## CDA Lab Guide | 2017

Scott LongCDA Lab Guide 2017-08-10v3.docx
Table of Contents
1 INTRODUCTION ..... 2
2 WORKFLOW ..... 2
2.1 The Posting Principle ..... 2
2.2 Dual Workflow ..... 2
2.3 Run Order Naming of do-fles ..... 3
2.4 USING DO-FILES AND LOG-FILES ..... 4
3 CONTINUOUS OUTCOMES ..... 5
4 BINARY OUTCOMES ..... 7
5 BINARY OUTCOMES: ADVANCED POST-ESTIMATION ..... 13
6 HYPOTHESIS TESTING ..... 17
7 MEASURES OF FIT ..... 20
8 BINARY OUTCOMES: COMPLEX SAMPLING AND NONLINEARITY ..... 22
9 NOMINAL OUTCOMES. ..... 26
10 ORDINAL OUTCOMES ..... 33
11 COUNT OUTCOMES ..... 38
DATASETS FOR CDA EXERCISES ..... 46
CDA-SCIENCE4.DTA (CDA-SCIREVIEW4): CODEBOOK FOR SCIENCE DATA. ..... 46
CDA-HSB4.DTA: CODEBOOK FOR 1983 High School and Beyond Study ..... 47
CDA-NES4.DTA: CODEBOOK FOR 1992 NATIONAL Election Study ..... 50
CDA-AdDhealth4: COdebook for 1994-95 Add Health Public Data extract ..... 52

## 1 Introduction

The lab guide presents tools and exercises for categorical data analysis that correspond to the lectures. Use the guide as a starting point. Then, use the lecture notes to plan your analyses for the assignments using more sophisticated and efficient methods. The do-files corresponding to the lectures can save you a lot of time. If you are unfamiliar with Stata or would like a quick review, refer to Getting Started Using Stata.

1. The guide is divided into parts corresponding to lectures. Each part includes a review which everyone should complete and an exercise for working creatively with the commands. As you do the exercises, feel free to skip questions and explore commands on your own. Do-files for the reviews have "review" in the name (e.g., cda16lab-brm-review.do). Do-files for exercises have "exercise" in the name (e.g., cda16lab-brm-exercise.do). Even though this is the 2017 version of the lab guide, the due files have 16 in the name since nothing has changed.
2. In the guide, Stata commands and output are in this font. In output, commands are preceded by "." and " $>$ ". Do not include "." or " $>$ " in the do-file you write. Interpretations of results are shown in boxes. You should write your own interpretations. If you want feedback on your interpretation, write a paragraph and give this to your TA along relevant output from your log-file.
3. The datasets cda-nes4.dta, cda-science4.dta, cda-hsb4.dta, cda-addhealth4.dta, and cda-hrs4.dta are available for the exercises. Codebooks are at the end of this guide, although cda-hrs4.dta does not have a codebook since it has so few variables.
4. Although you can use the command window for exploring new commands, exercises should be completed using do-files. If you are not sure how to use a do-file, see the Getting Started with Stata Guide.

## 2 Workflow

An effective workflow helps you create accurate and reproducible results. The basic principles for a reproducible workflow that are presented here will be discussed in lab.

### 2.1 The Posting Principle

Have you ever had several "final" versions of a document and not known which is the most recent? Have you shared a document with someone and found that your version differs from hers but both documents have the same name? Do you have a paper based on analyses, but the results in the paper don't correspond to the analysis files you have? The essential posting principle prevents you from having multiple versions of a file that all have the same name but have different contents and it ensures that you have the script files and output files used in your research. Without posted files, your results will not be reproducible.

## Two rules define to the posting principle

The share rule: Only share results after files are posted.
The no change rule: Once you post a file, never change it.
Make no exceptions to the posting principle! Before you share any results, you must post the associated files in to the \Posted folder. After you post a file, you must never change it.

### 2.2 Dual Workflow

Separating data analysis and data management prevents confusing and non-reproducible analyses caused by having two variables of the same name but with very different meanings. The dual workflow:

1. Makes work more efficient
2. Facilitates replication
3. Prevents errors
4. Simplifies organization and documentation
5. Encourages planning

Simply put, if you need a variable for your statistical analysis, begin by creating a new dataset that contains the variable. In a separate do-file, use this dataset for your statistical analyses.

### 2.3 Run Order Naming of do-files

Run order naming simplifies your work by making a file's name part of the file's documentation. This makes it simpler to re-run your files to verify that things work and facilitates making corrections when you find errors (and you will make errors). With run order naming, you name files so that they should be run in alphabetical order. That's it! Below is an example of a dual-workflow project structure:

| Data Management | Data Analysis |  |
| :--- | :--- | :---: |
| data01-label.do | desc01-sampledefinition.do |  |
| data02-clean.do | desc02-summarystats.do |  |
| data03-merge.do | desc03-newsample.do |  |
| data04-addhlthvar.do |  |  |
| data05-transform.do | compare01-groupdif.do |  |
| data06-dropvars.do | compare02-plotdifferences.do |  |
| compare03-ttests.do |  |  |

logit01-baseline.do
logit02-nested.do
logit03-groupinteract.do

### 2.3.1 Naming do-files

## Rules for naming do-files

1. A files name should make it clear when the file needs to be run.
2. Use names that remind you of what is in a file.
3. Anticipate revising do-files and adding new do-files.
4. Names should be easy to type.

## Template for naming do-files

username-a\#\#-description-2017-08-01.do
jslong-a10-orm-2017-08-01.do
username: you IU e-mail name.
a\#\#: assignment number in two digits
description: brief reminder of what file is
date: use the format yyyy-mm-dd

### 2.3.2 Master do-files

Do-files need to be run in a sequence and good file names make the run-order obvious. A master do-file makes it easy to re-run all do-files associated with a project. This makes it easier to verify that everything works.

You are required to have a master do-file that will run all of the do-files you use for class assignments.
For a template for a master do-file see cda16lab-template-master .do.

### 2.4 Using do-files and log-Files

Do-files are one of three ways you can execute commands in Stata. They are essential to automating your work because they help ensure that you can replicate your work. Whereas replicating commands entered in the Command window or with dialog boxes would require you to remember each command and the order in which they were run, executing commands from a do-file allows you to keep the list of commands in a text-file format, and reproducing the commands can be done with a few keystrokes.

### 2.4.1 Robust \& legible do-files

Do-files are a necessary but not sufficient for an effective workflow. The do files also need to be robust, producing the same results when run later, and legible so they are easy to understand.
To help make your do-files robust and legible, we recommend that you include four elements of code. Below is an example of a do file template that contains these four elements (see cda16lab-template-dofile.do). Here is an example where Scott Long (user jslong) is writing a program for assignment 3 for LRM. The do-file is named jslong-a03-lrm01-2017-08-01.do:

```
01 capture log close
02 log using jslong-a03-lrm01-2017-08-01, replace text
03 version 14.1
04 clear all
0 5 ~ m a c r o ~ d r o p ~ \ a l l ~
0 6 ~ s e t ~ l i n e s i z e ~ 8 0 ~ 0
0 7 \text { set scheme s1manual}
08 // Assignment 03: LRM
09 // CDAiu 2017
10 local pgm jslong-a03-lrm01
11 local who jslong Scott Long
12 local 2016-08-15
13 local tag `pgm'.do `who' `dte'
14 // #1 load data
    {commands here}
15 // #2 descriptive statistics
    {commands here}
16 // #3 fit model
    {commands here}
17 log close
18 exit
```

Lines $1-2$ set up a log file where output from your do-file are saved. Line 1 ensures no log file is already open. Line 2 opens the new log file whose name matches the name of the do-file. Line 17 closes the log file so additional results are not saved to the file. If you do not add a return after line 17 , line 17 does not run. Line 18 makes sure that line 17 runs and tells Stata to ignore any later lines (you can put ideas, notes, etc. after line 19).
Lines 3-7 make sure that your results are not dependent on something you left in memory and accordingly makes it possible for your do-file to run later (i.e., it is needed for reproducibility). The scheme will make your graphs look the same on different computer.

Lines 8 to 13 document what you are doing. Line 8 is what the do-file is for, while line 9 is something you should include for all do-files in this class. Lines 10-12 document what, who and when produced the results. This is useful when looking at the output and very useful when you are creating variables and saving new datasets. Always update this information in a new do-file. Line 13 creates a tag that is used when creating variables and saving datasets. In this example, tag contains jslong-a03-lrm01 jslong Scott Long

2017-08-01. More on this later. Lines 8 and 9 which start with // are comments. They do not run Stata commands, but simply let you add notes. You can comment out single lines of text with an asterisk (*) or a slash (//), or create blocks of comments starting with a /* and ending with */.
The commands for analysis begin on line 14. To write legible do files, organize the content to make it easier to locate later. Grouping related commands (e.g., creating demographic variables, estimating nested models for one outcome) keep the file orderly.
These basic elements must be included in all of your do-files to ensure they are legible and reproducible. For assignments in this class, you must include all of these elements.

## 3 Continuous Outcomes

The commands from this section are in cda16lab-lrm-review.do. The \#'s correspond to sections in the do-file. cda16lab-lrm-exercise.do contains details on the exercise. For this and later exercises you can use any of the datasets we provide.

```
#1 Load the Data
use cda-scireview4, clear
```


## \#2 and \#3 Examine the Data and Select Variables

Begin by using the command codebook, compact to list variables, their labels, and summary statistics.

```
. codebook, compact
```

| Variable | Obs Unique |  | Mean | Min | Max | Label |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| id | 264 | 264 | 58556.74 | 57001 | 62420 | ID Number. |
| cit1 | 264 | 48 | 11.33333 | 0 | 130 | Citations: PhD yr -1 to 1. |
| cit3 | 264 | 54 | 14.68561 | 0 | 196 | Citations: PhD yr 1 to 3. |
| cit6 | 264 | 59 | 17.58712 | 0 | 143 | Citations: PhD yr 4 to 6. |
| cit9 | 264 | 67 | 19.92803 | 0 | 214 | Citations: PhD yr 7 to 9. |
| enroll | 264 | 9 | 5.530303 | 3 | 14 | Years from BA to PhD. |
| fel | 264 | 96 | 3.191098 | 1 | 4.69 | Fellow or PhD prestige. |
| <snip> |  |  |  |  |  |  |
| workuniv | 264 | 2 | . 7045455 | 0 | 1 | University work? (1=yes) |

Next, use keep to select the dependent variable pubtot and the three independent variables, workfac, enrol, and phd, which we use in the regression models later.

```
. keep pubtot workfac enrol phd
. codebook pubtot workfac enrol phd, compact
```

| Variable | Obs Unique |  | Mean |  | Max | Label |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pubtot | 264 | 42 | 11.07197 | 0 | 73 | Total Pubs in 9 Yrs post-Ph.D. |
| workfac | 264 | 2 | . 5340909 | 0 | 1 | Faculty in Univ? (1=yes) |
| enroll | 264 | 9 | 5.530303 | 3 | 14 | Years from BA to PhD. |
| phd | 264 | 79 | 3.181894 | 1 | 4.66 | Prestige of Ph.D. department. |

Section \#4 explores missing data

## \#4 Regression

Specifying a model is simple, with the dependent variable listed first followed by independent variables. Prefacing an independent variable with $\mathbf{i}$. indicates that it is a factor variable (i.e., a binary or categorical variable). By default, the category with the lowest value (in this case workfac=0) is the reference category. Prefacing a variable with $\mathbf{c}$. indicates that a variable is continuous. If no prefix is specified, Stata assumes the variable is continuous (unless it is included in an interaction).

| Source | SS | df | MS | Number of obs = | 264 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $F(3,260)=$ | 10.77 |
| Model | 3519.43579 | 3 | 1173.14526 | Prob > F | 0.0000 |
| Residual | 28326.1968 | 260 | 108.946911 | R -squared | 0.1105 |
|  |  |  |  | Adj R-squared = | 0.1003 |
| Total | 31845.6326 | 263 | 121.086055 | Root MSE = | 10.438 |


| pubtot | Coef. | Std. Err | t | $P>\|t\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| workfac |  |  |  |  |  |  |
| 1_Yes | 5.227261 | 1.297375 | 4.03 | 0.000 | 2.672561 | 7.78196 |
| enroll | -1.174879 | . 4465778 | -2.63 | 0.009 | -2.054249 | -. 2955094 |
| phd | 1.506904 | . 6442493 | 2.34 | 0.020 | . 2382931 | 2.775514 |
| _cons | 9.982767 | 3.33341 | 2.99 | 0.003 | 3.418849 | 16.54668 |

## \#5 Standardized Coefficients

listcoef displays the estimated coefficients along with standardized coefficients. The help option provides details on the meaning of each coefficient.
. listcoef, help
regress ( $\mathrm{N}=264$ ) : Unstandardized and standardized estimates
Observed SD: 11.0039
SD of error: 10.4378

|  | b | t | $P>\|t\|$ | bStdX | bStdY | bStdXY | SDofx |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| workfac |  |  |  |  |  |  |  |
| 1_Yes | 5.2273 | 4.029 | 0.000 | 2.613 | 0.475 | 0.237 | 0.500 |
| enroll | -1.1749 | -2.631 | 0.009 | -1.696 | -0.107 | -0.154 | 1.443 |
| phd | 1.5069 | 2.339 | 0.020 | 1.515 | 0.137 | 0.138 | 1.005 |
| constant | 9.9828 | 2.995 | 0.003 |  |  |  |  |

$\qquad$
b = raw coefficient
$t=t$-score for test of $b=0$
$\mathrm{P}>|\mathrm{t}|=\mathrm{p}$-value for t -test
bStdX $=\mathrm{X}$-standardized coefficient
bStdY = y-standardized coefficient
bStdXY = fully standardized coefficient
SDofX $=$ standard deviation of $X$

For a unit increase in the prestige of the doctoral department, the total number of publications is expected to increase by 1.5 , holding other variables constant ( $\mathrm{p}<0.05$, two-tailed test).

