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[bookmark: _Toc508698426][bookmark: _Toc508799740][bookmark: _Toc510954404]β1 Introduction
[bookmark: _Toc508698427][bookmark: _Toc508799741][bookmark: _Toc510954405]Readings
Long & Freese: Chapters 1 and 2
Check there for references to other sources
[bookmark: _Toc508698428][bookmark: _Toc508799742][bookmark: _Toc510954406]Examples
Do-files and data for lecture examples are available
In Stata, run search mcosetup
mdoyear-topic.do
Lectures do not show all of the code
Use these command files as templates for your analysis


[bookmark: _Toc508698429][bookmark: _Toc508799743][bookmark: _Toc510954407]Cross-sectional models for categorical outcomes
1. Binary outcomes: 		binary logit and probit
Nominal outcomes: 	multinomial logit
Ordinal outcomes: 		ordinal logit and probit
Focus on advanced methods of interpretation
1. Telling a story in the presence of nonlinearity
Regression coefficients are necessary but not sufficient
Avoid signs and stars approach
Interpretation using predictions transform the estimated parameters
Predictions conditional on values of regressors
Marginal effects of regressors


[bookmark: _Toc508698430][bookmark: _Toc508799744][bookmark: _Toc510954408]Nonlinear models
1. In linear models the effect of xk on y does not depend on where it is evaluated
Unless nonlinearities are introduced with interactions or transformations
In nonlinear models the effect of xk depends on:
The value of xk 
The values of other x's
Most models for categorical outcomes are implicitly nonlinear
In linear models, most of the work is done when the model is fit
In nonlinear models, the work begins
Nonlinearity make things harder and more realistic


Linear model 


[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\frame-nonlinV1-linear.emf]

Inherently nonlinear models


[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\frame-nonlinV1-nonlinear.emf]
RHS (right-hand-side) variables are linear combinations
1. Notation






Linear combinations can include
Product terms (e.g., x3=x1*x2) 

Transformed regressors (e.g., )
With CDA, these enhancements lead to unexpected subtleties


[bookmark: _Toc508698431][bookmark: _Toc508799745][bookmark: _Toc510954409]Software
1. How you interpret models depends on your software
If post-estimation analysis is hard, you are unlikely to do it 
Stata has great tools for post-estimation analysis
margins and related commands
suest and gsem for simultaneously fitting models
Other packages
R
SAS
SPSS


[bookmark: _Toc510954410]Roadmap
1. Linear regression model (LRM)
1. Binary regression models (BRM)
1. Estimation, testing, and fit
1. Testing marginal effects (ME)
1. Nonlinearities on the RHS (right-hand-side)
1. Comparing groups
1. Comparing effects across models
1. Nominal regression models (NRM)
1. Ordinal regression models (ORM)
Generalized marginal effects (GME)


Tool: Locals in Stata
1. Macros are abbreviations representing characters or numbers.
Syntax:
	local local-name "string"
	local local-name = expression
For example,
local rhs "var1 var2 var3 var4"
local ncases = 198
To display a local:
. local OPTmark "msym(square circle) mcol(red blue) jitter(5)"
. di " `OPTmark'"
msym(square circle) mcol(red blue) jitter(5)
The opening quote ` and closing quote ' are different.
Why is it called local?
1. Local macros exist only when a do-file is running.
When that program ends, the macro disappears
This makes do-files robust since everything is defined in the do-file.
Example: a provenance tag
1. My do-files include a local to document provenance:
local pgm mypgm1
local dte 2018-04-02
local who Scott Long
local tag `pgm'.do `who' `dte'
I can display the tag: 
. di "`tag'"
mypgm1.do Scott Long 2018-04-02
Tool: Global macros
1. Global macros are created as:
	global vars "x1 x2 x3"
Content is retrieved using $globalname
display "$vars"
Globals can make do-files fragile since they stay in memory until you delete them or leave Stata.
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[bookmark: _Toc489277047][bookmark: _Toc508803641][bookmark: _Toc510954411]β1 Linear regression  
[bookmark: _Toc489277048][bookmark: _Toc508803642][bookmark: _Toc510954412]Readings and examples
Long & Freese: Chapters 3 and 4
mdo18-lrm-*.do
[bookmark: _Toc489277049][bookmark: _Toc508803643][bookmark: _Toc510954413]Objectives
1. Establish notation and terminology
1. Reinforce the ideas of linearity and nonlinearity
1. Explain identification
1. Introduce maximum likelihood estimation
1. Introduce margins based commands for post-estimation
1. 

[bookmark: _Toc489277051][bookmark: _Toc508803644][bookmark: _Toc510954414]Notation
Outcome = linear combination + error
1. 
	
1. 
	
1. 





ε is unexplained variation
1. Randomness
1. Unobserved heterogeneity.
[bookmark: _Toc489277052][bookmark: _Toc508803645][bookmark: _Toc510954415]
Assumptions
1.  Linearity.						2.  Not perfect collinearity.
3.  E(ε|x)=0.						4.  Homoscedasticity.
5.  Uncorrelated errors.			6.  Normality.
[image: D:\Dropbox\CDA_research\Work\Sage2\PrePosted figures\brm\brmlrm-3xsV3-lrm-betas.emf]

Linearity
1. y is linearly related to the x's through the β's


A unit change in x1 has a constant effect on y
Collinearity
1. Multiple regression is used since the xk's are collinear
1. The xk's cannot be perfectly collinear
Homoscedasticity
1. All observations have the same variance for ε.

	
Errors are uncorrelated
1. When would this assumption be violated? What are the consequences?
1. Imagine duplicating all observations and re-estimating. What changes?


Conditional mean error and identification
1. 
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\lrm-ident-meanerrorV5-hoursstudied.emf]We assume the average error is 0: . How do you know?
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General principles of identification
1. Unidentified parameters cannot be estimated with more data.
1. Parameters are identified by:
Adding assumptions.
Using new kinds of data.
1. Identification is not all or nothing
Some parameters can be identified while others are not.
1. Combinations of unidentified parameters can be identified, while the individual parameters are not.
α+δ is identified, but α or δ are not individually identified.
[bookmark: _Toc489277053][bookmark: _Toc508803646][bookmark: _Toc510954416]
Interpretation with marginal effects
1. Marginal effects measure
a. The change in the outcome 
b. for a change in one regressor 
c. holding other regressors constant.
1. Two types of marginal effects
Discrete change in E(y) as xk changes a fixed amount.
Marginal change in E(y) for an infinitely small change in a regressors.
1. 

DC: Discrete change in E(y|x)
1. 
Start at	: 		expected value before change in x3 
1. 
Endg at 	: 	expected value after change in x3.
1. The discrete change for a change of 1 in x3:

	
1. The amount of change does not depend on
The specific value of x3
The specific values of the other x's that are held constant
1. Graphically,…


Discrete change
[image: D:\Dropbox\CDA_research\Work\Sage2\PrePosted figures\brm\brmlrm-3xsV3-lrm-betas.emf]

MC: Marginal change in E(y|x)
1. The instantaneous rate of change in E(y|x) as xk changes, holding other x’s constant

	
1. MC is the slope at a specific location
1. In the LRM, the MC does not depend on
The value of xk
The values at which other x's are held constant
Marginal and discrete change in LRM
In linear models that do not have nonlinearities

	
.

Simple interpretation due to linearity
Continuous variables
For a unit increase in xk the expected change in y is βk, holding other variables constant.
For each additional year of education, income is expected to increase by $1,247, holding other variables constant.
Dummy variables coded as 0 and 1:
Having characteristic xk (as opposed to not having the characteristic) results in an expected change of βk in y, holding other variables constant.
Being a female decreases the expected salary by $843, holding other variables constant. 

Can you hold other variables constant?
1. Marginals assume one variable changes with other variables not changing
1. With linked variables this is mathematically impossible
x and x2 must change together
1. More generally
Does it make substantive sense to change one regressor holding others constant? 
Can you increase education holding everything else constant?
What does it mean when we say a variable is changing?
1. What does this counterfactual mean?
Increase education by 4 years while holding income and occupation constant.
1. Does it make sense to imagine changing gender?


[bookmark: _Toc489277054][bookmark: _Toc508803647][bookmark: _Toc510954417]Example: wages in Canada
Fox (2008) Applied Regression Analysis and Generalized Linear Models 2nd, p267.
Survey of Labour & Income Dynamics, Ontario, Canada, 1994.

Model 1:  
Descriptive statistics - #0
. use slid-ontario01, clear
(Canada's 1994 Survey of Labor and Income Dynamics \ 2011-04-04)

. codebook, compact

Variable       Mean       Min       Max  Label
-------------------------------------------------------------------
wages      15.54459       2.3     49.92  Hourly wages
male       .4978734         0         1  Is male?
age        36.95822        16        65  age in years
edyears    13.21191         0        20  years of education
-------------------------------------------------------------------
N=3,997



Fit M1 - #11
      Source |       SS           df       MS      Number of obs   =     3,997
-------------+----------------------------------   F(3, 3993)      =    590.67
       Model |  75828.1741         3   25276.058   Prob > F        =    0.0000
    Residual |  170869.757     3,993  42.7923258   R-squared       =    0.3074
-------------+----------------------------------   Adj R-squared   =    0.3069
       Total |  246697.931     3,996   61.736219   Root MSE        =    6.5416

------------------------------------------------------------------------------
       wages |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        male |    3.47367   .2070092    16.78   0.000     3.067817    3.879524
         age |   .2612932    .008664    30.16   0.000      .244307    .2782794
     edyears |   .9296491   .0342567    27.14   0.000     .8624868    .9968115
       _cons |  -8.124231   .5989773   -13.56   0.000    -9.298561   -6.949902
-------------+----------------------------------------------------------------
Linear in wages
For each additional year of age, wages are expected to increase by $0.26, holding other variables constant.
Being male increases wages by $3.47 at all ages and years of education.
Graphically, on the next page...

Plotting age and predicted wages - #13
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-lrm-canada-wages-m1wages.emf]

[bookmark: _Toc489277055][bookmark: _Toc508803648][bookmark: _Toc510954418]Standardized coefficients
1. Standardized coefficients remove the scale of variables.
1. In binary & ordinal models, standardization is required due to identification.
Tool: Standardizing to 1
1. Standard deviation of xk : 	sd( xk ) = σ 
1. Standard deviation of α xk :	sd( α xk ) = α σ
1. Then:						sd( 1/σ xk ) = (1/σ) sd( xk ) = σ/σ = 1 


Standardizing coefficients by rescaling variables - #12
. egen Swages = std(wages) 
. egen Sage = std(age)
. egen Sedyears = std(edyears)
. sum Swages wages Sage age

    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
      Swages |      3,997    2.05e-09           1  -1.685654   4.374998
       wages |      3,997    15.54459     7.85724        2.3      49.92
        Sage |      3,997    8.64e-10           1  -1.745936   2.336036
         age |      3,997    36.95822      12.004         16         65

. * unstandardized variables
. regress wages male age edyears
∷
. * y & x standardized
regress Swages male Sage Sedyears
∷
. * x standardized
. regress wages male Sage Sedyears
∷
. * y standardized
. regress Swages male age edyears
∷
This is what listcoef does

Standardized coefficients with listcoef - #12
. listcoef, help

regress (N=3997): Unstandardized and standardized estimates 

  Observed SD:  7.8572
  SD of error:  6.5416

------------------------------------------------------------------------------
            |         b        t    P>|t|    bStdX    bStdY   bStdXY     SDofX
------------+-----------------------------------------------------------------
       male |    3.4737   16.780    0.000    1.737    0.442    0.221     0.500
        age |    0.2613   30.159    0.000    3.137    0.033    0.399    12.004
    edyears |    0.9296   27.138    0.000    2.823    0.118    0.359     3.037
   constant |   -8.1242  -13.564    0.000        .        .        .         .
------------------------------------------------------------------------------
       b = raw coefficient
       t = t-score for test of b=0
   P>|t| = p-value for t-test
   bStdX = x-standardized coefficient
   bStdY = y-standardized coefficient
  bStdXY = fully standardized coefficient
   SDofX = standard deviation of X


Fully standardized coefficient
For every standard deviation increase in age, wages are expected to increase by .399 standard deviations, holding other variables constant.
            |         b        t    P>|t|    bStdX    bStdY   bStdXY     SDofX
------------+----------------------------------------------------------------
        age |    0.2613   30.159    0.000    3.137    0.033    0.399    12.004
x-standardized coefficient
For every standard deviation increase in age, wages are expected to increase by $3.14, holding other variables constant.
            |         b        t    P>|t|    bStdX    bStdY   bStdXY     SDofX
------------+----------------------------------------------------------------
        age |    0.2613   30.159    0.000    3.137    0.033    0.399    12.004
y-standardized coefficient
Being a man increases the expected wages by  .442 standard deviations, holding other variables constant.
            |         b        t    P>|t|    bStdX    bStdY   bStdXY     SDofX
------------+----------------------------------------------------------------
       male |    3.4737   16.780    0.000    1.737    0.442    0.221     0.500


[bookmark: _Toc489277057][bookmark: _Toc508803649][bookmark: _Toc510954419]Linear and nonlinear models
A: Linear model					B: Nonlinear model
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\frame-nonlinV1-linear.emf][image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\frame-nonlinV1-nonlinear.emf]  


Nonlinear compared to linear models
Marginal effect of xk in linear models
1. The size of the effect does not depend on the value of xk
1. The size of the effect does not depend on the values of other x's
1. Marginal change and discrete change are equal

	
Marginal effect of xk in nonlinear models
1. The size of the effect does depend on the value of xk
1. The size of the effect does depend on the values of the other x's
1. Marginal and discrete change are usually unequal

	


Nonlinear linear regression models
1. In a linear model, the x's enter in the linear form xβ = β0+ β1x1 + β2x2 +...
1. The effects of regressors can be nonlinear by including transformations.


	Quadratic:	


	Loglinear:	


Square root:	
Graphically…


Linear in sqrt(W); nonlinear in W

      
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\lrm-nonlinerhsV1-X_sqrtW.emf] [image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\lrm-nonlinerhsV1-W_Xsqrd.emf]


[bookmark: _Toc489277060][bookmark: _Toc508803650][bookmark: _Toc510954420]Example: wages in Canada – continued

Model 1: 	

Model 2: 	

Model 3:	

				
Descriptive statistics - #0
Variable       Mean       Min       Max  Label
-------------------------------------------------------------------
wages      15.54459       2.3     49.92  Hourly wages
male       .4978734         0         1  Is male?
age        36.95822        16        65  age in years
edyears    13.21191         0        20  years of education
-------------------------------------------------------------------
N=3,997
M1: baseline regression - #11

	
Plotting the effect of age, gender and wages...


Plotting age and predicted wages - #13
[image: D:\Dropbox\Active\ICPSR cda 2018\Work\cdaicpsrlec18-lrm-slid-ontario-m1wages.emf]

M2: adding a squared term
1. In M1, the effect of age is: (a) always positive; or (b) always negative; or (c) always 0.
1. To allow the effect to be positive and negative, we add age-squared:


As age increases, age-squared increases faster
[image: D:\Dropbox\CDA_research\Work\Sage2\lrm-age-agesqV2-axes-unequal.emf]
· The greater the age, the greater the impact of βage-squared. 

· If βage and βage-sq have different signs, the effect of age can change directions as the size of age2 overwhelms the size of age. 


Specifying M2 with age-squared
1. I can create a squared variable with generate:
	gen agesq = age*age
1. Factor syntax to implicitly create age-squared from age:
	c.age#c.age
where c. indicates continuous; # indicates multiply
For example,
. sum agesq c.age##c.age

    Variable |      Mean    Std. Dev.     Min      Max
-------------+--------------------------------------------------------
         age |  36.95822      12.004         16       65
       agesq |   1509.97     934.969        256     4225
 c.age#c.age |   1509.97     934.969        256     4225

1. Factor variables:
Created dynamically as needed
Disappear when not needed
Keep track of how variables are related
Extremely useful

LRM that is quadratic in age - #22
. regress wages male c.age##c.age edyears
∷
       wages |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        male |   3.465888   .2017898    17.18   0.000     3.070267    3.861508
         age |   1.001166   .0517182    19.36   0.000     .8997691    1.102562
 c.age#c.age |  -.0096636   .0006664   -14.50   0.000    -.0109702    -.008357
     edyears |   .8312951   .0340748    24.40   0.000     .7644895    .8981007
       _cons |  -19.57354   .9820115   -19.93   0.000    -21.49883   -17.64825
------------------------------------------------------------------------------
The effect of being male
Men are expected to earn $3.46 more than women with comparable characteristics.
The effect of age
1. We can’t interpret the coefficients for age and age-squared are:
βage = 1.001166     and     βagesq = -.0096636
since you can’t increase age and hold age-squared constant; and vice versa. 
1. Instead, we look at predictions or marginal effects of age

Plotting age and wages - #23
The effect of age depends on your age.
[image: D:\Dropbox\Active\ICPSR cda 2018\Work\cdaicpsrlec18-lrm-slid-ontario-m2wagesMP.emf]

[bookmark: _Toc508803651][bookmark: _Toc510954421]Post-estimation predictions in Stata
Native Stata commands
1. Predictions can be things like:
Expected values of the outcome
Marginal effects on the outcome
1. predict makes predictions at observed values of the regressors
1. margins makes predictions at observed or users specified values
Predictions can be averaged
marginsplot plots predictions


SPost13 commands
1. These commands use margins for predictions 
mtable:	Create tables of predictions
mgen:		Generate variables with predictions for plotting
mchange:	Marginal effects
mlincom:	Linear combinations of predictions.
1. These commands
Automatically construct multiple margins commands
Have compact output that combine results from multiple commands
Stata or SPost?
1. Stata commands are more general and work with all models, but the output is more difficult.
1. SPost works for most cross-sectional models and is easier for many things.
1. To use marginsplot, you must use margins.
1. 

atspec: specifying values of regressors in margins and m*
atmeans: all regressors at their means.
	margins, atmeans
at() for single values of regressors
	margins, at(age=25 male=1 edyears=20) atmeans
Variables not specified are held at their mean.
at() with linked variables
	margins, at(age=25) atmeans
If c.age#c.age is a regressor, predictions are made at 25*25 for age-squared.
at() for multiple values using a numlist
	margins, at(age=(25(5)75) male=1 edyears=20) atmeans
Predictions are computed for age = 25, 30, 35, etc.
at() at multiple specified values
	margins, at(age=25 male=1 edyears=20) ///
	         at(age=60 male=0 edyears=12) atmeans
M2 continued: Plotting predicted wages
Predictions with mtable - #22
. mtable, atmeans at(age=(25(5)65) male=(0 1) edyears=20)

