)=\sigma^{2}
$$

2. By subtracting the mean, the expectation becomes zero:

$$
\mathrm{E}(x-\mu)=\mathrm{E}(x)-\mathrm{E}(\mu)=\mu-\mu=0
$$

3. But the variance is unchanged:

$$
\operatorname{Var}(x-\mu)=\operatorname{Var}(x)=\sigma^{2}
$$

4. Dividing by $\sigma$ :

$$
\mathrm{E}\left(\frac{x}{\sigma}\right)=\mathrm{E}\left(\frac{1}{\sigma} x\right)=\frac{1}{\sigma} \mathrm{E}(x)=\frac{1}{\sigma} \mu=\frac{\mu}{\sigma}
$$

5. Subtracting $\mu$ and dividing by $\sigma$ does not change the mean:

$$
\begin{equation*}
\mathrm{E}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma} \mathrm{E}(x-\mu)=\frac{1}{\sigma} 0=0 \tag{A.19}
\end{equation*}
$$

6. But, the variance becomes one:

$$
\begin{equation*}
\operatorname{Var}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} \operatorname{Var}(x-\mu)=\frac{1}{\sigma^{2}} \operatorname{Var}(x)=1 \tag{A.20}
\end{equation*}
$$

## Stata: Standardizing Variables

```
. use science2, clear
. sum pub9
```

| Variable \| | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| pub9 \| | 308 | 4.512987 | 5.315134 | 0 | 33 |
| $\begin{aligned} & \text { • gen p9_mn } \\ & \text {. sum p9_mn } \end{aligned}$ | pub9 | r(mean) |  |  |  |


| Variable \| | Obs | Mean | Std. Dev. | Min |  | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p9_mn | 308 | 1e-09 | 5.315134 | 2987 |  | 8701 |

. gen p9_sd = p9_mn/5.315134
. gen p9_sd2 = (pub9 - 4.512987)/5.315134
. egen p9_sdez = std(pub9)
. sum p9_sd p9_sd2 p9_sdez

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| p9_sd | 308 | 4.02e-09 | . 9999999 | -. 8490825 | 5.359604 |
| p9_sd2 | 308 | $2.18 \mathrm{e}-10$ | . 9999999 | -. 8490825 | 5.359604 |
| p9_sdez | 308 | -6.77e-10 | 1 | -. 8490825 | 5.359604 |

## A. 9 Distributions

## A.9.1 Bernoulli

- $X$ has a Bernoulli distribution if it has two possible outcomes:

$$
\operatorname{Pr}(X=1)=p \quad \text { and } \quad \operatorname{Pr}(X=0)=1-p
$$

- Then:

$$
f(x \mid p)=p^{x}(1-p)^{1-x}=\operatorname{Pr}(X=x \mid p)
$$

- That is:

$$
f(0 \mid p)=p^{0}(1-p)^{1}=1-p \quad \text { and } \quad f(1 \mid p)=p^{1}(1-p)^{0}=p
$$

- It can be shown that

$$
\begin{equation*}
\mathrm{E}(X)=p \quad \text { and } \quad \operatorname{Var}(X)=p(1-p) \tag{A.21}
\end{equation*}
$$

- Note how the variance is related to the mean:

| $\mathrm{E}(X)=p$ | $\operatorname{Var}(X)=p(1-p)$ |
| :---: | :---: |
| 0.1 | 0.090 |
| 0.2 | 0.160 |
| 0.3 | 0.210 |
| 0.4 | 0.240 |
| 0.5 | 0.250 |
| 0.6 | 0.240 |
| 0.7 | 0.210 |
| 0.8 | 0.160 |
| 0.9 | 0.090 |

## A.9.2 Normal

- The pdf for a normal distribution with mean $\mu$ and standard deviation $\sigma$ is

$$
\begin{equation*}
f(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \tag{A.22}
\end{equation*}
$$