For a standard deviation increase in the length of time between enrollment and graduation, about 1.5 years, the number of publication is expected to decrease by 1.7 , holding other variables constant ( $\mathrm{p}<0.01$, two-tailed test).

On average, scientists who take faculty positions have about a half a standard deviation more publications than scientists who do not take faculty positions ( $\mathrm{p}<0.001$, two-tailed test).
\#6 Close log and exit program

```
log close
```

exit

We won't show this step in the rest of the guide. But, you always want to include this in your do-file.

The commands for this section are in cda16lab-brm-review. do. The \#'s correspond to sections in the dofile. cda16lab-brm-exercise.do contains details on the exercise.

```
#1 Load the data
```

use cda-scireview4, clear
\#2 Examine data, select variables, and verify
keep workfac fellow phd mcit3 mnas
tab1 fellow mnas workfac, miss
codebook, compact
\#3 Binary logit model
The dependent variable is listed first. A probit model is run by changing logit to probit.
. logit workfac i.fellow c.phd c.mcit3 i.mnas, nolog

| Logistic regression | Number of obs | $=$ |
| :--- | :--- | :--- |
|  | LR chi2(4) | 264 |
|  | Prob > chi2 | $=$ |
| Log likelihood $=-163.55534$ | Pseudo R2 | $=$ |



## \#4 Store the estimation results

It is sometimes necessary to store estimation results to restore later (e.g., when posting with margins). You can do this using estimates store. Here we store the estimates with the name estlogit.

```
estimates store estlogit
```


## \#5 Predicted probabilities for each observation

We can compute and plot predicted probabilities for each observations. We pick the name prlogit for the new variable that contains predictions.

```
. predict prlogit
(option pr assumed; Pr(workfac))
. label var prlogit "Logit: Predicted Probability"
. sum prlogit
\begin{tabular}{ccccc} 
Variable | & Obs & Mean & Std. Dev. & Min
\end{tabular} Max
```

The dotplot command is used to plot the distribution:
. dotplot prlogit

```
. graph export `pgm'-phatdist.`graphtype', replace
```



## \#6 Predict specific probabilities

mtable computes predictions and saves them in a table. Here we focus on the probability of our dependent variable for given values of the independent variables. The at ( ) option sets the values where predictions are made. The atmeans option sets the other independent variables at their means.

- predict creates a new variable that contains predictions for each case in the sample.
- mtable computes predictions at specified values of the regressors and does not create a new variable.

We predict the probability of working as a faculty member for someone who has a postdoctoral fellowship and whose mentor was a member of the National Academy of sciences with other regressors held at their means:

```
. mtable, at(fellow=1 mnas=1) stat(ci) atmeans
Expression: Pr(workfac), predict()
    Pr(y) ll ul
    0.779 0.593 0.964
```

Specified values of covariates

|  | fellow | phd | mcit3 | mnas |
| :---: | :---: | :---: | :---: | :---: |
| Current | 1 | 3.18 | 20.7 | 1 |

The predicted probability of obtaining a faculty position is $0.78(95 \% \mathrm{CI}: 0.59,0.96)$ for an average scientist who began his career with a postdoctoral fellow after studying with a mentor who is in the National Academies of Sciences.

## \#7 Table of probabilities

mtable can make a table of predicted probabilities for combinations of values of independent variables.

| Expression: Pr(workfac), predict() |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | fellow | mnas | $\operatorname{Pr}(\mathrm{y})$ | 11 | ul |
| 1 | $\bigcirc$ | 0 | 0.412 | 0.330 | 0.494 |
| 2 | 0 | 1 | 0.502 | 0.232 | 0.771 |
| 3 | 1 | 0 | 0.710 | 0.619 | 0.801 |
| 4 | 1 | 1 | 0.779 | 0.593 | 0.964 |

Specified values of covariates

|  | phd | mcit3 |
| :---: | :---: | :---: |
| Current | 3.18 | 20.7 |

The same predictions can be obtained using margins which produces more output. The SPost $m$ * commands are "wrappers" that make it easier to work with margins.
. margins, at(fellow=(0 1) mnas=(0 1)) atmeans


|  | Delta-method |  |  |  | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| _at |  |  |  |  |  |  |
| 1 | . 4118608 | . 0417942 | 9.85 | 0.000 | . 3299457 | . 4937759 |
| 2 | . 5019075 | . 1374789 | 3.65 | 0.000 | . 2324539 | . 7713612 |
| 3 | . 7096895 | . 046453 | 15.28 | 0.000 | . 6186433 | . 8007358 |
| 4 | . 7786445 | . 0946714 | 8.22 | 0.000 | . 5930921 | . 964197 |

## \#8 Discrete change at means with mlincom

mtable with the post option can be used to compute discrete changes. First, mtable computes the probabilities at the start and end values of the discrete change. With the post the predictions are left in memory for mlincom to use.

```
. mtable, at(fellow=(0 1)) atmeans post
Expression: Pr(workfac), predict()
\begin{tabular}{|c|c|c|}
\hline & fellow & \(\operatorname{Pr}(\mathrm{y})\) \\
\hline 1 & 0 & 0.419 \\
\hline 2 & 1 & 0.716 \\
\hline
\end{tabular}
```

Specified values of covariates

|  | phd | mcit3 | mnas |
| :---: | :---: | :---: | :---: |
| Current | 3.18 | 20.7 |  |

mlincom computes the change in probability, that is, the discrete change. The numbers after mlincom refer to the numbered rows from mtable (e.g., row 2 minus row 1 ):

```
. mlincom 2-1, stats(all)
```

|  | lincom | se | zvalue | pvalue | 11 | ul |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.297 | 0.061 | 4.888 | 0.000 | 0.178 | 0.416 |

A scientist who receives a post-doctoral fellowship has a .30 higher probability of being on the faculty at a university than a scientist who does not receive a fellowship, holding other variables at their means ( $p<0.001$, two-tailed test).

## \#9 Discrete change at means using dydx()

Restoring estimates: After using mtable or margins with the post option, the logit estimates are no longer in memory since they have been replaced by the estimates from margins. To put the logit results back in memory (which is necessary for computing more predictions), we use estimate restore.

```
. estimates restore estlogit
(results estlogit are active now)
```

Using dydx(): Now we can compute additional predictions using these estimates. The results from the example using mlincom can be duplicated using the $\operatorname{dydx}()$ option with mtable . For variables with an i. prefix, $\mathbf{d y d x}()$ computes a change from 0 to 1 . For variables with a c. prefix or no prefix, $\mathbf{d y d x}()$ computes the marginal change. Be careful since it is easy to compute incorrect results if you did not correctly specify the prefix for the independent variables in your regression model. Here we compute the discrete change for the variable fellow, which match the results above.

```
. mtable, dydx(fellow) atmeans stat(ci p)
Expression: Pr(workfac), predict()
    d Pr(y) ll llorer ul m
    0.297 0.178 0.416 0.000
```

Specified values of covariates


## \#10 Average discrete change with mchange

mchange computes the discrete change for some or all independent variables. Independent variables can be held at specific values using at () or at the means with atmeans. By default, however, the average discrete change is computed along with the p -value for a test that the marginal effect is 0 .

```
. mchange
logit: Changes in Pr(y) | Number of obs = 264
Expression: Pr(workfac), predict(pr)
\begin{tabular}{|c|c|c|}
\hline & Change & p-value \\
\hline \multicolumn{3}{|l|}{fellow} \\
\hline 1 Yes vs 0 No & 0.285 & 0.000 \\
\hline \multicolumn{3}{|l|}{phd} \\
\hline +1 & -0.014 & 0.665 \\
\hline +SD & -0.014 & 0.665 \\
\hline
\end{tabular}
```

| Marginal | -0.014 | 0.665 |
| :---: | :---: | :---: |
| mcit3 |  |  |
| +1 | 0.004 | 0.002 |
| +SD | 0.111 | 0.002 |
| Marginal | 0.004 | 0.002 |
| mnas |  |  |
| 1 Yes vs 0 No | 0.078 | 0.509 |

Average predictions

|  | 0_No | 1_Yes |
| :---: | :---: | :---: |
| $\operatorname{Pr}(\mathrm{y} \mid$ base) | 0.466 | 0.534 |

The discrete change for fellow is different than before since mchange is computing the Average Marginal Effect (AME), whereas the first two discrete changes computed the Marginal Effect at the Mean (MEM). In the following interpretations, note the subtle yet crucial difference in wording for a discrete change computed using AME versus the wording of the earlier discrete change using MEM.

On average, having a post-doctoral fellowship increases the probability of being faculty at a university by .29 ( $\mathrm{p}<0.001$, two-tailed test).

On average, a standard deviation increase in the mentor's citations, about 25 citations, is expected to increase the probability of being a faculty member by 0.11 ( $p<0.01$, two-tailed test).

## \#11 Plotting predicted probabilities

You might want to compute predicted probabilities across the range of a continuous variable for each of two groups and then plot these. mgen generates new variables containing predicted values and confidence intervals. These variables begin with the stem specified with stub(). The predlabel() option allows you to name what is being predicted.

```
. mgen, at(fellow=1 mcit3=(0(5)130)) atmeans stub(fel1) predlabel(Fellow)
Predictions from: margins, at(fellow=1 mcit3=(0(5)130)) atmeans predict(pr)
Variable Obs Unique Mean Min Max Label
------------------------------------------------------------------------------
fel1pr1 27 27 . 8361422 .621785 . }9599656 Fellow
fel1ll1 27 27 .748555 .5078947 . 8969149 95% lower limit
fellul1 27 27 .9237294 .7356753 1.023016 95% upper limit
fel1mcit3 27 27 65 0 130 Mentor's 3 yr citation.
```

Specified values of covariates

<snip>
After creating the variables with mgen, the following commands create the graph.

```
. graph twoway ///
    (rarea fel1ul fel1ll fel1mcit3, col(gs10)) ///
    (rarea fel0ul fel0ll fel1mcit3, col(gs10)) ///
    (connected fel1pr fel1mcit, lpat(dash) msym(i)) ///
    (connected fel0pr fel1mcit, lpat(solid) msym(i)), ///
    legend(on order(3 4)) ylab(0(.25)1) ytitle("Pr(Faculty)") ///
    xlab(0(10)130) xtitle("Mentor's # of Citations") ///
    title("Predicted Probability of Having a Faculty Position")
graph export `pgm'-probplot.`graphtype', replace
```



For an average scientist, receiving a fellowship increases the probability of being employed as a faculty member. When their mentors have not been cited, fellows have an advantage over non-fellows of nearly .30 and that advantage decreases gradually to about .10 for those with highly cited mentor.

You cannot use overlapping confidence intervals to determine if the differences in probabilities for fellows and non-fellows are significant. For this, you need to compute discrete changes.