Expression: Linear prediction, predict()

           |     male       age        xb
 ----------+-----------------------------
         1 |        0        25    17.414
         2 |        0        30    19.292
         3 |        0        35    20.736
         4 |        0        40    21.749
         5 |        0        45    22.328
∷
        13 |        1        40    25.034
        14 |        1        45    26.242
        15 |        1        50    26.898
        16 |        1        55    27.002
        17 |        1        60    26.554
        18 |        1        65    25.554

Specified values of covariates

           |  edyears
 ----------+---------
   Current |       20

Make predictions with margins - #23
. margins, atmeans at(age=(25(5)65) male=(0 1) edyears=20)

Adjusted predictions                            Number of obs     =      3,997
Model VCE    : OLS

Expression   : Linear prediction, predict()

1._at        : male            =           0
               age             =          25
               edyears         =          20
2._at        : male            =           0
               age             =          30
               edyears         =          20
∷
∷ 
9._at        : male            =           0
               age             =          65
               edyears         =          20
10._at       : male            =           1
               age             =          25
               edyears         =          20
∷
∷


18._at       : male            =           1
               age             =          65
               edyears         =          20

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   16.04176   .2836861    56.55   0.000     15.48557    16.59794
          2  |    18.3901   .2671511    68.84   0.000     17.86633    18.91386
          3  |   20.25526   .2685062    75.44   0.000     19.72883    20.78168
          4  |   21.63724   .2737742    79.03   0.000     21.10049    22.17399
          5  |   22.53603   .2808891    80.23   0.000     21.98534    23.08673
          6  |   22.95165   .2992583    76.70   0.000     22.36494    23.53837
          7  |   22.88409   .3452619    66.28   0.000     22.20719      23.561
          8  |   22.33335   .4321969    51.67   0.000     21.48601     23.1807
          9  |   21.29943   .5638506    37.77   0.000     20.19397     22.4049
         10  |   19.50765   .2883744    67.65   0.000     18.94227    20.07302
         11  |   21.85598   .2716595    80.45   0.000     21.32338    22.38859
         12  |   23.72114   .2725945    87.02   0.000     23.18671    24.25558
         13  |   25.10312   .2774585    90.48   0.000     24.55915     25.6471
         14  |   26.00192   .2842255    91.48   0.000     25.44468    26.55916
         15  |   26.41754   .3022107    87.41   0.000     25.82504    27.01004
         16  |   26.34998   .3477177    75.78   0.000     25.66826     27.0317
         17  |   25.79924   .4341173    59.43   0.000     24.94813    26.65035
         18  |   24.76532   .5653219    43.81   0.000     23.65697    25.87367
------------------------------------------------------------------------------


Plotting with marginsplot: quick plots after margins - #24
. marginsplot
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-lrm-canada-wages-m2wages-quick.emf]

Code: Adding options to marginsplot
marginsplot, noci /// #1

    ylab(0(10)40, labsize(*1.1) glwid(*.7) glcol(black*.3) grid gmin gmax) /// #2

    xlab(25(10)65, labsize(*1.1) glwid(*.7) glcol(black*.3) nogrid) /// #3

    legend(order(2 "Men" 1 "Women") ring(0) pos(11) rows(2)) /// #4

    plot1opts(lcol(blue*1.) lpat(solid) msym(O) msiz(*1.) mcol(blue*1.)) /// #5

    plot2opts(lcol(red*1.) lpat(dash) msym(S) msiz(*.9) mcol(red*1.)) /// #6

    plotopts(lwid(*1)) xtitle("Age") ytitle("Wages") /// #7

    title("M1: linear with dummy for gender" " ",ring(2) pos(11) size(*1)) /// #8

    caption("`graphname' `tag'", size(vsmall) pos(5) col(gs10)) /// #9

    scale(1.1) // #10

M2: Plotting predicted wages
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-lrm-canada-wages-m2wages.emf]


M3: Interactions with gender
1. Let the coefficients differ by gender:

	

	
1. Fit separate models:
    regress wages male c.age c.age#c.age edyears if female
    regress wages male c.age c.age#c.age edyears if male
1. Or fit single model with interactions:
    regress wages ibn.male ibn.male#(c.edyears c.age##c.age), nocon
ibn means no base value 
For now, don’t worry about the details
1. The predictions are shown in this graph...

Model 3 with Interactions
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-lrm-canada-wages-m3wages.emf]


Are wages of men greater than those of women?
Gender differences are significant when the CI crosses 0.
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-lrm-canada-wages-m3dcmale.emf][image: D:\Dropbox\Active\MCO 2018\Work\mco18-lrm-canada-wages-m3wages.emf]     



[bookmark: _Toc489277061][bookmark: _Toc508803652][bookmark: _Toc510954422]Summary of nonlinear linear models
1. Nonlinearity has many forms.
1. With some forms, coefficients are easy to interpret (e.g., loglinear).
1. With other forms, coefficients have no direct interpretation.
1. Predictions can be used to interpret nonlinear models of any form.


[bookmark: _Toc489277062][bookmark: _Toc508803653][bookmark: _Toc510954423]Estimation and testing
Details in Estimating, Testing and Fit lecture
Estimation by OLS
1. OLS minimizes the sum of the squared residuals:

	
1. OLS has a simple "closed-form" formula 

	


1. 

[bookmark: _Toc489277063][bookmark: _Toc508803654]Overview of hypothesis testing
								   Decision 
					--------------------------------------------------------------------
	 H0: β=0		Accept H0 				Reject H0 				
	=========================================================
	 In fact β=0		No error					Type I: Pr(reject true)=α
										Area in the shaded tail.
										Size of the test.
	--------------------------------------------------------------------------------------------
	 In fact β≠0		Type II: accept false		No error
					Power of test.
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\test-zdistV2.emf]	--------------------------------------------------------------------------------------------
If the errors are normal and βk=0, then 

	

Example of t-tests in regression - #11
. regress wages male age edyears  

      Source |       SS           df       MS      Number of obs   =     3,997
-------------+----------------------------------   F(3, 3993)      =    590.67
       Model |  75828.1741         3   25276.058   Prob > F        =    0.0000
    Residual |  170869.757     3,993  42.7923258   R-squared       =    0.3074
-------------+----------------------------------   Adj R-squared   =    0.3069
       Total |  246697.931     3,996   61.736219   Root MSE        =    6.5416

------------------------------------------------------------------------------
       wages |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        male |    3.47367   .2070092    16.78   0.000     3.067817    3.879524
         age |   .2612932    .008664    30.16   0.000      .244307    .2782794
     edyears |   .9296491   .0342567    27.14   0.000     .8624868    .9968115
       _cons |  -8.124231   .5989773   -13.56   0.000    -9.298561   -6.949902
------------------------------------------------------------------------------

Men have significantly higher wages than women (t=16.78, p<0.01 for a two-tailed test).
Each additional year of age increases expected wages by nearly a dollar, holding other variables constant. (p<.01 for a 2-tailed test).

[bookmark: _Toc489277065][bookmark: _Toc508803655][bookmark: _Toc510954424]Overview of continuous LHS
1. LRM is the foundation for CDA models
Be careful about generalizing from LRM to other models!
1. Variables enter the model as xβ, called the index function.
xβ allows flexible specifications through interactions and transformations.
Complictions on the RHS make the LRM nonlinear
1. Nonlinearity makes interpretation more complicated
Regression parameters no longer provide direct insights into effects.
They are most useful for making predictions
	


Categorical Data Analysis		Linear Regression | 7
[bookmark: _Toc489277066][bookmark: _Toc508809230][bookmark: _Toc510954425]β1 Binary outcomes
[bookmark: _Toc489277067][bookmark: _Toc508809231][bookmark: _Toc510954426]Readings and examples
Long & Freese: Chapters 5 and 6
See references in these chapter
mdo18-brm-*.do	
[bookmark: _Toc489277068][bookmark: _Toc508809232][bookmark: _Toc510954427]Objectives
1. Derive the binary regression model (BRM)
1. Explain interpretation using predictions.
Interpreting predictions not parameters in nonlinear models
Applications of predictions and marginal effects 
1. 

[bookmark: _Toc508809233][bookmark: _Toc510954428]Deriving the BRM
1. Binary logit and probit can be derived four ways.
A nonlinear probability model
A random utility model for chosing the optimal outcome
Generalized linear model linking predictors and outcome
Regresson on latent variable (LV) the generates observed outcomes
1. I focus on the LV approach
It builds on LRM
It highlights the scalar identication of parameters
It generalizes easily to other models


[bookmark: _Toc489277071][bookmark: _Toc508809234][bookmark: _Toc510954429]BRM as a latent variable model
1. The unobserved propensity y* generates the observed y:
[image: D:\My Box Files\CDA13\Work\brm_measurement_model-single.emf]
where not all women in LF have the same propensity to work 
1. A structural model regresses y* on the x’s


    or    
1. The probability of observed y depends on y*: 


1. Graphically,….
	

The structural model y* = α + βx + ε with Pr(y=1|x) shaded
[image: D:\Dropbox\Active\CDA iu 2017\Work\brmlrm-3xsV4-brm-prob.emf]

Tool: PDF and CDF of probability distribution
1. y:		 -4 -3 -2 -1 0 1 2 3 4
PDF:	 Pr(y=-4), Pr(y=-3), Pr(y=-2), Pr(y=-1), Pr(y=0), Pr(y=1), Pr(y=2), Pr(y=3)
CDF:	 Pr(y≤-4), Pr(y≤-3), Pr(y≤-2), Pr(y≤-1), Pr(y≤0), Pr(y≤1), Pr(y≤2), Pr(y≤3)      

Pr(y≤0) 	= 
Pr(y=-4) 
+	Pr(y=-3)
+	Pr(y=-2)
+	Pr(y=-1)
+	Pr(y=0)



[bookmark: _Toc489277072][bookmark: _Toc508809235]Errors in the latent variable model
The error is assumed to be normal or logistic.
Normal errors
1. Normal PDF: standard deviation σ

	
1. Standardized normal PDF: standard deviation σ=1 simplifies distribution

	
1. Standardized normal CDF

	


Logistic errors
1. Standardized logistic PDF: σ=1 makes distribution more complex

	
1. Standard logistic PDF: σ=π/√3=1.81... is simpler.

	
1. Standard logistic CDF: σ=π/√3=1.81...

	


PDF and CDF for normal and logit curves
[image: D:\My Box Files\CDA13\Work\figures-new\dist_logistic_normal_pdf.emf][image: D:\My Box Files\CDA13\Work\figures-new\dist_logistic_normal_cdf.emf]


Computing Pr(y=1|x) from y*
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-1xV3-probeq.emf]

This is a CDF of the error distribution
See Long(1997) or Long and Freese (2014) for details.
1. For probit with standardized normal errors

	
1. For logit with standard logistic errors

	
1. Using π() as shorthand for Pr(y=1|)




y* and Pr(y=1|x) for a single regressor
1. The structural equation is:


1. The probability equation is:

	
1. The link between y* and Pr(y=1) leads to an S-shaped curve for Pr(y=1|x)

Next page...


[image: D:\Dropbox\Active\CDA iu 2017\Work\brm-manyxsV4-ystar.emf]
[image: D:\Dropbox\Active\CDA iu 2017\Work\brm-manyxsV4-prob.emf]

Does the empirical relationship need to be S-shaped?
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-probyV3-00to10.emf]

[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-probyV3-00to25.emf][image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-probyV3-25to75.emf]
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-probyV3-00to10-negative.emf][image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-probyV3-00to25-negative.emf]

[bookmark: _Toc489277073][bookmark: _Toc508809236]On the support of the data
Where is your data? Where do you want to explore
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Work\cdalec15-brm-tenure-rug.emf]

[bookmark: _Toc489277075][bookmark: _Toc508809237]Scalar identification of β
1. The true structural model regresses y* on x:
y* = α + βx + ε
1. Since y* and ε are unobserved, we cannot estimate their means or variances.
1. Suppose someone doubled the unobserved y*?
2y* = 2α + 2βx + 2ε
1. Changing notation, 
y* = α + βx + ε
1. The true β and the imposter β are empirically indistinguishable
We can't interpret the estimated βs since we don’t know the metric of y*
1. Stretching a graph illustrates this fundamental point:
See mco18-scalar identifcation demonstration 2018-04-03.docx


[bookmark: _Toc510954430]Scalar identification in the BRM
1. Identification are critical for understanding the BRM
1. The regression coefficients are not identified; the probabilities are
Arbitrary but necessary identifying assumptions
Assumption 1: Mean of the errors (as with LRM)

	
Assumption 2: Value of threshold

	
Assumption 3: Variance of the errors

			for probit

		for logit


Algebraic illustration of identification assumption 3
1. Consider the structural model for probit:

	
1. Multiply both sides by δ:

	
We can’t measure y* or ϵ and do not know β, so the change is unobservable.
1. For convenience, define:

	
1. Then:

	
1. And:

	


If  , then  as 


Graphical illustration of identification assumption 3
1. The β's cannot be interpreted directly since their magnitude reflects:
a. The relationship between the x's and y*.
b. Arbitrary identifying assumptions.
1. Pr(y=1|x) is unaffected by the identifying assumption about Var(ε |x).
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-scalingV1-sd10sdprobit.emf][image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\new sg2\brm-scalingV1-sd20sd.emf]
1. See mco18-scalar identification demonstration 2018-04-03.docx 

Comparing logit and probit with Mroz data - #2
Comparing regression coefficients and z-tests
logit  lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
probit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

          | blm             | bpm             | ratio            
          |       b       z |       b       z |      b       z 
----------+-----------------+-----------------+----------------
lfp       |                 |                 |                
       k5 |  -1.392  -7.182 |  -0.840  -7.480 |  1.657   0.960 
     k618 |  -0.066  -0.916 |  -0.041  -0.975 |  1.593   0.939 
     1.wc |   0.798   3.367 |   0.482   3.481 |  1.655   0.967 
     1.hc |   0.136   0.659 |   0.074   0.596 |  1.841   1.106 
      lwg |   0.610   3.677 |   0.371   3.894 |  1.644   0.944 
      inc |  -0.035  -3.989 |  -0.021  -4.136 |  1.665   0.965 


[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-prlogitVprprobit.emf]Comparing predicted probabilities: r=.9998
  . estimates restore blm
  . predict prblm
  . label var prblm ///
  "Logit: Pr(LFP|X)"
  . estimates restore bpm
  . predict prbpm
  . label var prbpm ///
"Probit: Pr(LFP|X)"


Review of scalar identification in logit and probit
1. The magnitude of regression coefficients depends on the scale of the outcome
1. Since y* is latent, we do not know its scale or variance
1. Therefore, the slopes are not identified
1. Estimated β's cannot be directly interpreted since they reflect
The relationship between the x's and y*
Arbitrary identifying assumption for Var(ε|x)
1. Scalar identification does not affect Pr(y=1|x)
Probabilities can be interpreted without concern about identification
1. Scalar identification issue has profound implications for: 
Group comparisons
Nested models
Mediation effects

[bookmark: _Toc489277076][bookmark: _Toc508809238][bookmark: _Toc510954431][bookmark: _Toc489277077]Alternative derivations of the BRM
Nonlinear probability model (see Theil)
1. Transform Pr(y=1|x) to the odds which range from 0 to ∞

	
1. Transform the odds to the logit or log odds which ranges from -∞ to ∞

	
1. Take the exponential of each side and solve for Pr(y=1|x)

	
Or in terms of odds:




Random Utility Model (RUM)
1. Two choices where
	Choice 0 provides utility u0i
	Choice 1 provides utility u1i
1. The utility received from a choice is modeled as
	u0i = xiβ0 + ε0i
	u1i = xiβ1 + ε1i
1. I chooses 0 if u0i > u1i with Pr(u0i > u1i|x)=Pr(0|x)
1. If ε is normal, this is probit; if ε is extreme value type 2, logit 


Generalized linear model (GLM)
1. The observed y has a binomial distribution with mean 
E(y) = μ 
1. The linear predictor is 
η = xβ 
1. The link function:
logit:			ln[μ /(1- μ)] = η = xβ
probit:	Φ-1(μ) = η = xβ


[bookmark: _Toc508809239][bookmark: _Toc510954432]ML estimation
1. Since we can’t estimate residuals, we can’t use methods like OLS.
1. Maximum likelihood estimation choses the values of the parameters that makes the observed data more likely than any other values of the parameters
Pick paramters that make what you see most likely
1. Probability of what was observed for each observation 

	
1. If observations are independent, Pr(HH) = Pr(H)*Pr(H). Thus,

	


The estimates  maximize 


Comments on MLE
1. See lecture Estimation, Testing, and Fit for more information
1. ML estimates are asymptotically consistent, normal, and efficient
ML estimate are not necessarily bad in small samples, but small sample behavior is largely unknown
1. Numerical methods search for the maximum using the slope and change in slope of the likelihood equation 
Numerical methods for ML estimation work very well "when your model is appropriate for your data" (Joreskog)
1. Cramer (1986:10) gives excellent advice
Check the data, check their transfer into the computer, check the actual computations (preferably by repeating at least a sample by a rival program), and always remain suspicious of the results, regardless of the appeal.

[bookmark: _Toc489277078][bookmark: _Toc508809240][bookmark: _Toc510954433]Parameters, probability curves, and marginal effects
1. Consider the BRM: 

	
1. Discrete change DC(x) is the change in Pr as x changes from 1 to 2:
[image: D:\Dropbox\CDA_research\Work\Sage2\brm-me-dcV14-dc.emf]
1. The size of DC9x) depends on α and β.

Changing the slope β 
The larger the slope, the smaller the Δx for a given ΔPr(y).
[image: D:\Dropbox\CDA_research\Work\Sage2\brm-parametersV3-beta.emf]

[image: D:\Dropbox\CDA_research\Work\Sage2\brm-parameters-marginalsV3-beta.emf]Changing β changes the size of DC(x)







                          β=.8

                              β=3.2


Changing the intercept α 
[image: D:\Dropbox\CDA_research\Work\Sage2\brm-parametersV3-alpha.emf]Smaller α shifts the curve right.