- If $x$ is distributed normally with mean $\mu$ and standard deviation $\sigma$ :

$$
x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- The cdf is defined as

$$
F(x \mid \mu, \sigma)=\int_{-\infty}^{x} f(t \mid \mu, \sigma) d t
$$

## Standardized Normal

- If $x \sim \mathcal{N}(0,1)$, we define:

$$
\text { pdf: } \phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2}\right) \quad \text { cdf: } \Phi(x)=\int_{-\infty}^{x} \phi(t) d t
$$

- You can move from an unstandardized to a standardized normal distribution.
- Let $x \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- Then,

$$
\begin{align*}
f(x \mid 0, \sigma) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right) \\
& =\frac{1}{\sigma} \frac{1}{\sqrt{2 \pi}} \exp \left(-\left(\frac{x}{\sigma}\right)^{2} / 2\right)  \tag{A.23}\\
& =\frac{1}{\sigma} \phi\left(\frac{x}{\sigma}\right)
\end{align*}
$$

## Area Under the Curve

- If $x \sim \mathcal{N}(0,1)$, then

$$
\begin{equation*}
\operatorname{Pr}(a \leq x \leq b)=\Phi(b)-\Phi(a) \tag{A.24}
\end{equation*}
$$

## Linear Transformation of a Normal

- If

$$
x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- Then

$$
\begin{equation*}
a+b x \sim \mathcal{N}\left(a+b \mu, b^{2} \sigma^{2}\right) \tag{A.25}
\end{equation*}
$$

## Sums of Normals

- Let $\operatorname{Cor}\left(x_{1}, x_{2}\right)=\rho$, where

$$
x_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \quad \text { and } \quad x_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

- Then

$$
\begin{equation*}
\alpha_{1} x_{1}+\alpha_{2} x_{2} \sim \mathcal{N}\left(\left[\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}\right],\left[\alpha_{1}^{2} \sigma_{1}^{2}+\alpha_{2}^{2} \sigma_{2}^{2}+2 \rho \alpha_{1} \alpha_{2} \sigma_{1} \sigma_{2}\right]\right) \tag{A.26}
\end{equation*}
$$

- When $\rho=0$ :

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2} \sim \mathcal{N}\left(\left[\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}\right],\left[\alpha_{1}^{2} \sigma_{1}^{2}+\alpha_{2}^{2} \sigma_{2}^{2}\right]\right)
$$

## A.9.3 Chi-square

- Let $\phi_{i}(i=1$ to $d f)$ be independent, standard normal variates.
- Define:

$$
X_{d f}^{2} \equiv \sum_{i=1}^{d f} \phi_{i}^{2} \sim \chi_{d f}^{2}
$$

- The chi-square distribution is defined as the sum of independent squared normal variables.
- The mean and variance:

$$
\mathrm{E}\left(X_{d f}^{2}\right)=d f \quad \text { and } \quad \operatorname{Var}\left(X_{d f}^{2}\right)=2 d f
$$

## Adding Chi-squares

- Let $x \sim \chi_{d f_{x}}^{2}$ and $y \sim \chi_{d f_{y}}^{2}$
- If $x$ and $y$ are independent:

$$
x+y \sim \chi_{d f_{x}+d f_{y}}^{2}
$$

## Shape

- With $1 d f$, the distribution is highly skewed.
- As $d f \rightarrow \infty$, the chi-square becomes distributed normally.

Question from Intro to Statistics Consider the chi-square test in contingency tables:

$$
X^{2}=\sum_{\text {all cells }} \frac{(\text { obs }-\exp )^{2}}{\exp } \sim X_{d f}^{2} \quad \text { with } d f=(\# \text { rows }-1)(\# \text { columns }-1)
$$

- Why would this be distributed as chi-square? Why those degrees of freedom?