## \#12 Computing Odds Ratios

The factor change in the odds and the standardized factor change are obtained with listcoef. listcoef can run after a probit model where it will compute standardized beta coefficients instead.

```
. listcoef, help
logit (N=264): Factor change in odds
    Odds of: 1_Yes vs 0_No
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & b & z & \(\mathrm{P}>|\mathrm{z}|\) & \(e^{\wedge} \mathrm{b}\) & bStdX & SDofx \\
\hline \multicolumn{7}{|l|}{fellow} \\
\hline 1_Yes & 1.2502 & 4.517 & 0.000 & 3.491 & 1.853 & 0.493 \\
\hline phd & -0.0637 & -0.433 & 0.665 & 0.938 & 0.938 & 1.005 \\
\hline mcit3 & 0.0206 & 2.893 & 0.004 & 1.021 & 1.690 & 25.445 \\
\hline mnas & \multicolumn{6}{|l|}{} \\
\hline 1_Yes & 0.3639 & 0.653 & 0.514 & 1.439 & 1.106 & 0.277 \\
\hline constant & -0.5806 & -1.291 & 0.197 & & & \\
\hline
\end{tabular}
--------------------------------------------------------------------------
            b = raw coefficient
            z = z-score for test of b=0
    p>|z| = p-value for z-test
        e^b = exp(b) = factor change in odds for unit increase in X
e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
    SDofX = standard deviation of X
```

Obtaining a post-doctoral fellowship increases the odds of obtaining a faculty position by a factor of 3.5, holding other variables constant ( $\mathrm{p}<0.001$, two-tailed test).

A standard deviation increase in mentor's citations, about 25 , increases the odds of a faculty position by a factor of 1.7 ( $\mathrm{p}<0.01$, two-tailed test).

## \#13 Comparing Coefficients from Logit and Probit

Here we run a probit model using the same variables and store the results. We use estimates table to list the logit and probit estimates side-by-side. The logit estimates are around 1.7 times as large as the probit estimates. Why is this?

```
. probit workfac i.fellow c.phd c.mcit3 i.mnas, nolog
<SNIP>
. estimates store estprobit
. estimates table estlogit estprobit, b(%7.2f) t(%7.2f) stats(N) modelwidth(10)
---------------------------------------
    Variable | estlogit estprobit
------------+--------------------------
    fellow
        1_Yes | 1.25 0.76
                    4.52 4.56
```



```
            phd -0.06 -0.04
                -0.43 -0.44
                        0.02 0.01
                        2.89 2.97
                            0.36 0.23
                        0.65 0.71
                            -0.58 -0.35
                    -1.29 -1.26
                            N | 264 264
                        legend: b/t
```


## 5 Binary Outcomes: Advanced Post-estimation

The file cda16-lab-brm-advanced-review. do contains these Stata commands. The \#'s correspond to sections in the do-file. cda16lab-brm-advanced-exercise.do contains details on the exercise.

```
#1 Load the Data
use cda-scireview4, clear
```

\#2 Examine data, select variables, and verify
keep workfac fellow phd mcit3 mnas
tab1 fellow mnas workfac, miss
codebook, compact
\#3 Binary logit model
The same model is estimated as before.

```
logit workfac i.fellow c.phd c.mcit3 i.mnas, nolog
```

\#4 Store the estimation results
It is sometimes necessary to store estimation results to restore later (e.g., when posting with margins). You do this using estimates store. Here we store the estimates with the name estlogit.

```
estimates store estlogit
```


## \#5 Use over() to compute local means

Using the over (varlist) options with atmeans computes local means for each combination of categorical variables listed in varlist. Only categorical variables can be included in the over () option. If atmeans is not specified, probabilities are computed as observed separately for the combination of categorical variables in varlist.

```
. mtable, over(fellow) atmeans
```

Expression: Pr(workfac), predict()


Specified values where .n indicates no values specified with at()


## \#6 Using if statements to obtain the same result

You can compute predictions using local means or observed values by using the if statement. This procedure is flexible and you can specify multiple variables in the if statement. The results below correspond to those above.

```
. quietly mtable if fellow == 0 , atmeans atvars(1.fellow phd mcit3 1.mnas) brief
. mtable if fellow == 1 , atmeans atvars(1.fellow phd mcit3 1.mnas) brief below
Expression: Pr(workfac), predict()
```

|  | $\begin{aligned} & 1 . \\ & \text { fellow } \end{aligned}$ | phd | mcit3 | $\begin{array}{r} 1 \\ \text { mnas } \end{array}$ | $\operatorname{Pr}(\mathrm{y})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 3.05 | 18.3 | . 0516 | 0.406 |
| 1 | 1 | 3.37 | 24.2 | . 128 | 0.731 |

## \#7 Testing differences between ideal types

We provide the basic logic here of testing differences between ideal types by using mtable and multiple at () specifications. The same logic can be used in testing differences between local and global means, or just about anything! Refer to the lecture do-files for an exact and robust method of computing differences between groups using macros and multiple at () statements.

Including both multiple at () statements in a single mtable command and the post option computes the predicted probabilities of the different groups.

```
. mtable, at(fellow=0 mnas=0 phd=2 mcit=0) ///
> at(fellow=1 mnas=1 phd=4 mcit=75) post
Expression: Pr(workfac), predict()
```

|  | fellow | phd | mcit3 | mnas | $\operatorname{Pr}(\mathrm{y})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | 0 | 0 | 0.330 |
| 2 | 1 | 4 | 75 | 1 | 0.911 |

Specified values where .n indicates no values specified with at()


Now mlincom is used to test the difference between these two ideal types.

```
. mlincom 2-1
```

|  | lincom | pvalue | 11 | ul |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.581 | 0.000 | 0.427 |  |

The probability of being a faculty member is 0.60 higher for scientists from elite backgrounds with successful mentors than those from adequate backgrounds ( $\mathrm{p}<0.001$ ).

## \#8 Computing marginal effects in subgroups

The if qualifier can be used with mchange as well to compute the marginal effects of variables. Below we compute the average marginal effect of mcit3 for those receiving post-doctorate fellowships and whose mentors were members of the NAS.

```
. estimates restore estlogit
(results estlogit are active now)
```

. mchange mcit3 if fellow==1 \& mnas==1 , amount(range) trim(10)
logit: Changes in $\operatorname{Pr}(y)$ | Number of obs = 14
Expression: Pr(workfac), predict(pr)

| \| | Change | p-value |
| :---: | :---: | :---: |
| mcit3 <br> $10 \%$ to $90 \%$ \| | $\mathbf{0 . 2 4 0}$ | 0.024 |

Average predictions

|  | 0_No | 1_Yes |
| :---: | :---: | :---: |
| $\operatorname{Pr}(\mathrm{y} \mid$ base $)$ | 0.185 | 0.815 |

1: Sample selection: if fellow==1 \& mnas==1 \& e(sample)==1
We computed the change in mcit 3 over the trimmed range from the $10^{\text {th }}$ to $90^{\text {th }}$ percentiles. To make our interpretation understandable, we use centile with an if qualifier to obtain the number of citations at these locations.

```
. centile mcit3 if fellow==1 & mnas==1, centile(10 90)
```

| Variable | Obs | Percentile | Centile | -- Binom. Interp. -[95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mcit3 | 14 | 10 | 2.5 | 2 | 25.22268* |
|  |  | 90 | 92 | 43.71093 | 127* |

* Lower (upper) confidence limit held at minimum (maximum) of sample

On average, for scientists with postdoctoral fellowships and mentors who were members of the NAS, increasing the number of their mentor's citations from 2 to 92 increases the probability of having a faculty job by 0.24 ( $\mathrm{p}<0.05$ ).

## \#9 Second differences

Second differences can be computed by combing the $\mathbf{d y d x}()$ and $\operatorname{over}()$ options. This computes the discrete change of the variable specified with $\mathbf{d y d x}()$ restricting the sample to cases selected by the over () option.

The post option saves results which allows mlincom to compute the second difference. First we estimate a logit model with an interaction between the two variables used for the second difference.

```
. logit workfac i.fellow##i.mnas c.phd c.mcit3, nolog
<snip>
```

Next, mtable computes the discrete change of fellow across each category of mnas.

```
. mtable, dydx(fellow) over(mnas) stat(ci) post
```

Expression: Pr(workfac), predict()

|  | $\operatorname{Pr}(\mathrm{y})$ | 11 | ul |
| :---: | :---: | :---: | :---: |
| 0 No | 0.296 | 0.175 | 0.417 |
| 1 Yes | 0.158 | -0.233 | 0.549 |

Specified values where .n indicates no values specified with at()


We use mlincom to test if the discrete change of fellow is significantly different between categories of mnas.
. mlincom 1-2


Although the effect of having a postdoctoral fellowship is estimated to be 0.14 higher for scientists whose mentor was in the National Academy of Science, this difference is not statistically significant ( $\mathrm{p}>0.10$ ).

## \#10 Graphing discrete changes

In the last section, we noted that overlapping confidence intervals do not necessarily indicate a lack of statistical significance. We now show how to graph discrete changes between categorical variables. First, we reproduce the graph from section 3.11.

```
estimates restore estlogit
mgen, at(fellow=1 mcit3=(0(5)130)) atmeans stub(fel1) predlabel(Fellow)
    <snip>
mgen, at(fellow=0 mcit3=(0(5)130)) atmeans stub(fel0) predlabel(Not a Fellow)
    <snip>
graph twoway ///
    (rarea fel1ul fel1ll fel1mcit3, col(gs12)) ///
    (rarea fel0ul fel0ll fel1mcit3, col(gs12)) ///
    (connected fel1pr fel1mcit, lpat(dash) msym(i)) ///
    (connected fel0pr fel1mcit, lpat(solid) msym(i))
    , ///
    legend(on order(3 4)) ylab(0(.25)1, grid gmin gmax) ytitle("Pr(Faculty)") ///
    xlab(0(10)130) xtitle("Mentor's # of Citations") name(overlap1, replace)
```

Next, we use mgen to compute the discrete change of fellow over the range of mcit3.

| Predictions from: margins, dydx(fellow) at(mcit3=(0) 5 )130)) atmeans predict(pr) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | Obs | Unique | Mean | Min | Max | Label |
| fellowDCd_~1 | 27 | 27 | . 2115119 | . 0870482 | . 3027023 | Discrete change |
| fellowDCllı | 27 | 27 | . 0918198 | -. 0313136 | . 1798619 | 95\% lower limit |
| fellowDCul1 | 27 | 27 | . 331204 | . 20541 | . 4260783 | 95\% upper limit |

Specified values of covariates

| 1 |  | 1 |
| :---: | :---: | :---: |
| fellow | phd | mnas |
| . 4128788 | 3.181894 | . 0833333 |

Finally, we plot the discrete change and combine this graph with the one from section 3.11. Note that the discrete change between levels of fellow is statistically significant at levels of mcit3 where confidence intervals overlap.

```
. graph twoway ///
    (rarea fellowDCul1 fellowDCll1 fellowDCmcit3, col(gs12)) ///
    (connected fellowDCd_pr1 fellowDCmcit3, lpat(solid) msym(i)) ///
        ///
    legend(on order(2)) ///
    ylab(-0.1(.1).5, grid gmin gmax) ytitle("Discrete Change") ///
    xlab(0(10)130) xtitle("Mentor's # of Citations") yline(0) name(overlap2, replace)
. graph combine overlap1 overlap2, row(1) ///
> title("Predicted probabilities and discrete change of having a Faculty Position")
```

Predicted probabilities and discrete change of having a Faculty Position



For an otherwise average scientist, having a postdoctoral fellowship increases the probability of being a faculty at a university. However, when the scientist's mentor has more than 100 citations, this difference is no longer statistically significant.

## 6 Hypothesis Testing

The file cda16lab-test-review. do contains these Stata commands. The \#'s correspond to sections in the do-file. cda16lab-test-exercise.do contains details on the exercise.
\#1 Load the Data

```
use cda-scireview4, clear
```

\#2 Examine data, select variables, and verify

```
keep workfac female fellow phd mcit3 mnas
tab1 workfac female fellow mnas, miss
codebook, compact
```


## \#3 Computing a z-test

z-scores are produced with the standard ML estimation commands. The $z$-scores are in the $4^{\text {th }}$ column, labeled " $z$ ". Estimation results are stored with estimates store using the name base.

| . logit workfac i.female i.fellow c.phd c.mcit3 i.mnas, nolog |  |  |  |
| :--- | :--- | :--- | :--- |
| Logistic regression | Number of obs | $=$ | 264 |
|  | LR chi2(5) | $=$ | 41.72 |
|  | Prob $>$ chi2 | $=$ | 0.0000 |
| Log likelihood $=-161.51514 ~$ | Pseudo R2 | $=$ | 0.1144 |


| workfac | Coef. | Std. Err | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| female |  |  |  |  |  |  |
| 1_Yes | -. 5869003 | . 2911944 | -2.02 | 0.044 | -1.157631 | -. 0161698 |
| fellow |  |  |  |  |  |  |
| 1_Yes | 1.118336 | . 2844612 | 3.93 | 0.000 | . 5608027 | 1.67587 |
| phd | . 002004 | . 1521298 | 0.01 | 0.989 | -. 2961648 | . 3001729 |
| mcit3 | . 0190813 | . 0072584 | 2.63 | 0.009 | . 0048551 | . 0333075 |
|  | mnas |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1_Yes | . 3537104 | . 5652778 | 0.63 | 0.531 | -. 7542137 | 1.461635 |
| _cons | -. 5004836 | . 4539085 | -1.10 | 0.270 | -1.390128 | . 3891607 |

. estimates store base

## \#4 Single Coefficient Wald Test

The test command computes a Wald test that a single coefficient is equal to zero. Note that the name 1.female exactly matches the output from the logit output. Entering "female" or "i.female" will result in an error. This can be confusing when working with factor variables.

```
. test 1.female
```

( 1) [workfac]1.female $=0$

$$
\begin{array}{rll}
\text { chi2 }(1) & = & 4.06 \\
\text { Prob }>\text { chi2 } & = & 0.0439
\end{array}
$$

The effect of being female on the probability of being a faculty member is significant at the .05 level ( $X^{2}=4.06, d f=1, p=0.04$ ).