                                
                                 α=8                                                          α=-8


[image: D:\Dropbox\CDA_research\Work\Sage2\brm-parameters-marginalsV3-alpha.emf]Changing α changes the size of DC(x)

                                                                                 α=-3                α=-5





How does the value of x2 change DC(x1)?
1. The model: 


1. If x2=0, 

	
1. If x2=5 (curve with circles on next page):

	
1. DC(x1) depends on values of other variable which shift the probability curve.
1. Graphically...

[image: D:\Dropbox\MATLAB\brm3d_x1x2_1gridV4_pointsx205.emf]How x2 changes DC(x1)








                                x2=5

                                                         x2=0



[bookmark: _Toc489277079][bookmark: _Toc508809241][bookmark: _Toc510954434]Interpretation using predictions
1. Probabilities are the fundamental statistic for interpretation


1. Since model is nonlinear, 
No single method of interpretation fully describes the relationship between a variable and the outcome.
1. The critical decision is deciding at which values of x to examine the predictions.
This is substantive decision
1. Search for an elegant method that reflects substantive complexities.
Try many to find the right one


Value of regressors for computing Pr(y=1|x)
1. In-sample predictions use observed values from the sample
1. Out of sample predictions use any values of the x’s
Key concepts
On the support are values where real data might be found
Counterfactual experiments imagine a variable changes holding others constant
Average could be a counterfactual
Who is .53 female?


Ways to use predictions for interpretation
1. Predictions at observed values
1. Marginal effects
Changes in predictions
1. Ideal types or profiles
Predictions at values of substantive interest
1. Tables
Predictions at multiple levels of several regressors
1. Graphs
Predictions at many levels of regressors
1. Odds ratios
A ratios of ratios of probabilities
1. 

[bookmark: _Toc489277080][bookmark: _Toc508809242][bookmark: _Toc510954435]In-sample predictions
1. In-sample predictions use observed xi’s 

	
1. Examining these predictions for patterns and suspicious observations
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-logitmodel-phat.emf]

[bookmark: _Toc510954436]Predictions for health outcomes (details later)
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Work\cdalec15-brmnonlin-hrsV2-dotplots.emf]

Code: in sample predictions and plots
Make predictions
estimates restore logitmodel
predict prlogit
label var prlogit "Logit: predicted probability"
Compute mean prediction to add to graph
qui sum prlogit // compute mean to include in graph
local mn = string(r(mean),"%5.3f") // store formatted string
Dotplot/histogram
dotplot prlogit, ///
    ylab(0(.2)1, nogrid) ylin(0 1, lcol(blue)) mcol(gs10) ///
    title(Model: logit lfp k5 … inc, pos(11)) ///
    subtitle("Observed proportion of 1's: `mn'", pos(11))


[bookmark: _Toc489277081][bookmark: _Toc508809243][bookmark: _Toc510954437]Marginal effects: changes in probabilities
The change in Pr(y|x) for a change of δ in xk, holding other regressors at specific values.
Decisions when using MEs
1. How much change?
An infinitely small change leads to the marginal change (MC).
A finite change leads to a discrete change (DC).
1. Where is the change computed? 
The value of the ME depends on where it is evaluated
1. Since the value depends on where you compute the ME, 
how to you summarize the effect of a variable?



Marginal change and discrete change
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\sg2 brm me\brm-me-dcV13-dcVSmc.emf]

Marginal change versus discrete change
I focus on DC but everything can be done with MC.
Marginal change
1. MC is the instantaneous rate of change
The speedometer reading
1. If probability curve is approximately linear, the MC tells you how much the probability would change for a unit change in xk
If your speed is constant, the speedometer tells you how far you will go in an hour
Discrete change
1. DC is the change that occurs over a fixed distance.
1. I find the DC to be substantively clearer.
1. Unless your field uses MC, DC is more intuitive.


Discrete change DC(x 1→2)
[image: D:\Dropbox\CDA_research\Work\Sage2\brm-me-dcV14-dc.emf]
Here's how the DC is computed...
1. Compute probabilities at start and end values of xk

	:	Starting probability given x* & start value xk.

	: 	Ending probability after changing only xk.
1. Discrete change

	
1. Interpretation
Changing xk from start to end  changes the probability by DC(xk), holding other variables at the specific values.
1. Example using means:


Attending college increases the probability of women being in the labor force by .19, holding other variables at their means.

What affects the size of the DC?
1. The regression coefficients as illustrated earlier
1. Start value of xk
The curve changes more rapidly at some places
1. The amount of change in xk
Bigger changes have bigger effects (assuming no polynomials)
1. Value of other regressors and their regression coefficients
Effectively, these change the intercept which changes the effect


Effect of start value on DC(x+1) TODO update graph
[image: ]


Effect of other variables on DC(x+1) TODO update graph
[image: ]


Amount of change in xk
1. 0 to 1 for binary variables: male compared to female
1. Fixed change
Unit change: increase education by 1 year
Standard deviation change: increase age by a standard deviation
Minimum to maximum: lowest to highest income (or trimmed extremes)
Four years of education or $10,000 of income
1. Changes in linked variables: increase age and age-squared
1. Changes in several variables: white males compared to black females


[bookmark: _Toc489277082][bookmark: _Toc508809244][bookmark: _Toc510954438]Summarizing marginal effects
Since the ME depends on the levels of all variables in the model, how do you summarize the effect with a scalar value?.
[image: ]

Common summary measures
Marginal effects at representative values (MER)
Look at values that are substantively interesting
Or at multiple sets of values (Madalla)
Marginal effects at the mean (MEM)
Use the mean as a representative values
Is anyone average? Is the mean a good summary?
Average marginal effect (AME) 
Compute ME for each observation and then average
Which is the best one?
The one that answers your substantive question!
1. 

Discrete change at representative values (DCR)
Think of a specific set of values x* and compute DC(xk|x*)

	
Discrete change the mean (DCM)
Hold all variables held at theirs means

	
Average discrete change (ADC)
Compute the DC at each xi and take the average.


	  the   

Which measure of change? ADC, DCM, DCR
1. ADC and DCM can be similar, but are not asymptotically equivalent.
1. Traditionally, DCM prevailed since ADC requires N times more computation.
Newer software computes both measures.
1. A critique of DCM is that the mean might not correspond to anyone.
a. The DC at the mean of binary x roughly averages the DC for the two groups. 
b. DCR can use modal values of the binary variables, but this ignores everyone who is in a less well represented group.
c. DCR can be computed for both groups
1. Consider two examples illustrating what DCR and ADC can and cannot tell you


Positive ADC for nonwhites; zero ADC for whites
[image: D:\Dropbox\Active\Groups 2014\PrePosted\Didactic figures\groups-didactic-ameVmem\groups-didactic-AMEvMEMV11-diabetes-youngW.emf]

Zero ADC for nonwhites; positive ADC for whites
[image: D:\Dropbox\Active\CDA iu 2017\Write\groups-didactic-AMEvMEMV11-diabetes-youngN.emf]

Characteristics of the ADC
1. The ADC replaces one mean with another.
Computation at the mean is replaced by the mean of.
Means are only one characteristic of a distribution.
1. The ADC might not be close to the effect for anyone in the sample.
Suppose effects are small for men and large for women. The ADC does not indicate this difference.
If you are planning an intervention, are you interested in the average effect or the average for those you want to target (e.g., high risk youth)?
Later we look at the distribution of effects for all observations
The ADC reflects the regression surface and the distribution of values of x’s in the sample


Characteristics of the DCR
1. The representative values have to be substantively useful and meaningful.
1. It reflects the regression surface at a specific location that does not depend on the distribution of observations 
What do you want to know determines the best measure
1. The best measure is the one that addresses the goals of your research
1. What do you want to know?


Testing marginal effects
1. The delta methods is most often used to computes standard errors.
1. You can test H0: ME=0 or compute a confidence interval.
Is the effect of having another child significant?
1. More test complex hypotheses can be tested if the effects are computed simultaneously
Is effect of age the same for men and women?
Confidence intervals
1. Confidence intervals describe the distribution of estimators over repeated samples
The 95% CI indicates that we expect our estimate to fall within the CI 95 percent of the time in repeated sampling.
If the CI overlaps 0, you cannot reject that hypothesis that ME=0
You should not use overlapping CIs to conclude that effects are NOT significantly different
1. Details in Testing Marginal Effects

Overview of mchange
. mchange, atmeans 

logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(lfp), predict(pr)

                |    Change    p-value 
----------------+----------------------
k5              |                      
             +1 |    -0.324      0.000 
            +SD |    -0.180      0.000 
:::

Predictions at base value

             | not in LF      in LF 
-------------+----------------------
  Pr(y|base) |     0.422      0.578 

Base values of regressors

           |                               2.         3.         1.         1.
           |        k5       k618     agecat     agecat         wc         hc 
-----------+------------------------------------------------------------------
        at |      .238       1.35       .385       .219       .282       .392 
∷


Code: options - help mchange for more information
Note that output in slides is sometimes edited
amount(one sd): specify amount of change 
atmeans: hold regressors at their means
stats(est pvalue ll ul): show estimates, p-value, and CI
brief: reduce output
dec(#): number of decimal digits



[bookmark: _Toc489277083][bookmark: _Toc508809245][bookmark: _Toc510954439]Examples of marginal effects - #4
MEM: marginal effects at the mean
. mchange, atmeans amount(one sd) stats(est p ll ul) dec(2)

logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(lfp), predict(pr)
 
                |    Change    p-value         LL         UL 
----------------+--------------------------------------------
k5              |                                            
             +1 |     -0.32       0.00      -0.40      -0.25 
            +SD |     -0.18       0.00      -0.23      -0.13 
k618            |                                            
             +1 |     -0.02       0.34      -0.05       0.02 
            +SD |     -0.02       0.34      -0.06       0.02 
agecat          |                                            
 40-49 vs 30-39 |     -0.15       0.00      -0.24      -0.05 
   50+ vs 30-39 |     -0.31       0.00      -0.42      -0.19 
   50+ vs 40-49 |     -0.16       0.00      -0.26      -0.06 
wc              |                                            
  college vs no |      0.19       0.00       0.09       0.28 
hc              |                                            
  college vs no |      0.03       0.51      -0.06       0.13 


lwg             |                                            
             +1 |      0.14       0.00       0.08       0.20 
            +SD |      0.08       0.00       0.05       0.12 
inc             |                                            
             +1 |     -0.01       0.00      -0.01      -0.00 
            +SD |     -0.10       0.00      -0.15      -0.05 

Base values of regressors

           |                               2.         3.         1.         1.
           |        k5       k618     agecat     agecat         wc         hc 
-----------+------------------------------------------------------------------
        at |       .24        1.4        .39        .22        .28        .39 

           |       lwg        inc 
-----------+----------------------
        at |       1.1         20 

1: Estimates with margins option atmeans.


A unit change: +1


                |    Change    p-value         LL         UL 
----------------+--------------------------------------------
k5              |                                            
             +1 |     -0.32       0.00      -0.40      -0.25 
For a woman who is average on all characteristics, an additional young child decreases the probability of being in the labor force by .32 (p<.01).
Plugging in the specific values, the peculiarity of the mean is clear:
For a woman who is average on all characteristics, increasing from .24 to 1.24 young child decreases the probability of being in the labor force by .32 (p<.01).


A standard deviation change: +SD

	
                |    Change    p-value         LL         UL 
----------------+--------------------------------------------
             +1 |     -0.01       0.00      -0.01      -0.00 
            +SD |     -0.10       0.00      -0.15      -0.05 
A standard deviation increases in family income, about $20,000, decreases the probability of being in the labor force by .10 (p<.01, two-tailed test), holding other regressors at their means.


A change from 0 to 1
Since wife’s college was entered i.wc , the change is automatically from 0 to 1.

                |    Change    p-value         LL         UL 
----------------+--------------------------------------------
wc              |                                            
  college vs no |      0.19       0.00       0.09       0.28 
hc              |                                            
  college vs no |      0.03       0.51      -0.06       0.13 
If an average woman attends college, her probability of being in the labor force is .19 greater than that of a woman who does not attend college (p<.01). The effect of the husband attending college is small and not significant.


Change from the minimum to the maximum with trimming
1. This is a useful indication of the total possible effect of a variable: 

	
. mchange lwg inc, atmeans amount(range) dec(2) brief

             |    Change    p-value 
-------------+----------------------
lwg          |                      
       Range |      0.67       0.00 
inc          |                      
       Range |     -0.65       0.00 

Option trim()removes extreme values:
. mchange lwg inc, atmeans amount(range) trim(5) dec(2) brief

             |    Change    p-value 
-------------+----------------------
lwg          |                      
   5% to 95% |      0.27       0.00 
inc          |                      
   5% to 95% |     -0.29       0.00 


AME: average marginal effects
1. Compute the DC for every observation at its observed values:

		
1. Average the individual DCs:

	
Consider the ADC(wc)






. mchange k5 wc, amount(one) dec(2) // <= no atmeans

logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(lfp), predict(pr)

               |    Change    p-value 
---------------+----------------------
k5             |                      
            +1 |     -0.28       0.00 
wc             |                      
 college vs no |      0.16       0.00 

Average predictions

             | not in LF      in LF 
-------------+----------------------
  Pr(y|base) |      0.43       0.57 

No base values since we average over all cases.
1. 

Comparing AME and MEM (excluding p-values)
1. AME for k5
On average having one more young child decreases the probability of being in the labor force by .28.
1. MEM for k5
For someone who is average on all characteristics, having an additional young child is expected to decrease the probability of LFP by .32.
1. AME for wc
On average women who attend college have a probability of being in the labor force that is .16 greater than those who do not attend college.
The average impact of a women attending college is to increase her probability of LFP by.16.
1. MEM for wc
If an average woman attends college, her probability of being in the labor force is .19 greater than that of an average woman who does not attend college.

MEM vs AME
1. MEM and AME answer different questions.
1. The AME is probably the best replacement for regression coefficients in the LRM.
When comparing groups this is NOT necessarily the case
1. If MEM and AME differ, figure out what it tells you about the process.

              | AME      | MEM      |  
              |   Change |   Change | AME-MEM
--------------+----------+----------+----------
k5        +SD |   -0.153 |   -0.180 |    0.027 
k618      +SD |   -0.018 |   -0.021 |    0.003 
--------------+----------+----------+----------
wc college vs |    0.162 |    0.186 |   -0.024 
--------------+----------+----------+----------
inc       +SD |   -0.086 |   -0.101 |    0.016 
TODO: 2015-06-29 test if AME=MEM. See Tom V's example of this


[bookmark: _Toc510954440]Distribution of effects
On average if a woman attends college her probability of labor force participation increase by .162.
1. Averages do not indicate variation in the sample.
The effect of college might be different for different people
This suggests looking at the distribution DC’s for each observation:

	
Histogram of effects for wc #1
Using margins, generate() create variable DCwc1 with DC(wc)


margins, dydx(wc) generate(DCwc)

Average marginal effects                        Number of obs     =        753
Model VCE    : OIM

Expression   : Pr(lfp), predict()
dy/dx w.r.t. : 1.wc

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          wc |
    college  |   .1624037   .0440211     3.69   0.000      .076124    .2486834
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

. codebook DCwc*, compact

Variable   Unique      Mean       Min       Max  Label
-------------------------------------------------------------------------
DCwc1           1         0         0         0  margins generate variabl...
DCwc2         753  .1624037  .0074083  .1968259  margins generate variabl...
-------------------------------------------------------------------------
The variable dcwc2 had the effects for each case.
Plotting the results…


Distribution of DC for wife attending college  for wc
[image: D:\Dropbox\Active\ICPSR cda 2018\Work\cdaicpsrlec18-me-distribution-2018-03-28-effects-wc.emf]

Code for plotting the distribution of effects
margins, dydx(wc) // AME
local adc = el(r(b),1,2) // add ADC(wc) to local

margins, dydx(wc) atmeans // MEM
local dcm = el(r(b),1,2) // add DCM(wc) to local

histogram DCwc2, xlab(0(.05).20) ylab(0(10)30, grid) ///
    percent bin(25) color(gs10) fcolor(gs12) ///
    /// add labels for ADC and DCM
    text(-1.5 `adc' "ADC", color(red*.8)  placement(center)) ///
    text(-1.5 `dcm' "DCM", color(blue*.8) placement(center)) ///
    text( 0   `adc' "|"  , color(red*.8)  placement(center)) ///
    text( 0   `dcm' "|"  , color(blue*.8) placement(center)) 



Effects of BMI on diabetes - #2
1. The example uses a model predicting diabetes from a later chapter.
BMI affects diabetes
. sum bmi
 
    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
         bmi |     16,221    27.80409    5.796451   10.57755    82.6728
The ADC(bmi+5) is:
. mchange bmi, amount(sd) delta(5) decimal(8)

svy logit: Changes in Pr(y) | Number of obs = 16221

Expression: Pr(diabetes), predict(pr)

             |    Change    p-value 
-------------+----------------------
bmi          |                      
      +delta | 0.08005615   0.00e+00 

1: Delta equals 5.