## A.9.4 $\boldsymbol{F}$-distribution

- Let $X_{1}$ and $X_{2}$ be independent chi-square variables with degrees of freedom $r_{1}$ and $r_{2}$.
- The $F$-distribution is defined as:

$$
F_{r_{1}, r_{2}} \equiv \frac{X_{1} / r_{1}}{X_{2} / r_{2}}
$$

## A.9.5 $t$-distribution

- Consider $z \sim \phi$ and $x \sim \chi_{d f}$, where $z$ and $x$ are independent.
- Then the $t$-distribution with $d f$ degrees of freedom is defined as:

$$
t_{d f} \equiv \frac{z}{\sqrt{x / d f}}
$$

## A.9.6 Relationships among normal, t, chi-square and F

1. $z=t_{\infty}$
2. $z^{2}=X_{1}^{2}=F_{1, \infty}=t_{\infty}^{2}$
3. $t_{d f}^{2}=F_{1, d f}$
4. $\frac{X_{d f}^{2}}{d f}=F_{r, \infty}$

## A. 10 Calculus

- The two central ideas in calculus are the derivative and the integral.



- Derivative: The derivative is the slope of a curve $y=f(x)$ :

$$
\begin{equation*}
\frac{d y}{d x}=f^{\prime}(x) \tag{A.27}
\end{equation*}
$$

- The second derivative indicates how quickly the slope of the curve is changing:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=f^{\prime \prime}(x) \tag{A.28}
\end{equation*}
$$

- If the curve is defined as $y=f(x, z)$, we write the partial derivative with respect to $x$ as

$$
\begin{equation*}
\frac{\partial f(x, z)}{\partial x} \tag{A.29}
\end{equation*}
$$

- Imagine half of a hard boiled egg setting on a table; slice it from the top to the table.
- The partial derivative is the slope on the resulting curve.
- Integral: The integral is the area under a curve.
- For example, if a curve is defined as $y=f(x)$, the area under the curve from point $a$ to point $b$ is computed with the integral:

$$
\int_{b}^{a} f(t) d t
$$

## A. 11 Matrix Algebra

## A.11.1 Basic Definitions

Matrix is an array of numbers, arranged in rows and columns:

$$
\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

## A.11.2 Transposing a Matrix

- The transpose is indicated by the prime or superscript T. For example: $\mathbf{A}^{\prime}$ or $\mathbf{A}^{\mathrm{T}}$.

$$
\text { If } \mathbf{A}=\left[\begin{array}{ll}
11 & 12 \\
21 & 22
\end{array}\right], \text { then } \mathbf{A}^{\prime}=\left[\begin{array}{ll}
11 & 21 \\
12 & 22
\end{array}\right]
$$

- Transposing the Transpose

$$
\begin{equation*}
\mathbf{A}^{\prime \prime}=\mathbf{A} \tag{A.30}
\end{equation*}
$$

- If $A$ is a symmetric matrix, then $\mathbf{A}^{\prime}=\mathbf{A}$


## A.11.3 Addition and Subtraction

Addition:

$$
\begin{gathered}
\mathbf{A}+\mathbf{B}=\left\{a_{r c}+b_{r c}\right\} \\
{\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]+\left[\begin{array}{cc}
1 & 3 \\
7 & 11
\end{array}\right]=\left[\begin{array}{cc}
1+1 & 2+3 \\
4+7 & 5+11
\end{array}\right]}
\end{gathered}
$$

- Transposes of added matrices:

$$
\begin{align*}
(\mathbf{A}+\mathbf{B})^{\prime} & =\mathbf{A}^{\prime}+\mathbf{B}^{\prime}  \tag{A.31}\\
\left(\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]+\left[\begin{array}{cc}
1 & 3 \\
7 & 11
\end{array}\right]\right)^{\prime} & =\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]^{\prime}+\left[\begin{array}{cc}
1 & 3 \\
7 & 11
\end{array}\right]^{\prime} \\
& =\left[\begin{array}{ll}
1 & 4 \\
2 & 5
\end{array}\right]+\left[\begin{array}{cc}
1 & 7 \\
3 & 11
\end{array}\right]=\left[\begin{array}{ll}
2 & 11 \\
5 & 16
\end{array}\right]
\end{align*}
$$