## \#5 Multiple Coefficients Wald Test

We can also test if multiple coefficients are simultaneously equal to zero.

```
. test mcit3 1.mnas
    ( 1) [workfac]mcit3 = 0
    ( 2) [workfac]1.mnas = 0
        chi2( 2) = 
```

The hypothesis that the effects of mentor's citations and mentor's membership in the NAS on the probability of being a faculty member are simultaneously equal to zero can be rejected at the .05 level ( $X^{2}=7.78, d f=2, p=0.02$ ).

## \#6 Equal Coefficients Wald Test

We can test whether the magnitude of the effect of being female equals the effect of having a fellowship. Since female and fellow have opposite signs, we multiple fellow by -1 .

```
. test 1.female = -1*1.fellow
    ( 1) [workfac]1.female + [workfac]1.fellow = 0
    chi2( 1) = 1.42
    Prob > chi2 = 0.2331
```

The effects of being a female and having a postdoctoral fellowship on the probability of being a faculty member are not significantly different ( $X^{2}=1.42, d f=1, p=0.23$ ).

## \#7 Single Coefficient LR Test

To test that the effect of female is zero, run the base model without female and compare it with the full model, stored earlier as base, using lrtest estname1 estname2.

```
. logit workfac i.fellow c.phd c.mcit3 i.mnas, nolog
<snip>
. estimates store dropfemale
. lrtest base dropfemale
Likelihood-ratio test 
```

The effect of being female on the probability of being a faculty member is significant at the .05 level ( $L R X^{2}=4.08, d f=1, p=0.04$ ).

## \#8 Multiple Coefficients LR Test

To test if the effects of mcit3 and mnas are jointly zero, run the comparison model without these variables, store using estimates store, and then compare models using lrtest.

```
. logit workfac i.female i.fellow c.phd
<snip>
. estimates store dropmcit3mnas
. lrtest base dropmcit3mnas
```

| Likelihood-ratio test | LR chi2(2) $=$ | 9.19 |
| :--- | :--- | ---: |
| (Assumption: dropmcit3mnas nested in base) | Prob $>$ chi2 $=$ | 0.0101 |

The hypothesis that the effects of mentor's citations and the mentor's status in the NAS on the probability of being a faculty member are simultaneously equal to zero can be rejected at the .05 level $\left(L R X^{2}=9.19\right.$, $d f=2, p<0.05)$.

## \#9 LR Test All Coefficients are Zero

To test that all of the regression coefficients are zero, we estimate the model with only an intercept, store the results, and compare the models using lrtest. This test statistic is identical to the one at the top of the estimation output for the full model shown in 4.3.

```
. logit workfac
<snip>
. estimates store intercept
. lrtest base intercept
Likelihood-ratio test 
```

We can reject the hypothesis that all coefficients except the intercept are zero at the .01 level
( $L R X^{2}=41.72, d f=5, p<0.01$ ).

## 7 Measures of Fit

The file cda16lab-fit-review.do contains these Stata commands. The \#'s correspond to sections in the do-file. cda16lab-fit-exercise.do contains details on the exercise.

```
#1 Load the Data
use cda-scireview4, clear
```

\#2 Examine data, select variables, and verify
keep workfac female fellow phd mcit3 mnas
tab1 workfac female fellow mnas, miss
codebook, compact

## \#3 Fit Statistics

fitstat computes measures of fit for your model. The save option saves the measures for subsequent comparisons. dif compares the measures for the current model with those of the saved model. Here we compare the base model to the model without mcit3 and mnas.

```
. logit workfac i.female i.fellow c.phd c.mcit3 i.mnas
<snip>
```

. fitstat, save

|  | logit |
| :---: | :---: |
| Log-likelihood |  |
| Model | -161.515 |
| Intercept-only | -182.377 |
| Chi-square |  |
| Deviance (df=258) | 323.030 |
| LR ( $\mathrm{df}=5$ ) | 41.723 |
| p -value | 0.000 |
| R2 |  |
| McFadden | 0.114 |
| <snip> |  |

```
. fitstat, dif
\begin{tabular}{|c|c|c|c|}
\hline & Current & Saved & Difference \\
\hline \multirow[t]{2}{*}{Log-likelihood Model} & & & \\
\hline & -166.112 & -161.515 & -4.596 \\
\hline Intercept-only & -182.377 & -182.377 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{r|rrr} 
Chi-square & & & \\
D \((\mathrm{df}=260 / 258 / 2)\) & 332.223 & 323.030 & 9.193 \\
\(\operatorname{LR~}(\mathrm{df}=3 / 5 /-2)\) & 32.530 & 41.723 & -9.193
\end{tabular}
\begin{tabular}{r|ccc} 
& & & \\
R2 \begin{tabular}{r|r} 
McFadden
\end{tabular} & 0.089 & 0.114 & -0.025 \\
McFadden (adjusted) & 0.067 & 0.081 & -0.014 \\
McKelvey \& Zavoina & 0.145 & 0.201 & -0.055 \\
Cox-Snell/ML & 0.116 & 0.146 & -0.030 \\
Cragg-Uhler/Nagelkerke & 0.155 & 0.195 & -0.040 \\
Efron & 0.120 & 0.151 & -0.031 \\
Tjur's D & 0.119 & 0.150 & -0.030 \\
Count & 0.659 & 0.678 & -0.019 \\
Count (adjusted) & 0.268 & 0.309 & -0.041
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{IC} \\
\hline AIC & 340.223 & 335.030 & 5.193 \\
\hline AIC divided by N & 1.289 & 1.269 & 0.020 \\
\hline BIC (df=4/6/-2) & 354.527 & 356.486 & -1.959 \\
\hline \multicolumn{4}{|l|}{Variance of} \\
\hline e & 3.290 & 3.290 & 0.000 \\
\hline \(y\)-star & 3.850 & 4.116 & -0.266 \\
\hline
\end{tabular}
```

Note: Likelihood-ratio test assumes current model nested in saved model.
Difference of 1.959 in BIC provides weak support for current model.
\#4 Fit Statistics, Information measures only
fitstat with the ic option presents only information measures BIC and AIC. ic can be combined with the save and dif options.

```
. quietly logit workfac i.female i.fellow c.phd c.mcit3 c.mnas
```

. fitstat, ic

|  | logit |
| :---: | :---: |
| AIC |  |
| AIC | 335.030 |
| (divided by N) | 1.269 |
| BIC |  |
| BIC (df=6) | 356.486 |
| BIC (based on deviance) | -1115.565 |
| BIC' (based on LRX2) | -13.843 |

## \#5 Plotting Influential Cases Using dbeta

We compute influence using the command predict, dbeta. Then we sort our data in some meaningful way (here we choose to sort by phd). Next, we generate the variable index whose values correspond to the rank order of phd (because of the way the data are sorted). Finally, we plot the dbeta distance against the rank order of phd. You can also plot residuals as shown in the lecture notes.

```
. twoway scatter dbeta index, ysiz(1) xsiz(2) ///
> xlab(0(100)300) ylab(0(.2)1., grid)
```

```
> xscale(range(0, 300)) yscale(range(0, 1.)) ///
> xtitle("Observation Number") msym(none) mlab(index) mlabposition(0)
graph export `pgm'-cookplot.`graphtype'.emf, replace
```



## 8 Binary Outcomes: Complex Sampling and Nonlinearity

The file cda16lab-brm-complications-review. do contains these commands. The \#'s correspond to sections in the do-file. cda16lab-brm-complications-exercise.do contains details on the exercise.

```
#1 Load the Data
use cda-hrs4, clear
#2 Examine data, select variables, and verify
keep arthritis age female ed11less ed12 ///
    ed1315 ed16plus secu kwgtr stratum
tab1 arthritis female ed11less ed12 ed1315 ed16plus, miss
codebook, compact
```


## \#3 Prepare Stata for svy commands

Always double check variables related to survey design to avoid careless mistakes, like using the wrong variables to define your sample.

```
. codebook secu kwgtr stratum, compact
```



Then declare that you are using a complex sampling design.

```
. svyset secu [pweight=kwgtr], ///
> strata(stratum) vce(linearized) singleunit(missing)
```


## \#4 Examine Descriptive Statistics with and without Survey Variables

Next, look at descriptive statistics without survey adjustments and note how the survey adjustments affect variables. First, we examine the mean and standard deviation without accounting for survey complexities.

```
. mean arthritis female age ed11less ed12 ed1315 ed16plus
<snip>
. estat sd
```

|  | Mean | Std. Dev. |
| :---: | :---: | :---: |
| arthritis | . 5999673 | . 489918 |
| female | . 5898261 | . 4918785 |
| age | 68.54446 | 11.104 |
| ed11less | . 2433891 | . 4291397 |
| ed12 | . 3342239 | . 4717313 |
| ed1315 | . 209367 | . 4068679 |
| ed16plus | . 21302 | . 4094528 |

We compare these results to statistics accounting for survey complexities by adding svy: before mean.

```
. svy: mean arthritis female age ed11less ed12 ed1315 ed16plus
(running mean on estimation sample)
<snip>
. estat sd
-------------------------------------
\begin{tabular}{|c|c|c|}
\hline & Mean & Std. Dev. \\
\hline arthritis & . 5699108 & . 495103 \\
\hline female & . 5448029 & . 4980034 \\
\hline age & 66.54182 & 10.37453 \\
\hline ed11less & . 1958271 & . 3968478 \\
\hline ed12 & . 3277077 & . 4693915 \\
\hline ed1315 & . 2253607 & . 4178321 \\
\hline ed16plus & . 2511045 & . 4336614 \\
\hline
\end{tabular}
```


## \#5 Lowess plot

Now that we've set up our survey data, we can analyze nonlinearities in the right hand side of the model. A lowess plot shows a moving average of y as x changes. For key variables, a lowess plot can be a valuable first step in determining potential nonlinearities. Stata typically takes longer to produce lowess plots than other kinds of plots, so be patient. lowess does not support svy :, so these results are only exploratory.

```
. lowess arthritis age, bwidth(0.4) jitter(4) msym(oh)
. graph export `pgm'-lowess.`graphtype', replace
```



## \#6 Logit Models with Age, Age-squared, and Age-Cubed

Since the lowess plot suggests age has a nonlinear association with arthritis that cannot be captured by a logit model in which only age is included, we'll examine this more formally. We begin by estimating a model with only age, then add age-squared, and finally add age-cubed. After each regression, we compute a Wald test determining whether the age terms are simultaneously equal to zero. logit is preceded by svy: which means that the models are fit taking into account the complex survey design. A squared term is added by including the factor notation c.age\#\#c. age as an independent. \#\# indicates that both age and age-squared are to be
included in the model. To see independent variable names for Wald tests, include the command logit, coeflegend after running a logistic regression. First for the model with only age:

```
. * aM1: age
. svy: logit arthritis female ed11less ed1315 ed16plus age
(running logit on estimation sample)
<snip>
. estimates store aM1
. test age
Adjusted Wald test
( 1) [arthritis]age = 0
F( 1, 56) = 480.28
        Prob > F = 0.0000
```