Distribution of DC(bmi+sd) 
[image: D:\Dropbox\Active\ICPSR cda 2018\Work\cdaicpsrlec18-me-distribution-2018-03-28-effects-bmi.emf]


Distribution of DC(bmi+sd) by race
To show how affects vary by race
[image: D:\Dropbox\Active\ICPSR cda 2018\Work\cdaicpsrlec18-me-distribution-2018-03-28-effects-bmi-race.emf]

Computing DC(bmi+sd)
1. The effects for each observation cannot be created with dydx() which computes MCs or DCs for i.variables
I crate predicted probabilities at the observed BMI and observed + 5:
. margins, at(bmi=gen(bmi)) at( bmi=gen(bmi+5)) gen(PRbmi) 

Predictive margins                              Number of obs     =     16,221
                                                Subpop. no. obs   =     15,677
Model VCE    : Linearized
Expression   : Pr(diabetes), predict()

1._at        : bmi             = bmi
2._at        : bmi             = bmi+5

             |            Delta-method
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .1793669   .0035909    49.95   0.000     .1721734    .1865604
          2  |    .259423     .00647    40.10   0.000     .2464621    .2723839

. codebook PRbmi*, compact

Variable    Unique      Mean       Min       Max  Label
---------------------------------------------------------------------------
PRbmi1       14798  .1984852   .013618   .980003  margins generate varia...
PRbmi2       14798  .2837495  .0227459  .9880413  margins generate varia...
---------------------------------------------------------------------------
Next, create the ADC for each observation:
. gen double DCbmi = PRbmi2 - PRbmi1
. lab var DCbmi "DC for increase of 5 in bmi"
To test if my computations are right, take the average which matches the results from mchange
. svy: mean DCbmi // verify this equals adc from mchange
(running mean on estimation sample)

Survey: Mean estimation

Number of strata =      56       Number of obs   =      16,248
Number of PSUs   =     112       Population size =  70,963,962
                                 Design df       =          56

             |       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
       DCbmi |   .0800561   .0004647      .0791253     .080987
--------------------------------------------------------------

. gen double DCbmi = PRbmi2 - PRbmi1
. lab var DCbmi "DC for increase of 5 in bmi"
. svy: mean DCbmi // ADC to verify

             |             Linearized
             |       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
       DCbmi |   .0800561   .0004647      .0791253     .080987
--------------------------------------------------------------

Code for plotting dual histograms
twoway ///
  (hist DCbmi if race == 1, percent fcol(none) bcol(red*.8)) ///
  (hist DCbmi if race == 2, percent fcol(none) bcol(blue*.8)), ///
  xlab(0(.02).14) xtitle("Discrete change for BMI + 5") ///
  legend(symxsize(7) order(1 "White" 2 "Black") pos(12) ring(0)) ///
  scale(1.1) plotregion(margin(zero) lcol(white))


[bookmark: _Toc508809247][bookmark: _Toc510954441]Summary of marginal effects
1. A summary measure of the effect of a variable is often useful.
1. In LRM, the regression coefficients are used as long as nonlinearities (e.g., powers) are not included.
The βx is DC(x) in this case
1. In BRM, regression coefficients are rarely the effect of interest.
OR's are used, but are limited as discussed below.
1. Change in the probability is the best way to summarize effects.
ADC and DCM are often close, but ADC is preferred as a single measure in most cases.
Multiple DCR's might be the best approach.
1. But:
Summary measures are only summaries!
1. Remember, the model is nonlinear....
1. 

[bookmark: _Toc489277085][bookmark: _Toc508809248][bookmark: _Toc510954442]Predictions for ideal types or profiles - #6
1. What types of people are you interested in? Are there interesting clusters of characteristics that occur together? 
1. Defining profiles makes you to think about where to look in the data
Comparing predictions across profiles helps you understand your data and the effects of variables
1. We will compute these types and later test if they have the same Pr(LFP)

                              |    Pr(y)        ll        ul
 -----------------------------+-----------------------------
               Average person |    0.578     0.539     0.616
    Younger lower educ w kids |    0.159     0.068     0.251
       Young more educ w kids |    0.394     0.234     0.554
Middle age higher educ w kids |    0.754     0.681     0.828
          Older w higher educ |    0.631     0.528     0.734


An "average person"
1. mtable options
atmeans to hold variables at their means.
ci to include CI for predictions instead of p-value
clear to start a new table
rowname() to label the results
Make the predictions
. mtable, rowname(Average person) atmeans ci clear

Expression: Pr(lfp), predict()

                 |    Pr(y)        ll        ul
 ----------------+-----------------------------
  Average person |    0.578     0.539     0.616

Specified values of covariates
                                          2.        3.        1.        1.
           |       k5      k618      agecat    agecat        wc        hc 
 ----------+--------------------------------------------------------------
   Current |     .238      1.35        .385      .219      .282      .392 

           |                    
           |      lwg       inc
 ----------+-------------------
   Current |      1.1      20.1

Confidence intervals
1. It usually is not interesting to test if a probability is 0.
1. Instead, confidence intervals are use to demonstrate the precision of the estimate. 
1. For example, 
The predicted probability of labor force participation for an average person is .58 with a 95% confidence interval from .54 to .62.
The estimated probability of labor force participation is .58 (95%CI: .54, .62).
Our results suggest that the predicted probability of labor force participation could be as small as .54 or as large as .62 with 95 percent confidence.


Young, lower class, less educated mom
1. We specify all values with at():
* note: in 1975 $2.10 is min wage; .75 for lwg
 
. mtable, rowname(Younger lower educ w kids) ///
>     at(agecat=1 k5=2 k618=0 inc=10 lwg=.75 hc=0 wc=0) below ci twidth(28)

Expression: Pr(lfp), predict()

                              |    Pr(y)        ll        ul
 -----------------------------+-----------------------------
               Average person |    0.578     0.539     0.616
    Younger lower educ w kids |    0.159     0.068     0.251

Specified values of covariates

           |                              2.        3.        1.        1.
           |       k5      k618      agecat    agecat        wc        hc 
 ----------+--------------------------------------------------------------
     Set 1 |     .238      1.35        .385      .219      .282      .392 
   Current |        2         0           .         .         .         . 

           |                                                  
           |      lwg       inc    agecat        wc        hc
 ----------+-------------------------------------------------
     Set 1 |      1.1      20.1         .         .         .
   Current |      .75        10         1         0         0

Young, more educated moms
1. Profile is defined as:
agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
1. Where should I hold lwg and inc? 
Global means for the entire sample are too large.
Local means based on individuals who meet our profile are better.
1. Computing local means and saving them:
sum lwg if agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
    local mnlwg = r(mean)
sum inc if agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
    local mninc = r(mean)
Making the predictions
. mtable, at(agecat==1 k5==2 k618==0 wc==1 hc==1 inc=`mninc' lwg=`mnlwg') ///
>     rowname(Young more educ w kids) atmeans below ci twidth(28)


Middle aged, educated dad with kids
sum inc if agecat==2 & k5==0 & wc==1 & hc==1
    local mninc = r(mean)
sum lwg if agecat==2 & k5==0 & wc==1 & hc==1
    local mnlwg = r(mean)
sum k618 if agecat==2 & k5==0 & wc==1 & hc==1
    local mnlk618 = r(mean)

mtable, at(agecat==2 k5==0 k618=`mnlk618' ///
           wc==1 hc==1 inc=`mninc' lwg=`mnlwg') ///
    rowname(Midage higher educ w kids) atmeans ci below twidth(28)
More educated older couples
sum inc if agecat==3 & wc==1 & hc==1 & k618==0 & k5==0
    local mninc = r(mean)
sum lwg if agecat==3 & wc==1 & hc==1 & k618==0 & k5==0
    local mnlwg = r(mean)

mtable , at(agecat==3 k5==0 k618==0 wc==1 hc==1 inc=`mninc' lwg=`mnlwg') ///
    rowname(Older w higher educ) atmeans ci below  twidth(28)


Summary of ideal types
Expression: Pr(lfp), predict()

                              |    Pr(y)        ll        ul
 -----------------------------+-----------------------------
               Average person |    0.578     0.539     0.616
    Younger lower educ w kids |    0.159     0.068     0.251
       Young more educ w kids |    0.394     0.234     0.554
Middle age higher educ w kids |    0.754     0.681     0.828
          Older w higher educ |    0.631     0.528     0.734

Specified values of covariates
∷
1. Which variables seem most important?
1. In our commands for ideal types, we could add the option statistics(ci) to add confidence intervals to the table.
1. Later we consider testing if predictions are equal, such as:
Older women with higher education have significantly lower chances of being in the labor force than more educated middle aged with children.
1. 

[bookmark: _Toc489277087][bookmark: _Toc508809249][bookmark: _Toc510954443]Tables of predicted probabilities - #7
1. The ideal types suggest young children and wife's education are important
1. Predictions across categories of children and education summarize the effects
	Number      Did Not
	of Young    Attend    Attended
	Children    College   College    Difference
	-------------------------------------------
	   0         .60       .77         .17
	   1         .28       .46         .18
	   2         .09       .17         .09	< due to rounding
	   3         .02       .05         .03
	-------------------------------------------
1. Where do these numbers come from?

Curves behind the table of probabilities
1. Let ϴ be the linear combination of all variables except k5 and wc.
1. The model is


1. If wc=0


1. If wc=1


1. These are parallel curves as shown on the next page.

	# Young     Not      Attended
	Children    College   College    Difference
	   0         .60       .77         .17
	   1         .28       .46         .18
	   2         .09       .17         .09
	   3         .02       .05         .03
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-k5wcgraph.emf]

Quick table for predictions by levels of two variables
. mtable, atmeans at(wc=(0 1) k5=(0 1 2 3))

Expression: Pr(lfp), predict()

           |       k5        wc     Pr(y)
 ----------+-----------------------------
         1 |        0         0     0.604
         2 |        0         1     0.772
         3 |        1         0     0.275
         4 |        1         1     0.457
         5 |        2         0     0.086
         6 |        2         1     0.173
         7 |        3         0     0.023
         8 |        3         1     0.049

Specified values of covariates

           |                    2.        3.        1.                    
           |     k618      agecat    agecat        hc       lwg       inc
 ----------+-------------------------------------------------------------
   Current |     1.35        .385      .219      .392       1.1      20.1


[bookmark: _Toc489277088][bookmark: _Toc508809250]Local and global means - #7.3
1. We held other variables at the global means
Do college educated women without children have the same levels of income and wages and those without college and 3 young children?
1. Local means hold variables at levels local to other variables being examined held constant
For example, the mean age for those with 3 young children
1. Predictions with local means are computed with if and atmeans
266. Create a selection variable that defines the group of interest.
266. Use if with mtable to select these cases.
266. The, atmeans compute means within the if group.

Local means for tables using if
1. Select cases if k5==0 and use atmeans
. mtable if k5==0, atmeans estname(k5_0) at(wc=(0 1) k5=0) atvars(1.wc)

       1.          
      wc      k5 0
------------------
       0     0.583		<= prediction for k5==0 and wc==0
       1     0.757		<= prediction for k5==0 and wc==1

                              2.         3.         1.                      
       k5       k618     agecat     agecat         hc        lwg        inc 
----------------------------------------------------------------------------
    0.000      1.279      0.436      0.269      0.358      1.107     19.987 


Adding predictions for k5=1
. mtable if k5==1, atmeans estname(k5_1) at(wc=(0 1) k5=1) atvars(_none) ///
>     right
right places new results to the right of the current results
atvars(_none) means don’t add atvars to table
1. Adding predictions for k5=2 and k5=3.
. mtable if k5==2, atmeans estname(k5_2) at(wc=(0 1) k5=2) atvars(_none) ///
>     right
. mtable if k5==3, atmeans estname(k5_3) at(wc=(0 1) k5=3) atvars(_none) ///
>     right

       1.                                        
      wc      k5 0      k5 1      k5 2      k5 3
------------------------------------------------
       0     0.583     0.337     0.154     0.017
       1     0.757     0.530     0.288     0.037
Next, compute the DC(wc|k5=j)


DC(wc|k5=j) using local means
1. dydx(var) tells computes marginal effects for var.
If var is a i.var, it computes DC; else MC

mtable if k5==0, atmeans dydx(wc) stat(est p) clear long ///
    roweqnm(DCwc) coleqnm(k5_0)
mtable if k5==1, atmeans dydx(wc) stat(est p) right long coleqnm(k5_1)
mtable if k5==2, atmeans dydx(wc) stat(est p) right long coleqnm(k5_2)
mtable if k5==3, atmeans dydx(wc) stat(est p) right long coleqnm(k5_3) 
1. Results 
Expression: Pr(lfp), predict()

           | k5_0      k5_1      k5_2      k5_3    
           |  d Pr(y)   d Pr(y)   d Pr(y)   d Pr(y)
 ----------+---------------------------------------
 DCwc      |                                       
   d Pr(y) |    0.173     0.193     0.134     0.020
         p |    0.000     0.000     0.003     0.070

Specified values of covariates
∷
The differences decrease with number of children and are not significant with three young children.

Sensitivity review for global and local means
1. Did using local means change the conclusions?
Trends are similar.
Biggest differences are for one and two children.

             |      wc=0       wc=1     Change     pvalue 
-------------+--------------------------------------------
global       |                                            
        k5=0 |      0.60       0.77       0.17       0.00 
        k5=1 |      0.27       0.46       0.18       0.00 
        k5=2 |      0.09       0.17       0.09       0.01 
        k5=3 |      0.02       0.05       0.03       0.09 
-------------+--------------------------------------------
local        |                                            
        k5=0 |      0.58       0.76       0.17       0.00 
        k5=1 |      0.34       0.53       0.19       0.00 
        k5=2 |      0.15       0.29       0.13       0.00 
        k5=3 |      0.02       0.04       0.02       0.07
 
1. Substantively, I would draw the same conclusions
Which predictions would you use?
Table of predictions
1. Tables can be very effective to show results for a few categorical variables
1. While graphs can be used for continuous variables, tables often work better
They are more compact
They are easier to see the specific result
The mtable command is a wrapper for margins to make predictions easier to read.
In the sample do-file, add details to the mtable commands to see the output from margins! 
A few mtable tricks follow
See Long and Freese for detailed explanations

* Local means for tables using over()
1. The over(overvars) option loops through the overvars 
For each value of overvars it runs mtable or margins on observations that equal that value
1. The command 
mtable, over(k5) at(wc=(0 1)) atmeans 
Is equivalent to:
mtable if k5==0, at(wc=(0 1)) atmeans 
mtable if k5==1, at(wc=(0 1)) atmeans
mtable if k5==2, at(wc=(0 1)) atmeans
mtable if k5==3, at(wc=(0 1)) atmeans 
1. Using over() is quick but the output isn't pretty


. mtable, estname(k5_0) at(wc=(0 1)) atvars(1.wc k5) atmeans over(k5)

Expression: Pr(lfp), predict()

             |        1.                    
             |       wc        k5      k5_0
 ------------+-----------------------------
    0.k5#c.1 |        0         0     0.583
    1.k5#c.1 |        0         1     0.337
    2.k5#c.1 |        0         2     0.154
    3.k5#c.1 |        0         3     0.017
    0.k5#c.2 |        1         0     0.757
    1.k5#c.2 |        1         1     0.530
    2.k5#c.2 |        1         2     0.288
    3.k5#c.2 |        1         3     0.037

Specified values where .n indicates no values specified with at()

           |  No at()
 ----------+---------
   Current |       .n


* Creating a nicer table 
1. mtable stacks predictions from previous mtable results.
1. clear creates a new table dropping any prior results
1. right place estimates to the right.
1. atvars(_none) adds no new atvars to the table.
1. dydx(wc) requests a discrete change in wc.
. qui mtable, atmeans at(wc=(0) k5=(0 1 2 3)) atvars(k5) ///
>     clear estname(NoCol)
. qui mtable, atmeans at(wc=(1) k5=(0 1 2 3)) atvars(_none) ///
>     right estname(College)
. mtable, atmeans dydx(wc) at(k5=(0 1 2 3)) atvars(_none) ///
>     right estname(Diff) stats(est p)

           |       k5     NoCol   College      Diff         p
 ----------+-------------------------------------------------
         1 |        0     0.604     0.772     0.168     0.000
         2 |        1     0.275     0.457     0.182     0.001
         3 |        2     0.086     0.173     0.087     0.013
         4 |        3     0.023     0.049     0.027     0.085


[bookmark: _Toc489277089][bookmark: _Toc508809251][bookmark: _Toc510954444]Plotting predictions 
1. For continuous variables, graphs can be effective
Non-parametric plots such as lowess let’s you assess your functional form
Plots of predictions from your model can quickly summarize relationships
Multiple predictions can be included in one graph
Sometimes the graph shows you that you don’t need the graph
Examples of plots


Examples of graphs we will create
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lowess-inc.emf][image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lowess-inc-phat-ci-mgen.emf] [image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incXwc-mplt.emf] [image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incDCwc-mplt.emf]

Overview of plotting predictions
1. To get graphs to look the way you want is not fun
marginsplot is a great way to get quick plots
	You can customize it like any graph command
	It is difficult to combine results from multiple predictions
mgen creates variables with predictions to plot with graph
Creating graphs is irritating!
Use templates rather than starting from scratch
Use Stata’s menu system to find options


Tools for making graphs
1. Graphs have thousands of irritating options to make them look just right
1. Getting your graphs right is important
1. You also want them to be uniform
Locals for graph options
1. Create locals with options:
local ylab "0(.25)1., grid gmin gmax"
Then `ylab' means 0(.25)1., grid gmin gmax
All graph commands can use ylabel(`ylab’)
Graph formats so graph print properly
1. Use EMF, EPS or PDF formats so your graphs scale
Graph captions so you know where it came from
local graphname lfp-incXwc-mplt
marginsplot, … ///
    caption("`graphname' `tag'", size(*.5) pos(5) col(gs10)) scale(1.1) 

Lowess plots - #9
1. Is the relationship between income and LFP substantively reasonable?
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-inconly-mplt.emf]
A lowess plot is non-parametric and does not constrain the shape of the relationship between a regressor and the outcome 
1. A lowess is a first step in evaluating how a regressor is related to the outcome.


Intuition behind a lowess plot
1. Compute mean LFP within income intervals of 5:
. sum lfp if inc>=0 & inc<5

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
         lfp |        12    .6666667     .492366          0          1

∷

. sum lfp if inc>=35 & inc<40

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
         lfp |        18    .3888889    .5016313          0          1

∷



Plotting the means by income
[image: D:\Dropbox\Active\ICPSR cda 2018\Work\cda-didactic-brm-lowess-2018-03-08-lowess-inc-heuristic.emf]


The lowess command
1. A lowess plot is a sophisticated way to do this that uses “sliding” intervals.
1. Simple running  lowess lfp inc is often enough
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lowess-inc-quick.emf]
Options perfect the graph
sort inc
lowess lfp inc, jitter(3) generate(lowesslfp) bwidth(.5) ///
    msym(oh) lineopt(lcol(blue) lwid(*1.3)) ///
    xlab(0(20)100) ytitle(Smoothed mean LFP) ///
    ylab(0(.25)1., grid gmin gmax) yline(0 1, lcol(gs13)) ///
1. gen(lowesslfp) saves the predictions to a variable.
Graph on next page...