- Subtraction of matrices:

$$
\begin{gathered}
\mathbf{A}-\mathbf{B}=\left\{a_{r c}-b_{r c}\right\} \\
{\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]-\left[\begin{array}{cc}
1 & 3 \\
7 & 11
\end{array}\right]=\left[\begin{array}{cc}
1-1 & 2-3 \\
4-7 & 5-11
\end{array}\right]}
\end{gathered}
$$

## A.11.4 Scalar Multiplication

$$
\begin{gathered}
\alpha \mathbf{A}=\alpha\left\{a_{r c}\right\}=\left\{\alpha \times a_{r c}\right\} \\
3\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]=\left[\begin{array}{ll}
3 \times 1 & 3 \times 2 \\
3 \times 4 & 3 \times 5
\end{array}\right]
\end{gathered}
$$

## A.11.5 Matrix Multiplication

Vector is a matrix with one dimension equal to one.

- A column vector is an $R \times 1$ matrix:

$$
\mathbf{c}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \text { or } \quad \mathbf{c}^{\prime}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

- A row vector is a $1 \times C$ matrix:

$$
\mathbf{r}=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]
$$

* Vector Multiplication Consider $\boldsymbol{\beta}_{K \times 1}$ and $\mathbf{x}_{1 \times K}$, then by definition:

$$
\mathbf{x} \boldsymbol{\beta}=\sum_{i=1}^{3} \beta_{i} x_{i}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

- For example, let $\boldsymbol{\beta}^{\prime}=\left(\begin{array}{lll}\beta_{0} & \beta_{1} & \beta_{2}\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{lll}1 & x_{1} & x_{2}\end{array}\right)$, then

$$
\mathbf{x} \boldsymbol{\beta}=\left(\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

Matrix Multiplication For $\mathbf{A}_{R \times K}$ and $\mathbf{B}_{K \times C}$, the matrix product $\mathbf{C}_{R \times C}=\mathbf{A B}$ equals:

$$
\left\{c_{r c}\right\}=\left\{\sum_{i=1}^{K} a_{r i} b_{i c}\right\}
$$

- Note that element $c_{r c}$ is the vector multiplication of row $r$ from $\mathbf{A}$ and column $c$ from $\mathbf{B}$.
- Example:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{lll}
1 a+2 d+3 g & 1 b+2 e+3 h & 1 c+2 f+3 i \\
4 a+5 d+6 g & 4 b+5 e+6 h & 4 c+5 f+6 i
\end{array}\right]
$$

- Example from Regression:

$$
\begin{aligned}
\mathbf{y} & =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
{\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & x_{11} & x_{12} \\
\vdots & \vdots & \vdots \\
1 & x_{N 1} & x_{N 2}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{N}
\end{array}\right] \\
& =\left[\begin{array}{c}
\beta_{0}+\beta_{1} x_{11}+\beta_{2} x_{12}+\varepsilon_{1} \\
\vdots \\
\beta_{0}+\beta_{1} x_{N 1}+\beta_{2} x_{N 2}+\varepsilon_{N}
\end{array}\right]
\end{aligned}
$$

## A.11.6 Inverse

- An identity matrix is a square matrix with 1's on the diagonal, and 0's elsewhere.
- If $\mathbf{A}$ is square, then $\mathbf{A}^{-1}$ is the inverse of $\mathbf{A}$ if and only if

$$
\begin{gather*}
\mathbf{A A}^{-1}=\mathbf{I}  \tag{А.32}\\
{\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]\left[\begin{array}{rr}
-1 \frac{2}{3} & \frac{2}{3} \\
1 \frac{1}{3} & -\frac{1}{3}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{gather*}
$$

1. If $\mathbf{A}^{-1}$ exists, it is unique.
2. If $\mathbf{A}^{-1}$ does not exist, $\mathbf{A}$ is called singular.

## A.11.7 Rank

- Rank is the size of the largest submatrix that can be inverted.
- A matrix is of full rank if the rank is equal to the minimum of the number of rows and columns.
- Problems occur in estimation when a matrix is encountered that is not of full rank.
- When this occurs, messages such as the following are generated:
- Matrix is not of full rank.
- Singular matrix encountered.
- Matrix cannot be inverted.
- An inverse does not exist.