Adding age-squared:
. * aM2: age + age^2
. svy: logit arthritis female ed11less ed1315 ed16plus c.age\#\#c.age
(running logit on estimation sample)
<snip>
. estimates store aM2
. test age c.age\#c.age
Adjusted Wald test
( 1) [arthritis]age $=0$
( 2) [arthritis]c.age\#c.age $=0$
$F(2, \quad 55)=272.38$
Prob $>F=0.0000$
Adding age-cubed:

```
. * aM3: age + age^2 + age^3
. svy: logit arthritis female ed11less ed1315 ed16plus ///
> c.age c.age#c.age c.age#c.age#c.age
(running logit on estimation sample)
<snip>
. estimates store aM3
. test age c.age#c.age c.age#c.age#c.age
Adjusted Wald test
( 1) [arthritis]age = 0
( 2) [arthritis]c.age#c.age = 0
( 3) [arthritis]c.age#c.age#c.age = 0
    F( 3, 54) = 175.52
        Prob > F = 0.0000
```

The estimates table command provides a concise way to view the three regression models.

```
. * tables of estimated coefficients
. estimates table aM1 aM2 aM3, title(Arthritis) ///
> eform b(%9.3f) t(%9.2f) stats(N)
Arthritis
\begin{tabular}{|c|c|c|c|}
\hline Variable & aM1 & aM2 & aM3 \\
\hline female & 1.779 & 1.813 & 1.815 \\
\hline & 12.99 & 13.13 & 13.16 \\
\hline ed11less & 1.206 & 1.217 & 1.217 \\
\hline
\end{tabular}
```



## \#7 A closer look at the probabilities

After determining that age, age-squared, and age-cubed are all significant, it is time to graph the predicted probabilities. We use mgen to create variables with predictions. Notice that as age changes, mgen uses margins to automatically increase age-squared and age-cubed.

```
. estimates restore aM1
(results aM1 are active now)
. mgen, at(age=(25(2.5)105) female=1 ed11less=0 ed1315=0 ed16plus=0) ///
> stub(aM1) noci predlabel(PR(Arthristis|Age))
<snip>
. estimates restore aM2
. mgen, at(age=(25(2.5)105) female=1 ed11less=0 ed1315=0 ed16plus=0) ///
> stub(aM2) noci predlabel(PR(Arthristis|Age_Squared))
<snip>
. estimates restore aM3
. mgen, at(age=(25(2.5)105) female=1 ed11less=0 ed1315=0 ed16plus=0) ///
> stub(aM3) noci predlabel(Pr(Arthristis|Age_cubed))
<snip>
```

\#8: Graph the probabilities
Now that we've created variables for the predicted probabilities with mgen, we can to make the graph below.

```
. graph twoway ///
> (connected aM1pr aM1kage, msym(i) lcol(red) lpat(solid)) ///
    (connected aM2pr aM2kage, msym(i) lcol(green) lpat(dash)) ///
    (connected aM3pr aM3kage, msym(i) lcol(blue) lpat(shortdash)), ///
    title("Women with a high school education") xtitle("Age") ///
    ytitle("Pr(Arth|age,X)") xlabel(25(10)105) ylabel(0(.2)1, grid) ///
    yline(0 1, lcol(gs13))
graph export `pgm'-probplot.`graphtype', replace
```



## 9 Nominal Outcomes

cda16lab-nrm-review. do contains these Stata commands. The lab guide does not have exercise associated with Part 9 of the lecture. The \#'s correspond to sections in the do-file. cda16lab-nrmexercise.do contains details on the exercise.

## \#1 Load the Data

```
use cda-scireview4, clear
```

\#2 Examine data, select variables, and verify
Make sure to pay special attention to the distribution of the outcome variable jobprst.

```
keep jobprst pub1 phd female
tab1 pub1 female, miss
codebook, compact
```


## \#3 Multinomial Logit

mlogit estimates the multinomial logit model. The option baseoutcome() allows you to set the comparison category. estimates store stores estimation results for model comparison.


| 2_Good |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pub1 | -. 2360238 | . 1027013 | -2.30 | 0.022 | -. 4373146 | -. 0347329 |
| phd | -2.473911 | . 5486436 | -4.51 | 0.000 | -3.549233 | -1.398589 |
| female |  |  |  |  |  |  |
| 1_Yes | 2.957967 | 1.104288 | 2.68 | 0.007 | . 7936018 | 5.122331 |
| _cons | 10.9781 | 2.257877 | 4.86 | 0.000 | 6.552745 | 15.40346 |
| 3_Strong |  |  |  |  |  |  |
| pub1 | -. 1196281 | . 0831959 | -1.44 | 0.150 | -. 2826891 | . 0434329 |
| phd | -1.080595 | . 5279581 | -2.05 | 0.041 | -2.115374 | -. 0458166 |
| female |  |  |  |  |  |  |
| 1_Yes | 1.76863 | 1.082655 | 1.63 | 0.102 | -. 3533356 | 3.890596 |
| _cons | 6.285116 | 2.216631 | 2.84 | 0.005 | 1.940598 | 10.62963 |
| 4_Dist | (base outc | me) |  |  |  |  |
| . estimates s | re base |  |  |  |  |  |
| \#4 Single Var | le LR Test |  |  |  |  |  |

In the MNLM, testing that a variable has no effect requires a test that $J-1$ coefficients are simultaneously equal to zero. For example, the effect of i.female involves three coefficients. We can use an LR test to test that all three are simultaneously equal to zero. First, we save the base model (which we did above); second, we estimate the model without i.female and store the estimation results; and third, we compare the two models using lrtest estname1 estname2.

```
. quietly mlogit jobprst c.pub1 c.phd, baseoutcome(4)
. estimates store dropfemale
. lrtest base dropfemale
Likelihood-ratio test LR chi2(3) = 19.17
(Assumption: dropfemale nested in base) Prob > chi2 = 0.0003
```

The effect of gender on job prestige is significant at the .001 level $\left(L R X^{2}=19.17, d f=3, p=<.001\right)$.
Another way to do this is to use the command mlogtest after fitting the model. This saves your having to reestimate the model minus the variable whose effect you want to test.

```
. estimates restore base
(results base are active now)
. mlogtest, lr
Likelihood-ratio tests for independent variables (N=264)
    Ho: All coefficients associated with given variable(s) are 0
\begin{tabular}{|c|c|c|c|}
\hline & chi2 & df & P>chi2 \\
\hline pub1 & 5.600 & 3 & 0.133 \\
\hline phd & 87.236 & 3 & 0.000 \\
\hline 1.female & 19.168 & 3 & 0.000 \\
\hline
\end{tabular}
```


## \#5 Single Coefficient Wald Test

Wald tests can also be computed using the test command. For factor variables, you must enter the variable exactly as it is shown in the regression output, in this case 1.female.
. test 1.female

```
( 1) [1_Adeq]1.female = 0
( 2) [2_Good]1.female = 0
( 3) [3_Strong]1.female = 0
( 4) [4_Dist]1o.female = 0
    Constraint 4 dropped
```



Again, you can automate this process using mlogtest.

```
. mlogtest, wald
```

Wald tests for independent variables (N=264)
Ho: All coefficients associated with given variable(s) are 0

|  | chi2 | ff | P>chi2 |
| :---: | :---: | :---: | :---: |
| pub1 | 5.421 | 3 | 0.143 |
| phd | 56.559 | 3 | 0.000 |
| 1.female | 15.748 | 3 | 0.001 |

The effect of gender on job prestige is significant at the .001 level ( $X^{2}=15.7, d f=3, p=<.001$ ).

## \#6 Combining Outcomes Test (low priority unless you need this test)

test can also compute a Wald test that two outcomes can be combined. Recall, that the coefficients for category 1_Adeq were in comparison to the category 4_Dist. Therefore, we are testing whether we can combine 1_Adeq and 4_Dist. Note that [1_Adeq] is necessary in specifying the test across categories and that [1_Adeq] does not equal [1_adeq] since syntax in Stata is case sensitive.

```
. test [1_Adeq]
( 1) [1_Adeq]pub1 = 0
( 2) [1_Adeq]phd = 0
( 3) [1_Adeq]0b.female = 0
( 4) [1_Adeq]1.female = 0
    Constraint 3 dropped
```

| chi2 $(3)$ | $=19.01$ |
| ---: | :--- |
| Prob $>$ chi2 | $=0.0003$ |

We can reject the hypothesis that adequate and distinguished are indistinguishable ( $X^{2}=19.0, d f=3$, $p<.001$ ).

This test could be done for combining other categories as well. For example, we could test whether we can combine categories Adequate and Good by typing test [1_Adeq=2_Good]. But the easier way is to use mlogtest.

```
. mlogtest, combine
```

Wald tests for combining alternatives ( $\mathrm{N}=264$ )

Ho: All coefficients except intercepts associated with a given pair of alternatives are 0 (i.e., alternatives can be combined)

| Alternatives test | chi2 | df | P>chi2 |
| :---: | :---: | :---: | :---: |
| 1_Adeq- 2_Good | 5.189 | 3 | 0.158 |
| 1_Adeq-3_Strong | 19.884 | 3 | 0.000 |
| 1_Adeq- 4_Dist | 19.015 | 3 | 0.000 |
| 2_Good-3_Strong | 51.717 | 3 | 0.000 |

```
    2_Good- 4_Dist | 31.132 3 0.000
3_Strong- 4_Dist | 9.173 3 0.027
```

We cannot reject the hypothesis that categories adequate and good are indistinguishable ( $X^{2}=5.2, d f=3$, $p=0.16$ ).

## \#7 Testing for IIA (low priority unless you need this test)

mlogtest can be used to test the IIA (independence of irrelevant alternatives) assumption. While often recommended, this test is not very useful. Nonetheless, mlogtest computes both a Hausman and a SmallHsiao test. Because the Small-Hsiao test requires randomly dividing the data into subsamples, the results will differ with successive calls of the command. To obtain test results that can be replicated, we set the seed used by the random-number generator. You can set the seed to whatever number you like. But when setting seeds in research that will be published, refer to the suggestions made in help set seed, as some seeds are more trustworthy than others.

```
. set seed 4415906
. mlogtest , iia
Hausman tests of IIA assumption (N=264)
    Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
\begin{tabular}{|c|c|c|c|}
\hline & chi2 & df & P>chi2 \\
\hline 1_Adeq & 3.588 & 8 & 0.892 \\
\hline 2_Good & 17.887 & 8 & 0.022 \\
\hline 3_Strong & -45.118 & 8 & \\
\hline 4 Dist & -0.222 & 8 & \\
\hline
\end{tabular}
    Note: A significant test is evidence against Ho.
    Note: If chi2<0, the estimated model does not meet asymptotic assumptions.
suest-based Hausman tests of IIA assumption (N=264)
    Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
\begin{tabular}{|c|c|c|c|}
\hline & chi2 & df & P>chi2 \\
\hline 1_Adeq & 4.309 & 8 & 0.828 \\
\hline 2_Good & 9.915 & 8 & 0.271 \\
\hline 3_Strong & 21.271 & 8 & 0.006 \\
\hline 4_Dist & 4.377 & 8 & 0.822 \\
\hline
\end{tabular}
Note: A significant test is evidence against Ho.
Small-Hsiao tests of IIA assumption ( \(N=264\) )
Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1_Adeq & -83.512 & -72.740 & 21.543 & 8 & 0.006 \\
\hline 2_Good & -70.925 & -55.187 & 31.476 & 8 & 0.000 \\
\hline 3_Strong & -76.846 & -56.081 & 41.531 & 8 & 0.000 \\
\hline 4_Dist & -112.991 & -104.306 & 17.369 & 8 & 0.026 \\
\hline
\end{tabular}
```

Note: A significant test is evidence against Ho.
As is often the case with IIA tests, the evidence is mixed.

## \#8 Predicted Probabilities

mtable computes predicted probabilities for values of the independent variables. By default, mtable shows predicted probabilities for each outcome category. If you only want to list certain outcome categories, use the outcome () option.

```
. mtable, atmeans stat(ci)
Expression: Pr(jobprst), predict(outcome())
\begin{tabular}{|c|c|c|c|c|}
\hline & 1_Adeq & 2_Good & 3_Strong & 4_Dist \\
\hline \(\operatorname{Pr}(\mathrm{y})\) & 0.128 & 0.513 & 0.344 & 0.014 \\
\hline 11 & 0.081 & 0.440 & 0.274 & -0.004 \\
\hline ul & 0.176 & 0.587 & 0.415 & 0.032 \\
\hline
\end{tabular}
```

Specified values of covariates


For an average scientist, the probability of being employed in a department rated as good is $0.51(95 \% \mathrm{CI}$ : $0.44,0.59$ ).