[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lowess-inc.emf] 
How would this compare to the predictions from logit?

Predictions from logit
1. To assess the logit model, compare lowess to logit predictions
1. I am satisfied that my logit is a reasonable in how income is related to LFP
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lowess-inc-phat-ci-mgen.emf]

Combining logit predictions with lowess
1. Fit the logit model
logit lfp inc
Or we could fit
	logit lfp k5 k618 i.agecat i.wc i.hc lwg inc
1. mgen computes predictions and saves predictions as variables:
1. Predict outcome as income increases from 0 to 100 by 5:
. mgen, at(inc=(0(5)100)) atmeans stub(PLT) predlabel(Logit prediction) 

Predictions from: margins, at(inc=(0(5)100)) atmeans predict(pr)

Variable   Obs Unique      Mean       Min       Max  Label
------------------------------------------------------------------------------
PLTpr1      21     21  .4223433  .2008354  .6669906  Logit prediction
PLTll1      21     21   .320794  .0336831  .6007513  95% lower limit
PLTul1      21     21  .5238926  .3679877  .7332299  95% upper limit
PLTinc      21     21        50         0       100  Family income excluding 
------------------------------------------------------------------------------

. label var PLTpr "Logit prediction"


Variables beginning with PLT are created by mgen:
. format %9.3g lfp inc PLTpr PLTll PLTul PLTinc
. list lfp inc PLTpr PLTll PLTul PLTinc in 1/25, clean nolabel

        Observed
        Variables           mgen variables            

       lfp     inc   PLTpr1   PLTll1   PLTul1   PLTinc  
  1.     1   -.029     .667     .601     .733        0  
  2.     1     1.2     .644     .588     .699        5  
  3.     0     1.5     .619     .573     .666       10  
  4.     1    2.13     .595     .556     .633       15  
  5.     1     2.2     .569     .534     .605       20  
∷
 15.     1       5     .319     .176     .462       70  
 16.     1    5.12     .297     .146     .448       75  
 17.     1    5.12     .276     .119     .433       80  
 18.     1    5.32     .255    .0938     .417       85  
 19.     0    5.33     .236    .0714     .401       90  
 20.     1    5.49     .218    .0514     .385       95  
 21.     0    5.55     .201    .0337     .368      100  
 22.     0       6        .        .        .        .  
 23.     0       6        .        .        .        .  
 24.     1    6.02        .        .        .        .  
 25.     1    6.25        .        .        .        .  


1. Combine the variables created by mgen and lowess
local linPRopt  "msym(i) lcol(green) lpat(solid)"   
local linLOWopt "msym(i) lcol(blue)  lpat(dash)" 

graph twoway ///
    (rarea PLTul PLTll PLTinc, color(black*.1)) /// shaded CI
    (connected PLTpr PLTinc, `linPRopt') /// line for prob
    (connected lowesslfp inc, `linLOWopt'), ///
    subtitle("Model including only income", position(11)) ///
    ytitle("Pr(In Labor Force)'") ylab(0(.25)1., grid gmin gmax) ///
    xtitle("Family income excluding wife's") legend(off) 


Plot income in full model using marginsplot
1. Consider the full model
logit lfp k5 k618 i.agecat i.wc i.hc lwg inc
1. Compute predictions holding other variables at their means:
. margins, at(inc=(0(5)100)) atmeans

Adjusted predictions                            Number of obs     =        753

Expression   : Pr(lfp), predict()

1._at        : k5              =    .2377158 (mean)
               k618            =    1.353254 (mean)
               1.agecat        =    .3957503 (mean)
               2.agecat        =    .3851262 (mean)
               3.agecat        =    .2191235 (mean)
               0.wc            =    .7184595 (mean)
               1.wc            =    .2815405 (mean)
               0.hc            =    .6082337 (mean)
               1.hc            =    .3917663 (mean)
               lwg             =    1.097115 (mean)
               inc             =           0
∷


21._at       : k5              =    .2377158 (mean)
               k618            =    1.353254 (mean)
               1.agecat        =    .3957503 (mean)
               2.agecat        =    .3851262 (mean)
               3.agecat        =    .2191235 (mean)
               0.wc            =    .7184595 (mean)
               1.wc            =    .2815405 (mean)
               0.hc            =    .6082337 (mean)
               1.hc            =    .3917663 (mean)
               lwg             =    1.097115 (mean)
               inc             =         100

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .7349035   .0361031    20.36   0.000     .6641427    .8056643
∷
         21  |   .0768617   .0472071     1.63   0.103    -.0156624    .1693858
------------------------------------------------------------------------------


All that is needed to plot predictions are the commands:
margins, at(inc=(0(5)100)) atmeans
marginsplot
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-inc-quick-mplt.emf]


Customizing marginsplot
local labYopt "labsiz(*1.1) glwid(*.7) glcol(black*.3) grid gmin gmax"
local labXopt "labsiz(*1.1) glwid(*.7) glcol(black*.3) nogrid"
local titleopt "ring(2) pos(11) size(*1)"
local lin1opt  "lcol(blue*1.) lpat(solid) msym(i)  msiz(*1.) mcol(blue*1.)" 

marginsplot, recastci(rarea) ciopts(color(black*.1)) ///
    ylab(0(.25)1, `labYopt') xlab(0(20)100, `labXopt') ///
    plot1opts(`lin1opt') plotopts(lwidth(*1)) /// 
    xtitle("Family Income Excluding Wife") ytitle("Pr(In Labor Force)") ///
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-inc-mplt.emf]    title("Other variables at their means" " ", `titleopt')



Plotting predictions for multiple variables
[image: D:\Dropbox\MATLAB\brm3d_x1x2_1gridV4_pointsx205.emf]


Predictions for income by wife’s college - #10.3
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incXwc-mplt.emf][image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incDCwc-mplt.emf]
The probability of a woman being in the labor force decreases as family grows. For incomes, women who attend college are significantly more likely to be in the labor force, although the difference decreases at higher incomes.


Plotting predictions at two levels of wc
1. Let x* be the fixed values for all variable except age and wc.

Compute 
margins, at(inc=(0(5)100) wc=(0 1)) atmeans
marginsplot is smart enough to know you want two curves. And quickly gives you enough information to know if you want to use the graph:
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incXwc-quick-mplt.emf]
I can add the noci option to suppress the CIs.

Perfecting the marginsplot
1. Or we make a presentation quality graph
marginsplot, recastci(rarea) ///
    ci1opts(color(black*.2)) ci2opts(color(black*.1)) ///
    plot1opts(`lin1opt') plot2opts(`lin2opt') ///
    plotopts(lwidth(*1.2))
    ylab(0(.25)1, `labYopt') xlab(0(20)100, `labXopt') ///
    xtitle("Family Income Excluding Wife") ///
    ytitle("Pr(In Labor Force)") ///
    title("Other variables at their means" " ", `titleopt') ///
    legend(order(4 "Attended college" 3 "Did not attend") ///
        ring(0) pos(1) rows(2)) ///



DC(wc|inc): are the curves significantly different
1. Do women who go to college have higher rates of LFP for all levels of income?
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incXwc-mplt.emf]
1. The figure shows two curves with their CIs.
If the CI's do not overlap, 	predictions are significantly different.
If the CI's overlap, 		significance is unknown
We need to test if the predictions are significantly different


Testing differences in predictions
1. We want to test
	H0: DC(wc|inc) = 0
1. We compute
	[ Lower bound DC(wc|inc), Upper bound DC(wc|inc) ]
1. Since wc is entered into the model as i.wc, margins, dydx(wc) computes DC(wc).
margins, dydx(wc) at(inc=(0(5)100)) atmeans

local graphname lfp-incDCwc-mplt
marginsplot, recastci(rarea) ciopts(color(black*.1)) ///
    ylab(0(.1).4, `labYopt') xlab(0(20)100, `labXopt') ///
    plot1opts(`linDCopt') plotopts(lwid(*1)) ///
    xtitle("Family Income Excluding Wife") ///
    ytitle("Pr(LFP|WC=1) - Pr(LFP|WC=0)") ///
    title("Other variables at their means" " ", `titleopt') ///
    caption("`graphname' `tag'", size(*.5) pos(5) col(gs10)) scale(1.1)
. mgen, dydx(wc) at(inc=(`inc_rng')) atmeans stub(PLTdc) ///
>     predlabel(DC of wc by income)



Comparing overlapping CI's to tests of DC
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incXwc-mplt.emf][image: D:\Dropbox\Active\MCO 2018\Work\mco18-brm-lfp-2018-04-03-lfp-incDCwc-mplt.emf]
Clearly, overlapping confidence intervals can be misleading


The effect of income on LFP by age category
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Work\cdalec15-brm-lfp-full-incXage.emf]

Graphs for discovery versus presentation
1. You need a graph to decide if you need a graph.
If a graph is simple, you probably don’t need it in a paper, 
but you need the graph to know you don’t need it.
1. You need tools to create graphs quickly and must organize them efficiently or you won’t do it.
Use templates to speed up the process of making graphs
Use a file viewer to quickly examine graphs


[bookmark: _Toc489277090][bookmark: _Toc508809252][bookmark: _Toc510954445]Interpretation using odds ratios - #12
1. Odds ratios are a common and unsatisfactory method of interpretation.
1. Do you really want a ratio of ratios?
Buying apples or pears
1. Are pears at $.40 enough cheaper to buy instead of $.45 apples?

Cost index for apples:	.818 	= ($.45) / ($1-$.45)
Cost index for pears:	.667 	= ($.40) / ($1-$.40)
Cost index ratio:		1.23 	= ($.45/($1-$.45)) / ($.4/($1-$.4)) 

Cost difference:		$0.05 	= $.45 - $.40

Cost ratio:				1.120 	= $.45 / $.40

1. Which would you use to decide if you want apples?


What is an odds ratio? 
Probability and odds at x and x+1


Probability:				


Odds: 				
The OR is a ratio of ratios of probabilities

Odds ratios:	
For a unit increase in x, the odds increase by a factor of OR(x) holding other variables constant.


Logit is linear in the log of the odds
1. A logit is the name for the log of the odds
1. The logit model is linear in the logit

	
For a unit change in xk, the logit is expected to change by βk, holding other variables constant.
1. Linearity is fine, but what does a change of βk logits mean?
Each additional young child decreases the logit of being in the labor force by 1.39, holding other variables constant. 
1. To understand the change in logit, we transform it to odds


Change logit to odds and compute odds ratio (ORs)
1. Take the exponential of the logit with a focus on x3:

	
1. Let x3 change by 1

	
1. The odds ratio

	
1. The OR does not depend on the level of other variables


A change of 1 in x has the same OR everywhere TODO update
[image: ]


Logit estimates
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc

Logistic regression                               Number of obs   =        753
                                                  LR chi2(8)      =     124.30
                                                  Prob > chi2     =     0.0000
Log likelihood = -452.72367                       Pseudo R2       =     0.1207

------------------------------------------------------------------------------
         lfp |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          k5 |  -1.391567   .1919279    -7.25   0.000    -1.767739   -1.015395
        k618 |  -.0656678    .068314    -0.96   0.336    -.1995607    .0682251
             |
      agecat |
          2  |  -.6267601    .208723    -3.00   0.003     -1.03585   -.2176705
          3  |  -1.279078   .2597827    -4.92   0.000    -1.788242   -.7699128
             |
        1.wc |   .7977136   .2291814     3.48   0.001     .3485263    1.246901
        1.hc |   .1358895   .2054464     0.66   0.508     -.266778    .5385569
         lwg |   .6099096   .1507975     4.04   0.000      .314352    .9054672
         inc |  -.0350542   .0082718    -4.24   0.000    -.0512666   -.0188418
       _cons |   1.013999   .2860488     3.54   0.000     .4533539    1.574645
------------------------------------------------------------------------------


ORs with listcoef: interpretation on next page
. listcoef, constant help

logit (N=753): Factor Change in Odds

  Odds of: 1InLF vs 0NotInLF

----------------------------------------------------------------------
         lfp |      b         z     P>|z|    e^b    e^bStdX      SDofX
-------------+--------------------------------------------------------
          k5 |  -1.39157   -7.250   0.000   0.2487   0.4823     0.5240
        k618 |  -0.06567   -0.961   0.336   0.9364   0.9170     1.3199
    2.agecat |  -0.62676   -3.003   0.003   0.5343   0.7370     0.4869
    3.agecat |  -1.27908   -4.924   0.000   0.2783   0.5889     0.4139
        1.wc |   0.79771    3.481   0.001   2.2205   1.4319     0.4500
        1.hc |   0.13589    0.661   0.508   1.1456   1.0686     0.4885
         lwg |   0.60991    4.045   0.000   1.8403   1.4310     0.5876
         inc |  -0.03505   -4.238   0.000   0.9656   0.6651    11.6348
       _cons |   1.01400    3.545   0.000
----------------------------------------------------------------------
       b = raw coefficient
       z = z-score for test of b=0
   P>|z| = p-value for z-test
     e^b = exp(b) = factor change in odds for unit increase in X
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X

Odds ratio: factor change in the odds
1. For a unit change in xk the odds are expected to change by a factor of exp(βk), holding other variables constant.
For exp(βk)>1, the odds are exp(βk) times larger.
By attending college her odds of LFP are 2.22 times larger, holding other variables constant.
For exp(βk)<1, the odds are exp(βk) times smaller.
For each additional young child, the odds of LFP are .25 times smaller, ...
1. For a standard deviation change in xk, the odds are expected to change by a factor of exp(skβk), holding other variables constant.
For a standard deviation increase in the log of wages the odds of LFP are 1.43 times larger, ...


TODO DROP: Percentage change in the odds
1. If the odds change by a factor of 2, they are 100% larger.
1. If the odds change by a factor of .5, they are 50% smaller.
1. In general, %change = 100*(OR-1).
	100% = 100*(2-1)			Double odds, is 100% increase
	-50% = 100*(.5-1)			Halve odds, is 50% decrease
1. For example
By attending college her odds of LFP are 124 percent larger, holding other variables constant.
For an additional young child, the odds of LFP are 77 percent smaller, ...
For a standard deviation increase in the log of wages the odds of LFP are 43 percent larger, ...
1. To compute these: listcoef, percent

Interpreting odds ratios (ORs)
1. OR is a multiplicative coefficient.
Positive effects are greater than one
Negative effects are between zero and one
1. Magnitudes of positive and negative ORs are compared by taking the inverse of the negative effect (or vice versa).
A positive OR=2 has the same magnitude as a "negative" OR=1/2.
An OR=1/10 is larger than OR=2.
1. The effect on the odds of the event not occurring is the inverse of the OR of the event occurring.
Being ten years older makes the odds of not being in the labor force 1.9 (=1/.52) times greater, holding other variables constant.


Additional examples of ORs
. listcoef, constant help

logit (N=753): Factor Change in Odds

  Odds of: 1InLF vs 0NotInLF

----------------------------------------------------------------------
         lfp |      b         z     P>|z|    e^b    e^bStdX      SDofX
-------------+--------------------------------------------------------
          k5 |  -1.39157   -7.250   0.000   0.2487   0.4823     0.5240
        k618 |  -0.06567   -0.961   0.336   0.9364   0.9170     1.3199
    2.agecat |  -0.62676   -3.003   0.003   0.5343   0.7370     0.4869
    3.agecat |  -1.27908   -4.924   0.000   0.2783   0.5889     0.4139
        1.wc |   0.79771    3.481   0.001   2.2205   1.4319     0.4500
        1.hc |   0.13589    0.661   0.508   1.1456   1.0686     0.4885
         lwg |   0.60991    4.045   0.000   1.8403   1.4310     0.5876
         inc |  -0.03505   -4.238   0.000   0.9656   0.6651    11.6348
       _cons |   1.01400    3.545   0.000
----------------------------------------------------------------------
       b = raw coefficient
       z = z-score for test of b=0
   P>|z| = p-value for z-test
     e^b = exp(b) = factor change in odds for unit increase in X
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
. listcoef, constant percent help
Interpretations on next page...

k5:	
For each additional young child, the odds of employment are decreased by a factor of .25, holding other variables constant.
         |      b         z     P>|z|    e^b    e^bStdX      SDofX
      k5 |  -1.39157   -7.250   0.000   0.2487   0.4823     0.5240

lwg:	  
For a standard deviation increase in wages, the odds of employment are 1.43 times greater, holding other variables constant.
         |      b         z     P>|z|    e^b    e^bStdX      SDofX
     lwg |   0.60991    4.045   0.000   1.8403   1.4310     0.5876


age: Being ten years older decreases the odds by a factor of .53 (), holding other variables constant.          |      b         z     P>|z|    e^b    e^bStdX      SDofX
     age |  -0.06287   -4.918   0.000   0.9391   0.6020     8.0726



Odds do not translate linearly into probabilities
1. "For a unit increases in X the odds of Y are increase by a factor of OR, holding other variables constant."
Where the increase in X begins does not matter
The levels of other variables does not matter
This seems to make interpretation as simple as βs in linear regression
1. Except the meaning of a given factor change depends on p.
1. Think about doubling the odds of being a victim of a crime
a. If the odds are 1/100,000,000, 	they become 2/100,000,000
b. If the odds are 1/10,			they become 2/10
c. Do these mean the same things in terms of the probability of being a victim?
d. 

OR compared to Pr(y) for groups
1. Two logit models are estimated
	logit tenure pub phdyr if female==1
	logit tenure pub phdyr if female==0

where .
1. Suppose these are the probabilities and odds for men and women:
	pM = .500		→   ΩM = .500/(1-.500) = 1.000
	pW = .050		→   ΩW = .050/(1-.050) = 0.053
1. How does doubling the odds change the probability?
	2*ΩM = 2.000	→   pM = 2.000/(2.000+1) =.667
	2*ΩW = 0.105	→   pW = 0.105/(0.105+1) = .095
1. Then,
	Δ pM/ Δ pub = .167 = (.667 - .500) 
Δ pW/ Δ pub = .045 = (.095 - .050)
Are the effects equal for men and women?