## \#9 Marginal and Discrete Change

We use mchange to calculate marginal and discrete change. By default, these are AME's. We only consider discrete change, specified by amount (one sd).

| mlogit: Changes in $\operatorname{Pr}(\mathrm{y})$ \| Number of obs = 264 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Expression: Pr(jobprst), predict(outcome()) |  |  |  |  |
|  | 1 Adeq | 2 Good | 3 Strong | 4 Dist |
| pub1 |  |  |  |  |
| +1 | 0.003 | -0.021 | 0.011 | 0.007 |
| p -value | 0.732 | 0.079 | 0.293 | 0.084 |
| +SD | 0.007 | -0.053 | 0.028 | 0.018 |
| p -value | 0.750 | 0.076 | 0.319 | 0.106 |
| phd |  |  |  |  |
| +1 | -0.036 | -0.201 | 0.144 | 0.093 |
| p -value | 0.002 | 0.000 | 0.000 | 0.022 |
| +SD | -0.037 | -0.202 | 0.145 | 0.093 |
| p-value | 0.002 | 0.000 | 0.000 | 0.022 |
| female \| 0.022 |  |  |  |  |
| 1 Yes vs 0 No | -0.043 | 0.224 | -0.116 | -0.065 |
| $p$-value | 0.267 | 0.000 | 0.032 | 0.005 |

Average predictions


On average, increasing PhD prestige by one level increases the probability on having a distinguished job by 0.09 ( $\mathrm{p}<0.01$, two-tailed test).

On average, being a female scientist is expected to decrease the probability of a job in a strong
department by 0.12 ( $\mathrm{p}<0.05$, two-tailed test) and to decrease the probability of being in a distinguished department by 0.07 ( $p<0.01$, two-tailed test).

## \#10 Plot Discrete Change

One difficulty with nominal outcomes is the many coefficients that need to be considered. To help you sort out the information, discrete change coefficients can be plotted using mchangeplot. We recommend adding a note to the plot that includes the values and value labels. mchangeplot mustrun after mchange. We use aspect (.4) to change the vertical spacing of the graph.

```
. mchangeplot pub1 phd 1.female aspect(.4) ///
> note(Job: 1=Adeq 2=Good 3=Strong 4=Distinguished)
. graph export `pgm'-mchangeplot.`graphtype', replace
```



> The average marginal effects of a standard deviation change in PhD prestige and of being female are larger than the effects of a standard deviation change in publications. On average, a standard deviation increase in PhD prestige increases the probability of being in a strong (3) department and decreases the probability of being in a good (2) department by about .20. Being female increases the probability of being in a good (2) department by .22 and decreases the probability of being in a strong (3) one by .12 .

We could check the output from mchange to determine if the effects are significant, or we could indicate this in the graph by using the significance() option.

## \#11 Odds Ratios

listcoef computes the factor change coefficients for each of the comparisons. The output is arranged by the independent variables.
. listcoef, help
mlogit ( $N=264$ ): Factor change in the odds of jobprst
Variable: pub1 (sd=2.581)

|  |  | b | z | $P>\|z\|$ | $e^{\wedge} \mathrm{b}$ | $\mathrm{e}^{\wedge} \mathrm{bStdX}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1_Adeq | vs 2_Good | 0.0783 | 0.879 | 0.379 | 1.081 | 1.224 |
| 1_Adeq | vs 3_Strong | -0.0381 | -0.412 | 0.680 | 0.963 | 0.906 |
| 1_Adeq | vs 4_Dist | -0.1577 | -1.354 | 0.176 | 0.854 | 0.666 |
| 2_Good | vs 1_Adeq | -0.0783 | -0.879 | 0.379 | 0.925 | 0.817 |
| 2_Good | vs 3_Strong | -0.1164 | -1.623 | 0.105 | 0.890 | 0.741 |
| 2_Good | vs 4_Dist | -0.2360 | -2.298 | 0.022 | 0.790 | 0.544 |
| 3_Strong | vs 1_Adeq | 0.0381 | 0.412 | 0.680 | 1.039 | 1.103 |
| 3_Strong | vs 2_Good | 0.1164 | 1.623 | 0.105 | 1.123 | 1.350 |
| 3_Strong | vs 4_Dist | -0.1196 | -1.438 | 0.150 | 0.887 | 0.734 |
| 4_Dist | vs 1_Adeq | 0.1577 | 1.354 | 0.176 | 1.171 | 1.502 |

```
4_Vs 2_Good vist |
4_Dist vs 3_Strong | 0.1196 1.438 0.150 1.127 1.362
<snip>
```


## \#12: Plot Odds Ratios

The odds ratios can be plotted in much the same way as the discrete changes by using the mlogitplot command. In the plot, a solid line indicates that the coefficient cannot differentiate between the two outcomes that are connected (i.e., the odds ratio is not significant). The significance level of the line is set with linep( ).

```
. mlogitplot pub1 phd 1.female ///
> note(Job: 1=Adeq 2=Good 3=Strong 4=Distinguished) linep(.1)
. graph export `pgm'-mlogitplot.`graphtype', replace
```



Here is a summary of the general pattern of effects:

The effects of publications are smallest, while the overall magnitude of effects of doctoral origin and being female being roughly equal. While doctoral prestige does not significantly affect the odds of working in adequate compared to a good department, it significantly increases the odds of strong and distinguished positions. Overall, being female increases the odds of less prestigious jobs.

## \#13: Adding Discrete Change to OR Plot

Information about the discrete change can be incorporated in the odds-ratio plot by using mlogitplot, mchange. Whereas the factor change in the odds is constant across the levels of all variables, the discrete change gets larger or smaller at different values of the independent variables. In the plot below, the discrete change is indicated by the size of the numbers with the area of the number proportional to the size of the discrete change. A number is underlined to indicate a negative discrete change. The offsetlist and msizefactor options "tweak" the graph to make it look better. Try experimenting with them. Try help mlogitplot for details.

```
. mlogitplot pub1 phd 1.female, ///
> note(Job: 1=Adeq 2=Good 3=Strong 4=Distinguished) linep(.1) mchange ///
> offsetlist(-1 0 1 0 1 -1 0 0 -1 0 1 -1) msizefactor(1.4)
. graph export `pgm'-mlogitplot-mchange.`graphtype', replace
```



## 10 Ordinal Outcomes

The file cda16lab-orm-review. do contains these Stata commands. The \#'s correspond to sections in the do-file. cda16lab-orm-exercise.do contains details on the exercise.

```
#1 Load the Data
use cda-scireview4, clear
```

\#2 Examine data, select variables, and verify
Be sure to look at the distribution of the outcome variable, in this case jobprst.

```
keep jobprst pub1 phd female
tab1 jobprst female, miss
codebook, compact
```

\#3 Ordered Logit
ologit and oprobit work in the same way. We only show ologit, but you could use oprobit.
. ologit jobprst c.pub1 c.phd i.female, nolog

| Ordered logistic regression | Number of obs | = | 264 |
| :---: | :---: | :---: | :---: |
|  | LR chi2(3) | = | 0.69 |
|  | Prob > chi2 | = | 0.0000 |
| Log likelihood = -254.51518 | Pseudo R2 |  | 0.1368 |


| jobprst | Coef. | Std. Err. | z | P> $\mid$ z $\mid$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pub1 | . 1078786 | . 0481107 | 2.24 | 0.025 | . 0135833 | . 2021738 |
| phd | 1.130028 | . 1444046 | 7.83 | 0.000 | . 8470003 | 1.413056 |
| female |  |  |  |  |  |  |
| 1_Yes | -. 6973579 | . 2617103 | -2.66 | 0.008 | -1. 210301 | -. 1844152 |
| /cut1 | . 9274554 | . 4268201 |  |  | . 0909033 | 1.764007 |
| /cut2 | 4.003182 | . 4996639 |  |  | 3.023859 | 4.982506 |
| /cut3 | 7.034637 | . 6296717 |  |  | 5.800503 | 8.26877 |

. estimates store ologit

## \#4 Predicted Probabilities in Sample

predict computes predicted probabilities after ologit or oprobit. It creates as many new variables as there are categories of the outcome variable so you will need to provide variable names that correspond to the four outcome categories. The first variable contains the probability associated with the lowest outcome; the second the probability associated with the second outcome; and so on. Remember to label the newly created variables.
predict jpad jpgo jpst jpdi
label var jpad "OLM Pr(Adeq)"
label var jpgo "OLM Pr(Good)"
label var jpst "OLM Pr(Strg)"
label var jpdi "OLM Pr(Dist)"
An easy way to see the range of predictions is with the command dotplot.
. dotplot jpad jpgo jpst jpdi, ylabel(0(.25).75)
. graph export `pgm'-dotplot. `graphtype', replace


## \#5 Predict Specific Probabilities

mtable computes the predicted value for a set of values for the independent variables. Use the at () and atmeans options to set the values at which the variables will be examined.
. mtable, at(female=1 phd=4) atmeans stat(ci)
Expression: Pr(jobprst), predict(outcome())

|  | 1_Adeq | 2_Good | trong | 4_Dist |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Pr}(\mathrm{y})$ | 0.041 | 0.441 | 0.468 | 0.049 |
| 11 | 0.017 | 0.344 | 0.369 | 0.018 |
| ul | 0.065 | 0.539 | 0.568 | 0.080 |

Specified values of covariates

|  | pub1 | phd | female |
| :---: | :---: | :---: | :---: |
| Current | 2.32 | 4 | 1 |

A female scientist with a doctorate from a distinguished university who is otherwise average has a probability of .05 of obtaining a distinguished job ( $95 \% \mathrm{CI}: 0.02,0.08$ ).
\#6 Graph Predicted Probabilities
Graphing predictions as a continuous variable changes is a useful way to examine the effect of the variable. mgen creates variables for graphing. We consider women from distinguished PhD programs ( $\mathbf{p h d}=\mathbf{4}$ ) and
show how predicted probabilities are influenced by publications. mgen creates variables of both the predicted probabilities and the cumulative probabilities. We plot the cumulative probabilities below.

```
. mgen, at(female=1 phd=4 pub1=(0(1)20)) atmeans stub(pub)
Predictions from: margins, at(female=1 phd=4 pub1=(0(1)20)) atmeans predict(outc
> ome())
Variable Obs Unique Mean Min Max Label
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline pubpr1 & 21 & 21 & . 0223568 & . 0063504 & . 0523864 & pr(y=1_Adeq) from margins \\
\hline publl1 & 21 & 21 & . 0036257 & -. 0053376 & . 0215249 & 95\% lower limit \\
\hline pubul1 & 21 & 21 & . 0410879 & . 0180384 & . 083248 & 95\% upper limit \\
\hline pubpub1 & 21 & 21 & 10 & 0 & 20 & Publications: PhD yr \\
\hline pubCpr1 & 21 & 21 & . 0223568 & . 0063504 & . 0523864 & \(\mathrm{pr}(\mathrm{y}<=1\) _Adeq) \\
\hline pubpr2 & 21 & 21 & . 2839126 & . 1152733 & . 4925985 & \(\operatorname{pr}(\mathrm{y}=2\) _Good) from margins \\
\hline
\end{tabular}
:: output omitted ::
```

Specified values of covariates
phd female
$4 \quad 1$

```
. graph twoway (connected pubCpr1 pubCpr2 pubCpr3 pubCpr4 pubpub1, ///
> title("Job Prestige and Publications") /// 
> ytitle("Cumulative Pr(Job Prestige)") xtitle("Publications: PhD yr -1 to 1") ///
> xlabel(0(5)20) ylabel(0(.25)1, grid) msymbol(Oh Dh Sh Th) name(tmp2, replace) ///
> text(.01 .75 "Adeq", place(e)) text(.22 5 "Good", place(e)) ///
> text(.60 10 "Strong", place(e))text(.90 17 "Dist", place(e))), legend(off)
. graph export `pgm'-probplot.`graphtype', replace
```



The plot shows many things. For women with PhDs from distinguished programs, the probability of obtaining a job in the least prestigious programs, referred to as adequate, is low regardless of the number of publications. Second, the probability of obtaining a job in a good program decreases rapidly as the number of publications increases, with a corresponding increase in the probability of jobs in strong or distinguished programs. With twenty publications, over $80 \%$ of these women are predicted to be in these types of positions. Third, the increase in strong and distinguished jobs is offset by a corresponding decreases in good jobs.

## \#8 Discrete Change

mchange computes marginal and discrete change at specific values of the independent variables. Values for specific independent variables can be set using the at ( ). The below results are computed using AME.

| ologit: Changes in $\operatorname{Pr}(\mathrm{y})$ \| Number of obs $=264$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Expression: Pr(jobprst), predict(outcome()) |  |  |  |  |
|  | 1 Adeq | 2 Good | 3 Strong | 4 Dist |
| pub1 |  |  |  |  |
| +1 | -0.009 | -0.012 | 0.015 | 0.005 |
| p -value | 0.027 | 0.028 | 0.024 | 0.045 |
| +SD | -0.021 | -0.031 | 0.037 | 0.015 |
| p -value | 0.020 | 0.034 | 0.021 | 0.056 |
| phd |  |  |  |  |
| +1 | -0.064 | -0.146 | 0.127 | 0.083 |
| p -value | 0.000 | 0.000 | 0.000 | 0.000 |
| +SD | -0.065 | -0.146 | 0.127 | 0.084 |
| p -value | 0.000 | 0.000 | 0.000 | 0.000 |
| female \| 0.062 0.060 |  |  |  |  |
| 1 Yes vs 0 No | 0.062 | 0.066 | -0.097 | -0.031 |
| p-value \| | 0.014 | 0.006 | 0.008 | 0.015 |

Average predictions

|  | 1_Adeq | 2_Good | 3_Strong | 4_Dist |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Pr}(\mathrm{y} \mid$ base $)$ | 0.104 | 0.470 | 0.371 | 0.055 |

On average, being a female scientist increases the probability of adequate and good job placements by . 06 ( $\mathrm{p}<0.05$ and $\mathrm{p}<0.01$ respectively, two-tailed test), and decreases the probability of strong jobs by .10 ( $\mathrm{p}<0.01$, two-tailed test) and distinguished jobs by .03 ( $\mathrm{p}<0.05$, two-tailed test).

If we wanted to compute predictions for women from distinguished departments who are average on other characteristics (i.e. MEM):
. mchange, at(female=1 phd=4) atmeans amount(one sd)
ologit: Changes in $\operatorname{Pr}(y)$ | Number of obs $=264$
Expression: Pr(jobprst), predict(outcome())

|  | 1 Adeq | 2 Good | Strong | 4 Dist |
| :---: | :---: | :---: | :---: | :---: |
| pub1 |  |  |  |  |
| +1 | -0.004 | -0.023 | 0.022 | 0.005 |
| p -value | 0.037 | 0.028 | 0.026 | 0.066 |
| +SD | -0.010 | -0.059 | 0.054 | 0.015 |
| $p$-value | 0.028 | 0.027 | 0.021 | 0.080 |
| phd |  |  |  |  |
| +1 | -0.028 | -0.223 | 0.162 | 0.089 |
| $p$-value | 0.000 | 0.000 | 0.000 | 0.002 |
| +SD | -0.028 | -0.224 | 0.162 | 0.090 |
| $p$-value | 0.000 | 0.000 | 0.000 | 0.002 |
| female |  |  |  |  |
| 1 Yes vs 0 No | 0.020 | 0.145 | -0.121 | -0.045 |
| $p$-value | 0.029 | 0.007 | 0.012 | 0.018 |

Predictions at base value
| 1_Adeq 2_Good 3_Strong 4_Dist

| $\operatorname{Pr}(y \mid$ base $)$ | 0.041 | 0.441 | 0.468 | 0.049 |
| :--- | :--- | :--- | :--- | :--- |

Base values of regressors

|  | pub1 | phd | female |
| :---: | :---: | :---: | :---: |
| at | 2.32 | 4 | 1 |
| 1: Estimates with margins option atmeans. |  |  |  |
| \#9 Odds Ratios |  |  |  |

The factor change in the odds can be computed for the ordinal logit model. Again we do this with the command listcoef. The help option presents a "key" to interpreting the headings of the output.

```
. listcoef, help
ologit (N=264): Factor change in odds
    Odds of: >m vs <=m
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & b & z & \(\mathrm{P}>|\mathrm{z}|\) & \(e^{\wedge} \mathrm{b}\) & e^bStdX & SDofX \\
\hline pub1 & 0.1079 & 2.242 & 0.025 & 1.114 & 1.321 & 2.581 \\
\hline phd & 1.1300 & 7.825 & 0.000 & 3.096 & 3.114 & 1.005 \\
\hline female & & & & & & \\
\hline 1_Yes & -0.6974 & -2.665 & 0.008 & 0.498 & 0.717 & 0.476 \\
\hline constant1 & 0.9275 & 2.173 & 0.030 & & & \\
\hline constant2 & 4.0032 & 8.012 & 0.000 & & & \\
\hline constant3 & 7.0346 & 11.172 & 0.000 & & & \\
\hline constant4 & & & & & . & \\
\hline
\end{tabular}
            b = raw coefficient
            z = z-score for test of b=0
    P>|z| = p-value for z-test
            e^b = exp(b) = factor change in odds for unit increase in X
e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
    SDofX = standard deviation of X
```

The odds of receiving a higher ranked job are .50 times smaller for women than men, holding other variables constant ( $\mathrm{p}<0.01$, two-tailed test).

For a standard deviation increase in publications, about 2.6, the odds of receiving a higher ranked job increase by a factor of 1.3 , holding other variables constant ( $p<0.05$, two-tailed test).

## \#10 Testing the Parallel Regression Assumption

brant performs a Brant test of the parallel regressions assumptions for the ordered logit model.
. brant, detail
<snip>
Brant Test of Parallel Regression Assumption

| Variable | chi2 | p>chi2 | df |
| :---: | :---: | :---: | :---: |
| All | 38.88 | 0.000 | 6 |
| pub1 | 2.76 | 0.252 | 2 |
| phd | 22.68 | 0.000 | 2 |
| 1.female | 11.26 | 0.004 | 2 |

```
A significant test statistic provides evidence that the parallel
regression assumption has been violated.
```

There is strong evidence that the parallel regression assumption is violated ( $\mathrm{p}<.001$ ).

## 11 Count Outcomes

The file cda16lab-crm-review. do contains these Stata commands. The \#'s correspond to sections in the do-file. cda16lab-crm-exercise.do contains details on the exercise.

```
#1 Load the Data
use cda-scireview4, clear
#2 Examine data, select variables, and verify
```

Make sure to look at the distribution of the outcome variable, in this case, pub6.
keep pub6 female phd enrol
tab1 pub6 female, miss
codebook, compact
\#3 Estimate the Negative Binomial Regression Model

| Negative binomial regression | Number of obs | $=$ | 264 |
| :---: | :---: | :---: | :---: |
|  | LR chi2(3) | = | 20.59 |
| Dispersion = mean | Prob > chi2 | = | 0.0001 |
| Log likelihood = -642.723 | Pseudo R2 | = | 0.0158 |


| pub6 | Coef | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| female |  |  |  |  |  |  |
| 1_Yes | -. 2822292 | . 1382637 | -2.04 | 0.041 | -. 553221 | -. 0112373 |
| phd | . 1995909 | . 0651859 | 3.06 | 0.002 | . 0718288 | . 327353 |
| enroll | -. 150895 | . 0480431 | -3.14 | 0.002 | -. 2450578 | -. 0567322 |
| _cons | 1.607418 | . 3379749 | 4.76 | 0.000 | . 9449989 | 2.269836 |
| /lnalpha | -. 203673 | . 1255831 |  |  | -. 4498113 | . 0424654 |
| alpha | . 8157291 | . 1024418 |  |  | . 6377485 | 1.04338 |
| Likelihood-ratio test of alpha=0: chibar2(01) = 394.12 Prob>=chibar2 $=0.000$ |  |  |  |  |  |  |

Because there is significant evidence of overdispersion ( $G^{2}=394.12, p<.001$ ), the negative binomial regression model is preferred to the Poisson regression model.

## \#4 Factor Changes

listcoef computes the factor change coefficients.
. listcoef, help
nbreg (N=264): Factor change in expected count
Observed SD: 4.3103

|  | b | z | $P>\|z\|$ | $e^{\wedge} \mathrm{b}$ | bStdX | SDofX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| female |  |  |  |  |  |  |
| 1_Yes | -0.2822 | -2.041 | 0.041 | 0.754 | 0.874 | 0.476 |
| phd | 0.1996 | 3.062 | 0.002 | 1.221 | 1.222 | 1.005 |
| enroll | -0.1509 | -3.141 | 0.002 | 0.860 | 0.804 | 1.443 |
| constant | 1.6074 | 4.756 | 0.000 |  |  |  |
| alpha |  |  |  |  |  |  |
| lnalpha \| -0.2037 |  |  |  |  |  |  |
| alpha \| 0.8157 |  |  |  |  |  |  |
| LR test of alpha=0: 394.12b = raw coefficient |  |  |  |  |  |  |
| $\mathrm{P}>\|z\|=\mathrm{p}$-value for z -test |  |  |  |  |  |  |
| $e^{\wedge} \mathrm{b}=\exp (\mathrm{b})=$ factor change in expected count for unit increase in X |  |  |  |  |  |  |
| $\mathrm{e}^{\wedge} \mathrm{bStdX}=\exp \left(\mathrm{b}^{*}\right.$ SD of X$)=$ change in expected count for SD increase in X |  |  |  |  |  |  |
| SDofX = s | d devia | n of X |  |  |  |  |

Being a female scientist decreases the expected number of publications by a factor of .75 , holding other variables constant ( $\mathrm{p}<0.05$, two-tailed test).

A standard deviation increase in the number of years enrolled for the completion of the PhD , about 1.4 years, decreases the expected number of publications by 20 percent, holding other variables constant ( $\mathrm{p}<0.01$, two-tailed test).

## \#5 Discrete Change

mchange computes the discrete change in the expected count/rate. The changes below are AME's. To compute them using MEM, simply add the option atmeans.
. mchange
nbreg: Changes in mu | Number of obs $=264$
Expression: Predicted number of pub6, predict()

|  | Change | p-value |
| :---: | :---: | :---: |
| female |  |  |
| 1 Yes vs 0 No | -1.048 | 0.036 |
| pha +1 |  |  |
| + +1 | 0.861 | 0.008 |
| + Marginal | 0.865 | 0.008 |
| Marginal | 0.778 | 0.004 |
| enroll \| 0.778 |  |  |
| +1 | -0.546 | 0.001 |
| +SD | -0.762 | 0.001 |
| Marginal | -0.588 | 0.003 |

Average prediction
3.896

On average, being a female scientist is expected to decrease productivity by 1.0 publication ( $\mathrm{p}<0.05$, twotailed test).

The average effect of an additional year in graduate school decreases productivity by 0.55 publications ( $\mathrm{p}<0.01$, two-tailed test).

## \#6 Expected Count

Use mtable to compute the expected count of publications for average men and average women. mtable is run 3 times, with the option below stacking the current mtable results below the previous mtable results. Note that rowname () is used to label each of the rows.

```
. quietly mtable, at(female=0) stat(ci) atmeans rowname(Men)
. quietly mtable, at(female=1) stat(ci) atmeans rowname(Women) below
. mtable, dydx(female) stat(ci) atmeans rowname(Change) below
```

Expression: Predicted number of pub6, predict()

|  | mu | 11 | ul |
| :---: | :---: | :---: | :---: |
| Men | 4.088 | 3.456 | 4.719 |
| Women | 3.083 | 2.399 | 3.766 |
| Change | -1.005 | -1.939 | -0.072 |

Specified values of covariates

|  | female | phd | enroll | ${ }^{1} \text { female }$ |
| :---: | :---: | :---: | :---: | :---: |
| Set 1 | 0 | 3.18 | 5.53 |  |
| Set 2 | 1 | 3.18 | 5.53 |  |
| Current |  | 3.18 | 5.53 | . 345 |

For scientists who are average on other characteristics, women are expected to have about 1.0 fewer publications than men ( $95 \% \mathrm{CI}$ : $-1.94,-0.07$ ).

## \#7 Predicted Rate and Probabilities

mtable can also calculate the predicted probabilities for specific levels of the outcome variable, as well as the discrete change in the probabilities. This is done using the pr () option. The option roweq is used to name the different sections of the table rows.

```
. quietly mtable, at(female=0) atmeans roweq(Men_) pr(0(1)5)
. quietly mtable, at(female=1) atmeans roweq(Women_) pr(0(1)5) below
. mtable, dydx(female) stat(est pvalue) atmeans roweq(Change) pr(0(1)5) below
Expression: Marginal effect of Pr(pub), predict(pr(5))
```

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 1 | 0.166 | 0.156 | 0.134 | 0.111 | 0.090 | 0.072 |
| Women |  |  |  |  |  |  |
| 1 | 0.214 | 0.188 | 0.150 | 0.115 | 0.087 | 0.065 |
| Change |  |  |  |  |  |  |
| d $\operatorname{Pr}(\mathrm{y})$ | 0.049 | 0.032 | 0.016 | 0.004 | -0.003 | -0.007 |
| p | 0.049 | 0.043 | 0.036 | 0.053 | 0.261 | 0.093 |

Specified values of covariates

|  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
|  | female | phd | enroll | female |

For scientists who are average on all other characteristics, women have a higher probability than men of having no publications ( $\mathrm{p}<0.05$, two-tailed test), while men have a higher probability of having five publications ( $\mathrm{p}<0.1$, two-tailed test).