Advanced for the curious: The OR as a marginal effect
Computing ORs with predictions and margins
Estimate the model
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, or nolog

Logistic regression                               Number of obs   =        753

         lfp | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
<snip>
Compute probabilities and odds
. predict double Pinc
. label var  Pinc "Pr(inc)"
. gen double Oinc = Pinc / (1-Pinc)
. label var  Oinc "Odds(inc)"
Increase income by 1 and compute probabilities and odds
. replace inc = inc + 1 // dangerous to change your data!
. predict double Pincplus
. label var  Pincplus "Pr(x=inc+1)"
. gen double Oincplus = Pincplus / (1 - Pincplus)
. label var  Oincplus "Odds(x=inc+1)"


Compute the odds ratio for a unit increase in income
. gen double ORinc = Oincplus / Oinc
. label var  ORinc "Odds(x=inc+1) / Odds(x=inc)"
The average equals the odds ratio
. sum ORinc // average odds ratio

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
       ORinc |       753    .9655531    7.06e-09   .9655531   .9655532
The logit results
         lfp | Odds Ratio   Std. Err.      z   
-------------+---------------------------------
   logit inc |   .9655531   .0079868    -4.24  
Using margins to compute odds at inc and inc+1
. mtable, at(inc=generate(inc)) at(inc=generate(inc+1)) ///
>     expression(predict(pr)/(1-predict(pr))) post

Expression: , predict(pr)/(1-predict(pr))

           |   Margin
 ----------+---------
         1 |    2.011
         2 |    1.941
Estimate the odds ratio
. nlcom  (_b[2._at]/_b[1._at]) // estimate OR

       _nl_1:  _b[2._at]/_b[1._at]

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _nl_1 |   .9655531   .0079868   120.89   0.000     .9498992     .981207
------------------------------------------------------------------------------
Testing if the OR=1 (NOT 0!)
. testnl (_b[2._at]/_b[1._at]) = 1 // test OR = 1

  (1)  (_b[2._at]/_b[1._at]) = 1

               chi2(1) =       18.60
           Prob > chi2 =        0.0000
. di sqrt(18.60)
4.3127717
The logit results
         lfp | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  logit  inc |   .9655531   .0079868    -4.24   0.000     .9500254    .9813346

Compute the OR for probit
. use binlfp4, clear
. probit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

Probit regression                                 Number of obs   =        753

         lfp |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
<snip>
         inc |  -.0210541   .0048205    -4.37   0.000     -.030502   -.0116061

. //  #2d compute marginal prediction

. mtable , ///
>     at(inc=generate(inc)) ///
>     at(inc=generate(inc+1)) ///
>     expression(predict(pr)/(1-predict(pr))) post

Expression: , predict(pr)/(1-predict(pr))

           |   Margin
 ----------+---------
         1 |    2.164
         2 |    2.085



. nlcom  (_b[2._at]/_b[1._at]) // estimate OR

       _nl_1:  _b[2._at]/_b[1._at]

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _nl_1 |   .9634678   .0085774   112.33   0.000     .9466565    .9802791
------------------------------------------------------------------------------

. testnl (_b[2._at]/_b[1._at]) = 1 // test OR = 1

  (1)  (_b[2._at]/_b[1._at]) = 1

               chi2(1) =       18.14
           Prob > chi2 =        0.0000
The logit results
         lfp | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  logit  inc |   .9655531   .0079868    -4.24   0.000     .9500254    .9813346



[bookmark: _Toc489277091][bookmark: _Toc508809253][bookmark: _Toc510954446]Overview of models for binary outcomes
Why so much time on BRM
1. BRM is foundation for many models for ordinal, nominal, and count variables.
1. A deep understanding of BRM makes other models easier to understand.
Key points
1. Interpretation requires understanding nonlinearity and substance
1. No single method of interpretation is always best
Try alternative methods to find which one works best.
1. There are subtle ways in which models for categorical outcomes differs from those for linear regression
Be careful about taking what you know about LRM and appying it to BRM.
Be careful about interpreting LRM if there are nonlinearities on the RHS
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[bookmark: _Toc489277101][bookmark: _Toc508820966][bookmark: _Toc510954447][bookmark: _Toc489277092]β1 Estimation, testing, and fit
[bookmark: _Toc510954448]Readings and examples
Long & Freese: 3.1, 3.2, 3.3
mdo18-test-fit-*.do; mdo18-svy-*.do
[bookmark: _Toc510954449]Outline
1. Estimation of regression coefficients with SRS
Estimation of regression coefficients with complex samples
Compound tests of regression coefficients 
Assessing fit with IC measures
R2-type measures of fit


[bookmark: _Toc508820967][bookmark: _Toc510954450]Estimation with simple random sampling
Linear regression with OLS
1. OLS minimizes the sum of the squared residuals:

	
1. OLS has a simple "closed-form" formula: 

	
The covariance matrix for the estimates 

	

TODO: Drop section in LRM on estimation?

[bookmark: _Toc489277064]Maximum likelihood estimation in LRM
1. MLE maximize the likelihood of what you observe.
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\lrm-ml-3xs-setA.emf][image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\lrm-ml-3xs-setB.emf]
For LRM, MLE gives essentially the same results as OLS


MLE for binary logit and probit
1. We observe y=1 or y=0. pi is the probability of observing what was observed 

	
1. 
If observations are independent the likelihood is 
Which is better?
 [image: ]   [image: ]

Properties of ML estimators
1. Under general conditions, the ML estimates are asymptotically
Consistent: mean of the sampling distribution approaches the true value.
Efficient: data are used as well as possible.
Normal: sampling distribution becomes normal.
When is the N large enough to justify MLE?
1. It is risky to use MLE for N<100. N>500 is generally safe
1. N's should be larger in some cases
If there are a lot of parameters, more observations are needed
Data are ill-conditioned or little variation in the dependent variable
1. Some models seem to require more observations (e.g., ordinal regression)
1. Small depends on the size of smallest outcome. "Rare events" methods deal with this.
Exact estimation
Run help exlogistic for details.

Maximizing the likelihood and numerical methods
	[image: D:\Bookshelf_LS\Figures\Images\!Done first clean\ML estimation\ML-1-LL-curves-2011.emf]
1. Algebraic maximization of ln L(β|X,y) is not possible
1. Numerical methods search for the maximum using the slope and change in slope of the likelihood equation (i.e., first and second derivatives)
1. Here is the intuition of what happens and what can go wrong

Numerical methods and climbing a hill
1. Numerical methods are like finding the top of a hill when blindfolded
What direction do you go?
How big of a step will you take? Always the same?
What would it take to make sure you were at the top?
What would you want to know before playing this game?
Will you end up at the same place as another person? Why? Why not?
1. Estimates of coefficients are usually very close in different software, with perhaps small differences in standard errors 


What if problems occur with ML?
1. Types of problems
lack of convergence
convergence to the wrong answer
extremely large standard errors
Instability with minor model changes
What to do if you encounter problems
Verify the model specification
Verify the variables and the sample
Rescale varibles with extremely large/small variances
1. If a very large proportion of cases are in one of the categories of the outcome, convergence may be difficult. Firth regression or extreme value logit.


Perfect Prediction - #1
1. Perfect prediction occurs when the value of a predictor perfectly predicts the outcome TODO Allison paper
    Mentor is | Pubs greater than 10?
        male? |     LoPub      HiPub |     Total
--------------+----------------------+----------
Female mentor |         4          0 |         4 
              |    100.00       0.00 |    100.00 
--------------+----------------------+----------
  Male mentor |       293          6 |       299 
              |     97.99       2.01 |    100.00 
--------------+----------------------+----------
        Total |       297          6 |       303 
              |     98.02       1.98 |    100.00 
The 0 leads to the following problem
The odds of LoPub if female mentor are 4/0 which is undefined.
The odds of HiPub if female mentor are 0/4=0.
Logit drops the four cases with female mentors since their pi in the likelihood function is 1.
Logit on next page...

. logit hipub i.mmale phd, nolog

note: 0.mmale != 0 predicts failure perfectly
      0.mmale dropped and 4 obs not used
This means:  female mentors are low publishers with probability 1.
note: 1.mmale omitted because of collinearity

Logistic regression                               Number of obs   =        299
                                                  LR chi2(1)      =       0.23
                                                  Prob > chi2     =     0.6320
Log likelihood = -29.276794                       Pseudo R2       =     0.0039

-----------------------------------------------------------------------------
       hipub |      Coef.   Std. Err.      z    P>|z|    [95% Conf. Interval]
-------------+---------------------------------------------------------------
        mmale |
Female men..  |          0  (empty)
 Male mentor  |          0  (omitted)
          phd |  -.1927085   .4023944    -0.48   0.632   -.9813871    .5959701
        _cons |  -3.293021   1.272882    -2.59   0.010   -5.787824   -.7982179
------------------------------------------------------------------------------
1. 

Overall
1. Numerical methods for ML estimation work very well "when your model is appropriate for your data" (Joreskog)
1. Cramer (1986:10) gives excellent advice
Check the data, check their transfer into the computer, check the actual computations (preferably by repeating at least a sample by a rival program), and always remain suspicious of the results, regardless of the appeal.
Perhaps, especially if the results are appealing!


[bookmark: _Toc508820968][bookmark: _Toc510954451]Estimation with complex samples
Readings and examples
Heeringa, S., West, B.T., & Berglund, P.A. (2010). Applied survey data analysis. Boca Raton, FL: Chapman Hall/CRC. (HWB)
StataCorp Stata Survey Data Reference Manual. StataCorp LP: College Station, TX. 
Long & Freese, 100-103
[bookmark: _Toc489277103]Overview
1. Standard software assumes a simple random sample (SRS) 
Each person in the population has the same probability of selection
A person being selected does not affect the probability of another person being selected.
SRS is conceptually and mathematically simple, but impractical.


Most major datasets use a complex sampling designs.
Clustering: clusters are sampled; all cases in cluster are included.
Stratification: strata are chosen, not sampled; sampling occurs within strata.
Sampling weights: different cases represent different proportions of the population.
1. Complex sampling can:
Reduce costs
Increases or decrease sampling variability
Increase the representation of subpopulations
1. If you do not adjust for complex sampling
Variances of estimates are usually underestimated
Estimates might be biased
Estimation with complex sampling is simple
Post-estimation commands work with complex estimation


[bookmark: _Toc489277104]Complex sampling designs
[image: ]


Clustering
1. Clusters or primary sampling units (PSUs) divide the population into distinct and exhaustive groups
Clusters are naturally occurring groups such as blocks in a neighborhood, classes within a school
1. People in a cluster tend to be more similar than people in the population 
The makes the sample behave as if it were "smaller"
Since cases are not independent, statistical efficiency is lost
Stratification
1. Individuals are in disjoint and exhaustive strata based on known characteristics
Racial groups; gender; rural/urban; large/small hospitals; country
1. Size within strata is fixed, not random
1. Different sampling fractions can be used for subpopulations
1. When individual strata are more homogeneous than the population, there is an increase in efficiency. It can "make your sample larger"


Sampling weights
1. Weights are probabilities of selection.-
1. The probability of inclusion differing across individuals
1. Weights are the share of the population represented be a single observation
The effective N
1. Each sampling complication changes the "effective N" in the sample (HWB 34)


1. The actual n is the same with each design; the effective n varies by design
1. The SE's reflect the change in the "effective n" caused by the design


[bookmark: _Toc489277106]Using Stata for survey data
1. There are many subtle points involving the survey commands. Here I provide only an overview. For details see Stata Survey Data manual.
Always check with the data provider on how to adjust for complex sampling
1. Using svy commands involves two steps
a. svyset to describe the design
b. svy: for commands such as svy: logit


[bookmark: _Toc489277107]Example: Health and Retirement Study
1. My example examines
arthritis  1=arthritis 0=no arthritis
1. Regressors
female     Is female?
age        Age at 2006 interview
ed11less   Ed years <= 11?
ed12       Ed years = 12?
ed1315     Ed years 13-15?
ed16plus   Ed years 16 or more?
1. The variables the describe the complex sample are:
secu     sampling error computation unit
kwgtr    2006 weight: respondent level
stratum  stratum id
1. In practice it can be hard to be sure which variables to use.

Declaring the survey design 
1. The design is specified
. svyset secu             /// clusters
>     [pweight=kwgtr],    /// weights
>     strata(stratum)     /// stratum
>     vce(linearized) singleunit(missing) // method of compute SE's

      pweight: kwgtr
          VCE: linearized
  Single unit: missing
     Strata 1: stratum
         SU 1: secu
        FPC 1: <zero>
1. The output means:
vce(linearized) : linearization for estimating standard errors.
singleunit(missing) : stratum with single sampling unit is missing.


Effects of svy adjustment on descriptive statistics
1. Non-survey estimates:
	sum var
1. Survey adjusted estimates:
	svy : mean var
	estat sd
Comparison:
             |  srsMean   svyMean     Ratio     srsSD     svySD     Ratio 
-------------+------------------------------------------------------------
   arthritis |     0.60      0.57      1.05      0.49      0.50      0.99 
         age |    68.50     66.50      1.03     11.13     10.38      1.07 
      female |     0.59      0.54      1.08      0.49      0.50      0.99 
    ed11less |     0.24      0.20      1.24      0.43      0.40      1.08 
        ed12 |     0.33      0.33      1.02      0.47      0.47      1.00 
      ed1315 |     0.21      0.23      0.93      0.41      0.42      0.97 
    ed16plus |     0.21      0.25      0.85      0.41      0.43      0.94


[bookmark: _Toc489277108]Effects of survey adjustments on regressions
// no survey adjustment

logit arthritis age i.female i.ed4cat
estimates store nosvy
predict nosvyphat
label var nosvyphat "nosvy phat"

// weights and cluster but not stratum

logit arthritis age i.female i.ed4cat ///
    [pweight=kwgtr], cluster(secu)
estimates store wtclstr
predict wtclstrphat
label var wtclstrphat "wtclstr phat"

// weights, clusters, and stratification

svyset secu [pweight=kwgtr], ///
    strata(stratum) vce(linearized) singleunit(missing)
svy: logit arthritis age i.female i.ed4cat
estimates store svy
predict svyphat
label var svyphat "svy phat"


. // #9 tables of estimated coefficients

--------------------------------------------------
    Variable |       srs     wtclstr       svy     
-------------+------------------------------------
         age |     1.046       1.049       1.049  
             |     29.57      910.60       21.92  < = t-value
      female |     1.759       1.779       1.779  
             |     17.68       12.10       12.99  
    ed11less |     1.162       1.206       1.206  
             |      3.50        2.57        3.16  
      ed1315 |     0.961       0.937       0.937  
             |     -0.92       -0.94       -1.21  
    ed16plus |     0.703       0.638       0.638  
             |     -8.20      -11.47       -8.54  
       _cons |     0.054       0.046       0.046  
             |    -26.60     -226.92      -19.54  
-------------+------------------------------------
           N |     18341       16862       18375  
--------------------------------------------------
                                       legend: b/t
. pwcorr nosvyphat wtclstrphat svyphat

             | nosvyphat wtclstrphat  svyphat
-------------+---------------------------
 wtclstrphat |   0.9984   1.0000 
     svyphat |   0.9984   1.0000   1.0000 
[bookmark: _Toc508820969][bookmark: _Toc510954452]Hypothesis testing of regression coefficients
1. Hypothesis testing is critical for the effective use of regression models
A quick review of the theory of hypothesis testing
Wald and LR tests for regression coefficients with a focus on testing multiple coefficients
We are more interested in tests of marginal effects, but this lecture explains critical features of testing
There are many ways to invalidate standard testing. See this great review: 
Young and Holsteen. 2015. Model Uncertainty and Robustness: A Computational Framework for Multimodel Analysis. Sociological Methods and Research.


[bookmark: _Toc489277095]Barnett's model of inference
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\sg2 test\test-barnett.emf]

The importance of off diagonal element
1. 
Let 
1. The covariance matrix the X and Z coefficients: 

	
1. The diagonal provides the standard errors for tests of single coefficients.
1. Off-diagonal elements reflect how the regression plane "rocks"
These are essential for tests of multiple coefficients. 

What affects the variance of an estimate?
1. Let: 

 
1. If ρXZ is the correlation between X and Z, then:

	
Each component affects the variance

Increasing N	decreases 


Increasing 	decreases 


Increasing 	increases  


Increasing 	increases  


[bookmark: _Toc489277096]Testing individual regression coefficients
1. Standard output provides tests of regression coefficients
1. 
If H0: is true, the ML estimator is

	
1. 
The test statistics for H0: is 


1. If H0 is true, then z is distributed normally:
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\sg2 test\test-zdistV2.emf]

Two types of errors are possible when testing
							     Decision 
				------------------------------------------------------------------------
 H0: β=0		Accept H0 				Reject H0 				
===========================================================
 In fact β=0		No error					Type I: Pr(reject true)=α
									Size of test (the shaded tail).
----------------------------------------------------------------------------------------------
In fact β≠0		Type II: accept false		No error
				Power of test.
-----------------------------------------------------------------------------------------------
1. 

z-test of β’s for logit - #11
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
  
Logistic regression                               Number of obs   =        753
                                                  LR chi2(8)      =     124.30
                                                  Prob > chi2     =     0.0000
Log likelihood = -452.72367                       Pseudo R2       =     0.1207

------------------------------------------------------------------------------
         lfp |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          k5 |  -1.391567   .1919279    -7.25   0.000    -1.767739   -1.015395
        k618 |  -.0656678    .068314    -0.96   0.336    -.1995607    .0682251
∷
        1.wc |   .7977136   .2291814     3.48   0.001     .3485263    1.246901
        1.hc |   .1358895   .2054464     0.66   0.508     -.266778    .5385569
         lwg |   .6099096   .1507975     4.04   0.000      .314352    .9054672
         inc |  -.0350542   .0082718    -4.24   0.000    -.0512666   -.0188418
       _cons |   1.013999   .2860488     3.54   0.000     .4533539    1.574645
------------------------------------------------------------------------------
Having young children has a significant effect on the probability of working (z=-7.25, p<0.01 for a two-tailed test).
The effect of having older children is not significant (z=-.96, p=.34).

[bookmark: _Toc489277097]Hypothesis for multiple coefficients
1. Our model:
logit lfp k5 k618 i.agecat i.wc i.hc lwg inc
1. Tests involving multiple coefficients
Kids have no effect on LFP			H0: βk5 =βk618 =0
Education has effect on LFP		H0: βwc =βhc =0
1. Consider algebraic statements and probabilistic statements.


Algebraic relationships among parameters in hypothesis
1. Consider X and Z from this regression:
y = β0 + βXX + βZZ + …  + ϵ 
1. Hypotheses are algebraic statements.
	HA: βX = 0		<=  income has no effect
	HB: βZ = 0		<=  wealth has no effect
	HC: βX = βZ		<=  income & wealth have equal effects
	HD: βX = βZ = 0	<=  income & wealth have no effects
1. If HA and HB are true, then HC and HD must be true.
If βX = 0 and βZ = 0 then mathematically βX = βZ = 0


Statistical conclusions from hypothesis tests
1. Consider two tests of hypotheses:
	HA: βX = 0	=>  test results says HA might be true or might not
	HB: βZ = 0	=>  test results says HB might be true or might not
1. Do results from these tests provide insights regarding
	HC: βX = βZ			
	HD: βX = βZ = 0		
1. Accepting HA and HB does not imply you will accept either HC or HD!
Who stole my wallet?
1. Consider the formula from the LRM and the effect of collinearity:



	


[bookmark: _Toc489277098]Wald tests of joint hypotheses
1. ML theory shows that: 

[bookmark: MTBlankEqn]	
1. With three coefficients: 

	
1. 
 indicates how the regression plane rocks as the sample changes.
1. The Wald test measures:
How far estimates are from hypothesized values.
How flat the likelihood functions is.
Graphically...

Wald test and the log likelihood function 
[image: D:\Dropbox\CDA_research\Work\Sage2\test-wald-lr-lmV2-wald.emf]                                                               Curvature









                            
                                                  Distance

Curvature of ln L curve and the Wald test
[image: D:\Dropbox\CDA_research\Work\Sage2\PrePosted figures\test\test-wald-lr-lm-shape.emf]1. The flatter the curve, the less "significant" the distance from estimate to constraint

2. How would increasing the sample size affect the curvature?
3. What if the model is "nearly" unidentified?


Wald test of linear constraints
1. 
Consider linear constraints .

 is vector of parameters

 is matrix that combine the β's
1. Examples:
Qβ = β1 - β2 = 0
Qβ = β1 = 0
Qβ = β1 = β2 = 0
1. The Wald statistic equals:

	
		[Distance]     [Curvature]      [Distance]
1. See Long 1997 for details.

Sampling distribution of the Wald test 
If H0 is true, as N increases the sampling distributions of W converges to the 
chi-square distribution with degrees of freedom equal to the number of constraints being tested.
[image: D:\Dropbox\CDA_research\Work\Sage2\PrePosted figures\test\test-chisq5df.emf]



Chi-square distribution and degrees of freedom dist-chisqV2-multipledf.emf 
[image: D:\Dropbox\Active\MCO 2018\Work\dist-chisqV2-multipledf.emf] 

Example: Wald tests of regression coefficients - #3
The model is:
logit lfp k5 k618 i.agecat i.wc i.hc lwg inc
estimates store logitmodel
H0: βk5 = 0
. test k5

 ( 1)  [lfp]k5 = 0

           chi2(  1) =   52.57
         Prob > chi2 =    0.0000

The effect of having young children on entering the labor force is significant at the .01 level (X2(1)=52.6).
Note
Chi-square 52.57 equals the z-value squared -7.25*-7.25.


How do you know the names of coefficients to use in test?
. logit, coeflegend

-------------------------------------------
         lfp |      Coef.  Legend
-------------+-----------------------------
          k5 |  -1.391567  _b[k5]
        k618 |  -.0656678  _b[k618]
             |
      agecat |
      40-49  |  -.6267601  _b[2.agecat]
        50+  |  -1.279078  _b[3.agecat]
             |
          wc |
    college  |   .7977136  _b[1.wc]
             |
          hc |
    college  |   .1358895  _b[1.hc]
         lwg |   .6099096  _b[lwg]
         inc |  -.0350542  _b[inc]
       _cons |   1.013999  _b[_cons]
-------------------------------------------


#14 H0: βwc = βhc = 0
. test 1.wc 1.hc // joint test

 ( 1)  [lfp]1.wc = 0
 ( 2)  [lfp]1.hc = 0

           chi2(  2) =   17.83
         Prob > chi2 =    0.000
We can reject the hypothesis that the effects of the husband's and the wife's education are simultaneously zero (X2(2)=17.83, p<.01).
#15 H0: βwc = βhc
. test 1.wc = 1.hc

 ( 1)  [lfp]1.wc - [lfp]1.hc = 0

           chi2(  1) =    3.24
         Prob > chi2 =    0.0719
The hypothesis that the effects of husband's and wife's education are equal is rejected marginally at the .05 level (X2(1) =3.24, p=.07).

[bookmark: _Toc480200971][bookmark: _Toc489277099]LR test of nested models 
[image: D:\Dropbox\CDA_research\Work\Sage2\test-wald-lr-lmV2-lr.emf]The LR test is an alternative to the Wald test.

Unconstrained

     Constrained








Nested models
1. A constrained model = unconstrained model + constraints.
Constraints can be things like
A coefficient is 0
Two coefficients are equal
1. Let MC be the constrained model.
1. Let MU be the unconstrained model.
1. MC is nested in MU.
1. Consider these models:
	M1: Pr(y=1|x) = Λ(	β0 	+	β1x1	+	β2x2 							)
	M2: Pr(y=1|x) = Λ(	β0 	+	β1x1 			+	β3x3				)
	M3: Pr(y=1|x) = Λ(	β0 	+	β1x1	+	β2x2				+	β4x4	)
	M4: Pr(y=1|x) = Λ(	β0	+	β1x1	+	β2x2	+	β3x3	+	β4x4	)
1. Which are nested?

Example: LR tests of regression coefficients - #4
H0: βwc = βhc = 0
Full model
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc

Iteration 0:   log likelihood =  -514.8732
∷
Iteration 4:   log likelihood = -452.72367

Logistic regression                               Number of obs   =        753
                                                  LR chi2(8)      =     124.30
                                                  Prob > chi2     =     0.0000
Log likelihood = -452.72367                       Pseudo R2       =     0.1207
∷

. estimates store full
Restricted model
. logit lfp k5 k618 i.agecat           lwg inc, nolog
∷
. estimates store dropwchc


LR test of Ho: wc = hc = 0
. lrtest full dropwchc

Likelihood-ratio test                                 LR chi2(2)  =     18.68
(Assumption: dropwchc nested in full)                 Prob > chi2 =    0.0001
The hypothesis that the effects of the husband's and the wife's education are simultaneously equal to zero can be rejected at the .01 level (LRX2(2)=18.7).


Summary on testing
1. Under general conditions, the tests are asymptotically equivalent
Statisticians generally prefer LR 
In practice, convenience determines which is used 
LR and Wald tests can be used with other models using MLE
Wald tests can be used when LR cannot
With survey estimation, LR tests are not possible
1. Testing multiple coefficients is often critical for your work
1. Avoid these pitfalls:
Testing things you aren't interested in (regression coefficients?)
Not testing things you are interested in (marginal effects?)
1. Never "add" the results of two or more tests!


[bookmark: _Toc489277121][bookmark: _Toc508820971][bookmark: _Toc510954453]Information criteria to assess fit
1. More complex models fit better at the cost of more parameters.
1. Likely you prefer a model that fits better without “too many” parameters
Two information criteria are commonly used to compare fix and complexity
	AIC: Akaike's information criterion
	BIC: Bayesian information criterion
1. These criteria formalize the tradeoff between fit and complexity
1. IC are computed as
	IC	= 	- Fit		+	Complexity 
		=	- 2lnL	+	Function of N and # of parameters
Fit is negative; more negative is a better fit
Complexity is positive so more positive is worse fit
1. A model with a smaller IC is preferred.


Computing IC measures
1. Define
N = number of observations
k = number of parameters 
lnL = log likelihood
1. Then
IC 	= fit 	+ complexity
	AIC	= -2lnL 	+ 2*k				// smaller complexity penalty
	BIC 	= -2lnL 	+ ln(N)*k			// larger complexity penalty
1. BIC prefers more parsimonious models than AIC


Comparing models
1. Estimate multiple models
1. Select the model with the smallest IC
1. Consider models M1 and M2
a. ΔBIC = BIC1 - BIC2
b. If ΔBIC > 0 choose M2 (BIC1 > BIC2)
c. If ΔBIC < 0 choose M1 (BIC1 < BIC2)
1. While BIC is not a statistical test, Raftery suggests degrees of evidence
	  Absolute		Strength of
	  ΔBIC 			Evidence 	
	               						
	  0 - 2			Weak
	  2 - 6			Positive
	  6 - 10			Strong
	  >10			Very strong


Software variations in IC measures
1. BIC in Stata

	
where k is the number of parameters
1. BIC'

	

G2=LR chi-squared and # of regressors (not parameters)
1. BIC deviance or BIC in Raftery's notation

	
where D is the deviance with df = N - (# of parameters).
1. Critically,

	

[bookmark: _Toc489277122]Example: Comparing models with IC
Adding inc-squared and dropping k618 & hc
. use binlfp4, clear
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
∷
. estimates store m1

. estat ic

-----------------------------------------------------------------------------
       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC
-------------+---------------------------------------------------------------
          m1 |    753   -514.8732   -452.7237      9     923.4473    965.0639
-----------------------------------------------------------------------------
               Note:  N=Obs used in calculating BIC; see [R] BIC note

. qui fitstat, ic save

. logit lfp k5      i.agecat i.wc      lwg c.inc##c.inc, nolog
∷
. estimates store m2

. estat ic
∷


. estimates table m1 m2, stats(N bic) b(%9.3f) t(%6.2f)

    Variable |    m1          m2      
-------------+------------------------
          k5 |    -1.392      -1.385  
             |     -7.25       -7.27  
        k618 |    -0.066              
             |     -0.96              
   agecat  2 |    -0.627      -0.585  
             |     -3.00       -2.87  
           3 |    -1.279      -1.186  
             |     -4.92       -5.08  
          wc |     0.798       0.904  
             |      3.48        4.36  
          hc |     0.136              
             |      0.66              
         lwg |     0.610       0.631  
             |      4.04        4.19  
         inc |    -0.035      -0.065  
             |     -4.24       -3.47  
 c.inc#c.inc |                 0.000  
             |                  1.88  
-------------+------------------------
           N |       753         753  
         bic |   965.064     956.484  
--------------------------------------
                           legend: b/t

fitstat for IC measures
1. SPost fitstat command compares BIC and AIC statistics
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
. quietly fitstat, ic save

. logit lfp k5      i.agecat i.wc      lwg c.inc##c.inc, nolog
. fitstat, ic diff

                         |     Current        Saved   Difference 
-------------------------+---------------------------------------
AIC                      |                                       
                     AIC |     919.491      923.447       -3.956 
          (divided by N) |       1.221        1.226       -0.005 
-------------------------+---------------------------------------
BIC                      |                                       
         BIC (df=8/9/-1) |     956.484      965.064       -8.580 
 BIC (based on deviance) |   -4031.438    -4022.857       -8.580 
    BIC' (based on LRX2) |     -79.887      -71.307       -8.580 

Difference of    8.580 in BIC provides strong support for current model.

1. There is strong support for the model that adds income-squared and drops k618 and hc
[bookmark: _Toc489277123][bookmark: _Toc508820972][bookmark: _Toc510954454]Pseudo R2's
1. It would be great to have a single number to summarize model fit.
1. Such a measure would aid in comparing competing models.
Within a substantive area, measures of fit might provide a rough index of whether a model is adequate.
If prior models of LFP routinely have values of .4 for a given measure, you expect analyses with a different sample or with revised measures of the variables to have a similar value for that measure.
1. Long (1997) warns
I am unaware of convincing evidence that selecting a model that maximizes the value of a given measure of fit results in a model that is optimal in any sense other than the model having a larger value of that measure.
1. Still, these measures are commonly used in the literature and you should use the measure that is commonly used in your field. But, do not over-interpret it!


[bookmark: _Toc489277125][bookmark: _Toc508820973][bookmark: _Toc510954455]Summary
1. IC measures can be valuable for selecting models that are not nested
Do not over use these measures
Think about your models
1. Scalar measures of fit are sometimes required by referees, but are often of little value.
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[bookmark: _Toc510954456]β1 Testing marginal effects
[bookmark: _Toc510954457]Readings and examples
Long & Freese: Chapters ???
See references in these chapter
Mize, Doan and Mize – forthcoming working paper
mco18-test-meffects-*.do	a


[bookmark: _Toc510954458]From regression coefficients to marginal effects
1. Our interest is in regression coefficients to estimates predictions and estimate marginal effects.
1. Predictions 


1. Discrete change


1. Marginal change

	
1. Standard errors computed with delta method , bootstrapping, or simulation.

[bookmark: _Toc510954459]Testing regression coefficients and marginal effects
1. A marginal effect depends on all parameters and the x where estimated:


1. The size of the effect depends on:
All of the βj’s, not just βk 
The values of the x’s where the effect is evaluated
Does βk=0 imply ∂Pr(y=1|x)/∂xk =0?
If you know βk=0, then ∂Pr(y=1|x)/∂xk =0
If you accept H0: βk=0, ∂Pr(y=1|x)/∂xk might be 0 or might not


Tests of βk and MC(wc) can give different results #1
1. Fit the logit and test βwc
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
∷ 
         lfp |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
∷
          wc |
    college  |   .7977136   .2291814     3.48   0.001     .3485263    1.246901      
∷
------------------------------------------------------------------------------
Compute DC(wc) for different numbers of young children
               |  Change   p-value 
---------------+-------------------
DCR(wc | k5=0) |   0.168     0.000 
DCR(wc | k5=1) |   0.182     0.001 
DCR(wc | k5=2) |   0.087     0.013 
DCR(wc | k5=3) |   0.027     0.085

1. The significance of DCR(wc) depends on the number of young children.
Does this make more substantive sense than saying that young children has a significant effect on LFP? 

[bookmark: _Toc510954460]Comparing marginal effects from the same equation
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-test-meffects-2018-04-06-DCall-cplt-short.emf]
1. We can determine the size and significance of DCs
1. We can compare the size of two DCs
1. How do we test if two effects have the same size?
We must estimate multiple effects simultaneously

Testing DC(hc) = DC(wc) - #2
                |   Change   Std Err   z-value   p-value        LL        UL 
---------------+------------------------------------------------------------
hc             |                                                            
 college vs no |    0.028     0.043     0.663     0.508    -0.042     0.098 
wc             |                                                            
 college vs no |    0.162     0.044     3.689     0.000     0.090     0.235 
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-test-meffects-2018-04-06-DCwchc95-cplt.emf]
1. Can I conclude?
A woman attending college has a significantly larger effect on LFP than that of her husband attending college.


Overlapping Confidence Intervals
1. The 90% confidence interval [ Lower level, Upper level ] can be interpreted as:
With repeated samples we would expect our prediction to be within the CI 90% of the time. 
For example:
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-test-meffects-2018-04-06-DCwchc95-cplt.emf]
We conclude
Our results suggest that the effect of a woman attending college could be as small as .090 or as large as .235 with 90 percent confidence. The effect of the husband’s college is expected to fall between -.042 and .098.
Can we conclude that DC(wc)=DC(hc)?

CIs do not over: The effects are significantly different.
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-test-meffects-2018-04-06-DCci-no-overlap.emf]
CIs overlap: We cannot tell if the effects are significantly different
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-test-meffects-2018-04-06-DCci-overlap.emf]
Conclusion
Make the formal test!


Formally testing if MEs are equal
1. To test: 


Compute the statistics:

    
The variance of the difference is:



To estimates  we need to simultaneously estimate the effects

In special cases  is known to be 0


Joint estimation and testing of effects - #4
1. Fit the model
Jointly estimate ADC(wc) and ADC(hc) 
. margins, dydx(wc hc) post
∷
dy/dx w.r.t. : 1.wc 1.hc
------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          wc |
    college  |   .1624037   .0440211     3.69   0.000      .076124    .2486834
             |
          hc |
    college  |   .0281828    .042534     0.66   0.508    -.0551824    .1115479
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.


1. Testing if DC(wc)=DC(hc)
. test 1.wc = 1.hc

 ( 1)  1.wc - 1.hc = 0

           chi2(  1) =    3.33
         Prob > chi2 =    0.0680
We conclude:
The effects of the wife and the husband attending college on labor force participation are not significantly different (p>.05).
Or:
The effects of the wife and the husband attending college on labor force participation are significantly different (p<.10).
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-test-meffects-2018-04-06-DCwchc90-cplt.emf]

Code: posting results from margins
1. Fit the model and store the estimates
logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
estimates store logitmodel
Compute the effects and post the results
margins, dydx(wc hc) post
post replaced the logit estimates in memory with those from margins
. matlist e(b)
             |        0b.         1.        0b.         1.
             |        wc         wc         hc         hc 
-------------+--------------------------------------------
          y1 |         0   .1624037          0   .0281828
. matlist e(V) // covariance for predictions
             |        0b.         1.        0b.         1.
             |        wc         wc         hc         hc 
-------------+--------------------------------------------
       0b.wc |         0                                  
        1.wc |         0   .0019379                       
       0b.hc |         0          0          0            
        1.hc |         0  -.0008315          0   .0018091

1. Test if the effects are equal
. test 1.wc = 1.hc
∷
. lincom 1.wc - 1.hc

 ( 1)  1.wc - 1.hc = 0

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         (1) |   .1342209    .073553     1.82   0.068    -.0099403    .2783822

. mlincom   1 - 2, stats(all)

             |   lincom        se    zvalue    pvalue        ll        ul 
-------------+------------------------------------------------------------
           1 |    0.134     0.074     1.825     0.068    -0.010     0.278
Restore the regression estimates
estimates restore logitmodel


Comparing more complex effects
[image: D:\Dropbox\CDA_research\Work\Sage2\brm-me-dcV14-dc.emf]
1. For DC(xa) compute Pr(y|xa=start, x) and Pr(y|xa=end, x)
1. For DC(xb) compute Pr(y|xb=start, x) and Pr(y|xb=end, x)
To test Ho: DC(xa) = DC(xb), estimate:
[Pr(y|xa=end, x)-Pr(y|xa=start, x)] - [Pr(y|xb=end, x)-Pr(y|xb=start, x)]

Code: margins, at(var=gen(expression))
1. at(var=gen(expression)) 
predictions with var equal to the expression)
1. at(x=gen(x+1)) 
predictions at values one larger than the observed x
1. at(x=gen(x)) 
predictions at the observed values of x


Testing if DC(inc+sd)=DC(lwg+sd) - #5
1. Compute standard deviations
. qui sum inc
. local sdinc = r(sd)
. qui sum lwg
. local sdlwg = r(sd)
2. Estimate four probabilities
. margins, at(inc=gen(inc)) at(inc=gen(inc+`sdinc')) ///
>          at(lwg=gen(lwg)) at(lwg=gen(lwg+`sdlwg')) post

Expression   : Pr(lfp), predict()

1._at        : inc             = inc
2._at        : inc             = inc+11.63479853339243
3._at        : lwg             = lwg
4._at        : lwg             = lwg+.5875564251146244

             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .5683931   .0166014    34.24   0.000      .535855    .6009312
          2  |   .4825886   .0257951    18.71   0.000     .4320312    .5331459
          3  |   .5683931   .0166014    34.24   0.000      .535855    .6009312
          4  |   .6408189   .0228361    28.06   0.000      .596061    .6855768
------------------------------------------------------------------------------

3. Compute DC(inc+sd)=DC(lwg+sd)
. qui mlincom 2-1, rowname(DCinc+sd) stats(all) clear
.     mlincom 4-3, rowname(DClwg+sd) stats(all) add

             |   lincom        se    zvalue    pvalue        ll        ul 
-------------+------------------------------------------------------------
    DCinc+sd |   -0.086     0.019    -4.404     0.000    -0.124    -0.048 
    DClwg+sd |    0.072     0.017     4.344     0.000     0.040     0.105
Confirm DCs are correct
. mchange inc lwg, stats(est se z p ll ul) amount(sd) width(8)

logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(lfp), predict(pr)

             |   Change   Std Err   z-value   p-value        LL        UL 
-------------+------------------------------------------------------------
inc      +SD |   -0.086     0.019    -4.404     0.000    -0.124    -0.048 
lwg      +SD |    0.072     0.017     4.344     0.000     0.040     0.105 


Test that the ADCs are equal but opposite
. test (2._at-1._at)=(-1*(4._at-3._at))

 ( 1)  - 1bn._at + 2._at - 3._at + 4._at = 0

           chi2(  1) =    0.27
         Prob > chi2 =    0.6023
The magnitude of the effects of income and wages are not significantly different (p=.60). 


Test equality of DCs by computing second difference
. mlincom (2-1)+(4-3), rowname(2nd difference) stats(all)

             |   lincom        se    zvalue    pvalue        ll        ul 
-------------+------------------------------------------------------------
2nd differ~e |   -0.013     0.026    -0.521     0.602    -0.064     0.037.
Or:
. lincom (2._at-1._at)+(4._at-3._at)

 ( 1)  - 1bn._at + 2._at - 3._at + 4._at = 0

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         (1) |  -.0133787    .025672    -0.52   0.602    -.0636949    .0369374


Tool: Summary of commands for comparing two DC’s
sum x1
local Dx1 = r(sd) // change in x1; can be any value
sum x2
local Dx2 = r(sd) // change in x2; can be any value 

margins, at(x1=gen(x1)) at(x1=gen(x1+`Dx1')) /// atmeans for DCM
         at(x2=gen(x2)) at(x2=gen(x2+`Dx2')) post

mlincom (2-1)-(4-3) // test of equality
mlincom (2-1)+(4-3) // test of equal magnitude



[bookmark: _Toc510954461]Comparing ideal types and profiles - #6
1. In the lecture Binary Regression Model we computed predicted probabilities for these ideal types:
                              |    Pr(y)        ll        ul
 -----------------------------+-----------------------------
               Average person |    0.578     0.539     0.616
    Younger lower educ w kids |    0.159     0.068     0.251
       Young more educ w kids |    0.394     0.234     0.554
Middle age higher educ w kids |    0.754     0.681     0.828
          Older w higher educ |    0.631     0.528     0.734
1. I want to say:
Among those with higher education, women who are middle aged with young children are no more likely to be in the labor force than older women whose children are no longer living at home.
To justify this, I need to jointly estimate the probabilities.


Estimate profiles simultaneously
. mtable, clear ci ///
>     at((mean) _all) ///
>     at(agecat=1 k5=2 k618=0    wc=0 hc=0 inc=10   lwg=0.75) ///
>     at(agecat=1 k5=2 k618==0   wc=1 hc=1 inc=16.6 lwg=1.62) ///
>     at(agecat=2 k5=0 k618=1.37 wc=1 hc=1 inc=27.7 lwg=1.41) ///
>     at(agecat=3 k5=0 k618==0   wc=1 hc=1 inc=27.9 lwg=1.38) ///
>     post

Expression: Pr(lfp), predict()

           |                            2.        3.        1.        1.
           |       k5      k618    agecat    agecat        wc        hc 
 ----------+------------------------------------------------------------
         1 |     .238      1.35      .385      .219      .282      .392 
         2 |        2         0         0         0         0         0 
         3 |        2         0         0         0         1         1 
         4 |        0      1.37         1         0         1         1 
         5 |        0         0         0         1         1         1 

           |                                                  
           |      lwg       inc     Pr(y)        ll        ul
 ----------+-------------------------------------------------
         1 |      1.1      20.1     0.578     0.539     0.616
         2 |      .75        10     0.159     0.068     0.251
         3 |     1.62      16.6     0.394     0.234     0.555
         4 |     1.41      27.7     0.754     0.681     0.827
         5 |     1.38      27.9     0.630     0.527     0.733
Test if probabilities are equal
Estimate differences using the posted predictions:
. mlincom 4 - 5, rowname(MidEdDad-OldHiEd) clear twidth(20)

                     |   lincom    pvalue        ll        ul 
---------------------+----------------------------------------
    MidEdDad-OldHiEd |    0.124     0.007     0.034     0.214
My initial impression was wrong and I conclude:
Young mothers with higher education have significantly higher chances of being in the labor force than older women with higher education who no longer have children at home (p<.01)


*Using the returned atspec from mtable
1. To avoid typing in values in the at() specification
Use the mtable return r(atspec) to save the atspec
Run mtable with multiple at()’s
See Long and Freese 2014, page 275+ for details


[bookmark: _Toc510954462]Summary on testing marginal effects
1. Too often researchers use only the default tests from the estimation command
They test things they aren't interested in
They don't test things they are interested in
The methods above let you test many useful hypotheses
Remember: tests of regression coefficients and marginal effects do not always give the same result.
Overlapping CIs do not indicate a the estimates are equal
To test if MEs are equal, estimate them jointly
1. Later we extend this idea to tests across models
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[bookmark: _Toc489277126][bookmark: _Toc510954463]β1 Nonlinearities on the RHS
[bookmark: _Toc510954464]Readings and examples
Long & Freese: pages 301-302
mdo18-nonlin-*.do


Probabilities do not always get larger or smaller
[image: D:\Dropbox\Active\ICPSR cda 2018\Write\Figures\brm-probyV3-00to10.emf][image: D:\Dropbox\Active\ICPSR cda 2018\Write\Figures\brm-probyV3-00to10-negative.emf]

Real data might looks like this
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-combined-lpoly-prob.emf]

[bookmark: _Toc489277128][bookmark: _Toc510954465]Overview
1. Assume that xβ does not have power terms or interactions.
1. Then as xk increases, Pr(y|x) must always increases or always decreases.
The is required by the parametric form of the logit and probit model
1. Substantively, does this make sense?
Should the probability only increase or only decreases with changes in xk?
Should the maximum probability be 1.0? 
The minimum 0.0?
Nonparametric smoothers do not assume any form for the relationship between one x and the outcome
Lowess (lowess) and local polynomial smoothing (lpoly)
I often start analyses with a nonparametric fit of key regressors to the outcome
Here’s why


[bookmark: _Toc489277130][bookmark: _Toc510954466][bookmark: _Toc489277129]Nonparametric smoothing to assess nonlinearities
Could these curves be generated by a logit model?
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-combined-lpoly-prob.emf] 

Could these data be generated by a binary logit model? - #2
Good health is “logit-like”
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-08-goodhlth-lpoly-logit.emf]

Arthritis and diabetes are not “logit-like”
What is the substantive cost of assuming a logit-like functional form?
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-arthritis-lpoly-logit.emf] [image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-diabetes-lpoly-logit.emf] 


[bookmark: _Toc510954467]Adding nonlinearities to a model
1. Consider model where x is age with other controls

	
1. x, x2 and x3 are linked since you when x changes x2 and x3 must change
	If x=1, then x2=1 and x3=1
	If x=2, then x2=4 and x3=8
	If x=3, then x2=9 and x3=27
1. Polynomials on the RHS allow the probability curve to:
Change directions as xk increases
	: a hill, a valley, or a snake
Level off at values other than 1 or 0
1. This is how polynomials lead to nonlinearities…

Top view of logit with x and x2
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\sg2 brm3d\brm3d_xsq_b2LT0V1_top.png]	
Front view of logit with x and x2
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\sg2 brm3d\brm3d_xsq_b2LT0V1_front.png]

Side view of logit with x and x2
[image: D:\Dropbox\CDA_classes\CDA iu 2015\Write\graphs added\sg2 brm3d\brm3d_xsq_b2LT0V1_side.png]


[bookmark: _Toc489277132][bookmark: _Toc510954468]Logit models for diabetes - #3
1. To address the nonparametric results, add age and age-squared to the model
1. To select the model
AIC and BIC to compare fits
Compare predictions and marginal effects
Fit models and store estimates
svy: logit diabetes c.age i.female i.ed4cat, or
est store dMage1 // age

svy: logit diabetes c.age##c.age i.female i.ed4cat, or
est store dMage2 // age + age-squared

svy: logit diabetes c.age c.age#c.age c.age#c.age#c.age i.female i.ed4cat
est store dMage3 // age + age-squared + age-cubed

estimates table dMage1 dMage2 dMage3, title(diabetes) ///
    eform b(%9.5f) p(%9.3f) 


Logit estimates for diabetes models
The coefficients provide little insight into which model to choose
    Variable |  dMage1      dMage2      dMage3    
-------------+------------------------------------
      female |
     female  |   0.80854     0.81816     0.81815  
             |     0.000       0.000       0.000  
      ed4cat |
   12 years  |   0.66281     0.65679     0.65678  
             |     0.000       0.000       0.000  
13-15 years  |   0.54123     0.55383     0.55378  
             |     0.000       0.000       0.000  
  16+ years  |   0.44993     0.45797     0.45794  
             |     0.000       0.000       0.000  
             |
         age |   1.00656     1.29691     1.25235  
             |     0.003       0.000       0.511  
 c.age#c.age |               0.99819     0.99869  
             |                 0.000       0.784
c.age#c.age# |                           1.00000  
       c.age |                             0.915  
             | 
       _cons |   0.25513     0.00004     0.00010  
             |     0.000       0.000       0.254  
--------------------------------------------------
                                       legend: b/p

IC measures from non-svy model fitting - #3.2
1. Since IC measures are not defined with survey estimation, models are estimate without adjusting for the complex sampling

             |  nosvyM1     nosvyM2     nosvyM3   
-------------+------------------------------------
         bic |  17569.00    17458.86    17467.79  
         aic |  17522.40    17404.50    17405.66  

Results:
BIC gives M2 a 10 points advantage over M3
AIC gives M2 a 1 point advatntage over M3; 
No support for M1
IC measures support M2



How do the predictions compare? - #3.3
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-diabetes-prob123.emf]

Comparing DC(age+10) across models - #3.4
1. Does the effect of age differ across models?

           |   Change   p-value   Std Err
---------- +------------------------------
M1 ADC     |    0.010**   0.003     0.003 
M2 ADC     |    0.004     0.206     0.003 
M3 ADC     |    0.003     0.335     0.003 
                                   
M1 DCR@50  |    0.009**   0.002     0.003 
M2 DCR@50  |    0.072***  0.000     0.007 
M3 DCR@50  |    0.071***  0.000     0.017 
                                   
M1 DCR@70  |    0.010**   0.004     0.003 
M2 DCR@70  |   -0.018***  0.000     0.005 
M3 DCR@70  |   -0.018*    0.030     0.008 
                                   
M1 DCR@90  |    0.011**   0.006     0.004 
M2 DCR@90  |   -0.070***  0.000     0.004 
M3 DCR@90  |   -0.072***  0.000     0.014 
---------- +------------------------------
*≤.05; **≤.01; ***≤.001 
1. Which model would you choose? Why is ADC misleading?

[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-08-age-hist.emf]Why ADC can be misleading
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-diabetes-prob123.emf]







 M1: age only						  M2: age and age-squared
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-dcprob-age-M1dist.emf]		[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-dcprob-age-M2dist.emf]

[bookmark: _Toc489277131][bookmark: _Toc510954469][bookmark: _Toc489277133]Logit models for arthritis
Logit estimates for arthritis models - #4.1
    Variable |  aMage1      aMage2      aMage3    
-------------+------------------------------------
     female  |   1.77543     1.80948     1.81087  
             |     0.000       0.000       0.000  
      ed4cat |
   12 years  |   0.82788     0.82101     0.82109  
             |     0.003       0.002       0.002  
13-15 years  |   0.77455     0.79218     0.79310  
             |     0.000       0.001       0.001  
  16+ years  |   0.52825     0.53507     0.53543  
             |     0.000       0.000       0.000  
             |
         age |   1.04844     1.35998     2.28835  
             |     0.000       0.000       0.002  
 c.age#c.age |               0.99813     0.99076  
             |                 0.000       0.014  
c.age#c.age# |                           1.00003  
       c.age |                             0.043  
             |
       _cons |   0.05711     0.00001     0.00000  
             |     0.000       0.000       0.000  
--------------------------------------------------
                                       legend: b/p

Choosing a model
What does substantive research tell you?
Does Pr(arthritis | age)=1.0 make sense?
IC measures from non-svy model fitting

             |  nosvyM1     nosvyM2     nosvyM3   
-------------+------------------------------------
         bic |  22094.79    21909.34    21914.01  
         aic |  22048.19    21854.98    21851.89  

BIC which prefers simpler models, points to M2
AIC which allows more complexity, points to M3


How do the predictions compare?
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-arthritis-prob123.emf]
The main differences between M2 and M3 occur beyond 90.

Confidence intervals for predictions
The biggest differences occur where there is the least precision
[image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-arthritis-prob2CI.emf][image: D:\Dropbox\Active\MCO 2018\Work\mco18-nonlin-2018-04-05-arthritis-prob3CI.emf]
The CIs beyond 90 overlap
Tools in Comparing Marginal Effects let you test if they are different

What is the effect of age on arthritis?
1. Does the model affect the effect of age?
1. Which model would you choose? Is it time to consult a rheumatologist?

           |   Change   p-value   Std Err
---------- +------------------------------
M1 ADC     |    0.101***  0.000     0.004 
M2 ADC     |    0.092***  0.000     0.004 
M3 ADC     |    0.099***  0.000     0.005 
                                    
M1 DCR@50  |    0.116***  0.000     0.005 
M2 DCR@50  |    0.236***  0.000     0.012 
M3 DCR@50  |    0.278***  0.000     0.025 
                                    
M1 DCR@70  |    0.104***  0.000     0.004 
M2 DCR@70  |    0.056***  0.000     0.005 
M3 DCR@70  |    0.044***  0.000     0.009 
                                    
M1 DCR@90  |    0.063***  0.000     0.001 
M2 DCR@90  |   -0.111***  0.000     0.022 
M3 DCR@90  |    0.004     0.932     0.047
---------- +---------------------------------
*≤.05; **≤.01; ***≤.001 

[bookmark: _Toc510954470]Code
Local polynomials
lpoly diabetes age if age<100, gen(d_age d_poly) nograph n(200) bwidth(5)
label var d_poly "Diabetes"
IC measures 
qui { 
    logit diabetes age i.female i.ed4cat, or
    est store nosvyM1
    logit diabetes c.age##c.age i.female i.ed4cat, or
    est store nosvyM2
    logit diabetes c.age c.age#c.age c.age#c.age#c.age i.female i.ed4cat
    est store nosvyM3 
}
estimates table nosvyaMage1 nosvyaMage2 nosvyaMage3, ///
    stats(bic aic) keep(age c.age#c.age c.age#c.age#c.age) ///
    b(%9.5f) p(%9.3f) stfmt(%9.2f)
Predictions for probability plots
est restore dMage1
mgen, at(age=(50(2.5)100) female=1 ed4cat=2) ///
    atmeans stub(dM1) replace
Plot command with CI
est restore aMage3
mgen, at(age=(50(2.5)100) female=1 ed4cat=2) /// predictions for plot
    atmeans stub(aM3) replace
local graphname "arthritis-prob3CI"
graph twoway ///
    (rarea aM3ul aM3ll1 aM1age, color(gs13) lw(none)) /// shaded CI
    (connected aM3pr1 aM1age, $M3line ) , ///
    title("Model 3: age + age-squared + age-cubed", position(11) size(*.8)) ///
    xtitle("Age") xlab(50(10)100) ///
    $ytitlea  $ylab  yline(0 1, lcol(black)) ///
    legend(off) $nogapnoline scale(1.1) ///
    caption("`graphname' `tag'", $captionopt) 
graph export `pgm'-`graphname'.$graphfmt, replace
Effects of age
estimates restore dMage1
mchange age, amount(delta) delta(10) stats(est se p)                    
mchange age, amount(delta) delta(10) stats(est se p) atmeans at(age=50) 
mchange age, amount(delta) delta(10) stats(est se p) atmeans at(age=70)  
mchange age, amount(delta) delta(10) stats(est se p) atmeans at(age=90) 
                            
estimates restore dMage2
∷
How would you test if the effects differ across models?
Try to figure this out after Comparing Marginal Effects

[bookmark: _Toc489277134][bookmark: _Toc510954471]Summary of nonlinearities on the RHS
1. Always consider nonlinearities on the RHS
What are your substantive expectations? 
Do not let the functional form of logit/probit dictate what you find
1. Nonlinearities on the RHS can create models where
Predictions do not plateau at 1
Predictions do not uniformly increase or decrease
Predictions are more linear or less linear the a “linear” logit
1. Starting with a nonparametric plot is often valuable
1. Compare the substantive implications of the model
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