## \#8 ZIP Model

The zip command with the inf(indvars) option estimates a Zero-Inflated Poisson Regression Model. You can "inflate" the same set of variables that are used in the PRM portion of the model or an entirely different set of variables. Here we "inflate" using the variable phd.


## \#9 ZINB Model

We can use the same types of commands for the ZINB. The results are stored using estimates store.

```
. zinb pub6 i.female c.phd c.enrol, inf(c.phd) nolog
```

| Zero-inflated negative binomial regression | Number of obs | $=$ | 264 |
| :---: | :---: | :---: | :---: |
|  | Nonzero obs |  | 212 |
|  | Zero obs | + | 52 |
| Inflation model = logit | LR chi2(3) | = | 18.91 |
| Log likelihood $=-642.2026$ | Prob > chi2 | = | 0.0003 |


| pub6 | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pub6 |  |  |  |  |  |  |
| female |  |  |  |  |  |  |
| 1_Yes | -. 2708994 | . 1371918 | -1.97 | 0.048 | -. 5397905 | -. 0020084 |
| phd | . 1745669 | . 0695427 | 2.51 | 0.012 | . 0382657 | . 3108682 |
| enroll | -. 1527173 | . 047032 | -3.25 | 0.001 | -. 2448984 | -. 0605362 |
| _cons | 1.739814 | . 3498874 | 4.97 | 0.000 | 1.054047 | 2.42558 |
| inflate |  |  |  |  |  |  |
| phd | -. 5440498 | . 8665119 | -0.63 | 0.530 | -2.242382 | 1.154282 |
| _cons | -1.456929 | 2.082817 | -0.70 | 0.484 | -5.539175 | 2.625316 |
| /lnalpha | -. 3514184 | . 2107589 | -1.67 | 0.095 | -. 7644982 | . 0616614 |
| alpha | . 7036893 | . 1483088 |  |  | . 4655675 | 1.063602 |

## \#10 Factor Change

Factor change coefficients can be computed after estimating the ZIP or ZINB models using listcoef. Since the output is similar, we show only the output for ZINB. The top half of the output, labeled Count Equation, contains coefficients for the factor change in the expected count for those in the Not Always Zero group. The bottom half, labeled Binary Equation, contains coefficients for the factor change in the odds of being in the Always Zero group compared with the Not Always Zero group.

```
. listcoef, help
zinb (N=264): Factor change in expected count
```

    Observed SD: 4.3103
    Count equation: Factor change in expected count for those not always 0

|  | b | z | $\mathrm{P}>\|\mathrm{z}\|$ | $e^{\wedge} \mathrm{b}$ | e^bStdX | SDofx |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| female |  |  |  |  |  |  |
| 1_Yes | -0.2709 | -1.975 | 0.048 | 0.763 | 0.879 | 0.476 |
| phd | 0.1746 | 2.510 | 0.012 | 1.191 | 1.192 | 1.005 |
| enroll | -0.1527 | -3.247 | 0.001 | 0.858 | 0.802 | 1.443 |
| constant | 1.7398 | 4.972 | 0.000 | . | . |  |
| alpha |  |  |  |  |  |  |
| lnalpha | -0.3514 |  |  |  |  |  |
| alpha | 0.7037 | . | . | . | . |  |

```
            b = raw coefficient
            z = z-score for test of b=0
    p>|z| = p-value for z-test
            e^b = exp(b) = factor change in expected count for unit increase in X
e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X
    SDofX = standard deviation of X
```

Binary equation: factor change in odds of always 0

| b $\quad$ z $>|z| \quad e^{\wedge b} e^{\wedge b S t d X ~ S D o f X ~}$


b = raw coefficient
$z=z$-score for test of $b=0$
p>|z| = p-value for z-test
$\mathrm{e}^{\wedge} \mathrm{b}=\exp (\mathrm{b})=$ factor change in odds for unit increase in X
$e^{\wedge} b S t d X=\exp \left(b^{*} S D\right.$ of $\left.X\right)=$ change in odds for SD increase in $X$
SDofX = standard deviation of $X$

Among those who have the opportunity to publish, a standard deviation increase PhD prestige increases the expected rate of publication by a factor of 1.2 , holding other variables constant ( $\mathrm{p}<0.05$, two-tailed test).

A standard deviation increase in PhD prestige decreases the odds of not having the opportunity to publish by a factor of 0.58 , although this is not significant $(\mathrm{z}=-0.63, \mathrm{p}=0.53)$.

## \#11 Predicted Probabilities and Expected Counts

The ZINB model has 3 types of post-estimation results we are interested in: the expected count, the probability of always being zero, and the predicted probability of various levels of the outcome. By default mtable computes the expected count. To compute the probability of being always zero, include the predict (pr) option. To compute the predicted probability of various levels of the outcome variable, include the pr ( ) option.

```
. quietly mtable, at(phd=(1 4)) atmeans long stat(ci)
. quietly mtable, at(phd=(1 4)) atmeans long stat(ci) noatvar right ///
> estname(Always0) predict(pr)
. mtable, at(phd=(1 4)) atmeans long stat(ci) noatvar colstub(pr) right pr(0 1 9)
```

Expression: Pr(pub), predict(pr(9))

|  | hd | mu | Always0 | pro | pr1 | pr9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mu | 1 | 2.339 | 0.119 | 0.316 | 0.182 | 0.012 |
| 11 | 1 | 1.470 | -0.166 | 0.111 | 0.102 | 0.004 |
| ul | 1 | 3.208 | 0.404 | 0.521 | 0.262 | 0.021 |
| mu | 4 | 4.367 | 0.026 | 0.155 | 0.139 | 0.032 |
| 11 | 4 | 3.692 | -0.068 | 0.099 | 0.102 | 0.026 |
| ul | 4 | 5.042 | 0.120 | 0.210 | 0.176 | 0.038 |

Specified values of covariates

|  | female | enroll |
| :---: | :---: | :---: |
| Set 1 | . 345 | 5.53 |
| Set 2 | . 345 | 5.53 |
| Current | . 345 | 5.53 |

An average scientist from a distinguished university is expected to have 4.4 publications ( $95 \% \mathrm{CI}: 3.69$, 5.04), while an average scientist from an adequate university is expected to have 2.3 publications ( $95 \%$ CI: 1.47, 3.21).

For an average scientist from an adequate university, the probability of having no publications because the scientist does not have the opportunity to publish is 0.12 ( $95 \% \mathrm{CI}:-0.17,0.40$ ). Thus most of the 0 's for average scientists are for those who are "potential publishers."

For an average scientist from a low prestige university, the probability of having no publications, either because the scientist does not have the opportunity to publish or because the scientist is a potential publisher who by chance did not publish, is 0.32 ( $95 \% \mathrm{CI}: 0.11,0.52$ ).

For an average scientist from a high prestige university, the probability of having 9 publications is 0.03 ( $95 \% \mathrm{CI}: 0.026,0.038$ ).

## \#12 Discrete Change for Predicted Probabilities and Expected Counts

To compute the discrete change of the different types of predicted values above, we can use margins, post followed by mlincom. The results are stacked into an easy to read table with mlincom by specifying the add option. Note that estimation results need to be restored before each margins, post by using estimates

## restore.

```
. quietly margins, at(phd=(1 4)) atmeans post
. quietly mlincom 2-1, rowname(Expected_y) stat(all) estname(Change)
. estimates restore estzinb
. quietly margins, at(phd=(1 4)) atmeans predict(pr) post
. quietly mlincom 2-1, rowname(Always_0) stat(all) estname(Change) add
. estimates restore estzinb
```

```
. quietly margins, at(phd=(1 4)) atmeans predict(pr(0)) post
quietly mlincom 2-1, rowname(Pr_y=0) stat(all) estname(Change) add
estimates restore estzinb
quietly margins, at(phd=(1 4)) atmeans predict(pr(1)) post
quietly mlincom 2-1, rowname(Pr_y=1) stat(all) estname(Change) add
estimates restore estzinb
. quietly margins, at(phd=(1 4)) atmeans predict(pr(9)) post
. mlincom 2-1, rowname(Pr_y=9) stat(all) estname(Change) add
. estimates restore estzinb
```

|  | Change | se | zvalue | pvalue | 11 | ul |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Expected_y | 2.028 | 0.619 | 3.278 | 0.001 | 0.816 | 3.241 |
| Always_0 | -0.093 | 0.163 | -0.573 | 0.566 | -0.412 | 0.226 |
| Pr_y=0 | -0.162 | 0.120 | -1.343 | 0.179 | -0.398 | 0.074 |
| Pr_y=1 | -0.043 | 0.046 | -0.941 | 0.347 | -0.134 | 0.047 |
| Pr_y=9 | 0.020 | 0.006 | 3.354 | 0.001 | 0.008 | 0.031 |

For an average scientist, attending a distinguished university compared to an adequate university is expected to increase productivity by slightly over two publications ( $\mathrm{p}<0.01$, two-tailed test).

For an average scientist, attending a distinguished university compared to an adequate university does not affect the probability of having no publications as a result of not having the opportunity to publish ( $\mathrm{z}=$ 0.573, $\mathrm{p}=0.566$ ).

For an average scientist, attending a high prestige university compared to a low prestige university increases the probability of having 9 publications ( $95 \% \mathrm{CI}: 0.008,0.031$ ).

## \#13 Compare models

count fit compares the fit of PRM, NBRM, ZIP, and ZINB, optionally generating a table of estimates, a table of differences between observed and average estimated probabilities, a graph of these differences, and various tests and measures of fit.

```
. countfit pub6 i.female c.phd c.enrol, inf(c.phd) ///
> graphexport(`pgm'-countfit.`graphtype', replace)
```

| Variable | PRM | NBRM | ZIP | ZINB |
| :---: | :---: | :---: | :---: | :---: |
| pub6 female |  |  |  |  |
|  |  |  |  |  |
| 1_Yes | 0.786 | 0.754 | 0.895 | 0.836 |
|  | -3.49 | -2.04 | -1.57 | -1.19 |
| Prestige of Ph.D. department. | 1.207 | 1.221 | 1.151 | 1.231 |
|  | 5.85 | 3.06 | 4.19 | 3.19 |
| Years from BA to P.. | 0.876 | 0.860 | 0.879 | 0.871 |
|  | -5.51 | -3.14 | -5.14 | -2.82 |
| Constant | 4.630 | 4.990 | 6.213 | 4.532 |
|  | 9.02 | 4.76 | 10.44 | 4.45 |
| lnalpha ${ }^{\text {a }}$ ( 0.816 |  |  |  |  |
| Constant |  | 0.816 |  | 0.735 |
|  |  | -1.62 |  | -2.14 |
| inflate |  |  |  |  |
|  |  |  |  |  |
| female |  |  |  |  |
| 1_Yes |  |  | 2.006 | $2.60 \mathrm{e}+06$ |
|  |  |  | 2.04 | 0.02 |
| Prestige of Ph.D. department. |  |  | 0.759 | 1.430 |



Comparison of Mean Observed and Predicted Count

| Model | Maximum Difference | At Value | Mean \|Diff| |
| :---: | :---: | :---: | :---: |
| PRM | 0.163 | 0 | 0.051 |
| NBRM | 0.038 | 6 | 0.015 |
| ZIP | 0.100 | 1 | 0.033 |
| ZINB | 0.037 | 6 | 0.012 |

PRM: Predicted and actual probabilities

| Count | Actual | Predicted | \|Diff| | Pearson |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.197 | 0.034 | 0.163 | 205.490 |
| 1 | 0.144 | 0.100 | 0.044 | 4.992 |
| 2 | 0.129 | 0.161 | 0.032 | 1.688 |
| 3 | 0.121 | 0.185 | 0.064 | 5.777 |
| 4 | 0.095 | 0.170 | 0.075 | 8.815 |
| 5 | 0.053 | 0.133 | 0.080 | 12.712 |
| 6 | 0.091 | 0.092 | 0.001 | 0.003 |
| 7 | 0.023 | 0.057 | 0.035 | 5.546 |
| 8 | 0.042 | 0.033 | 0.009 | 0.589 |
| 9 | 0.023 | 0.018 | 0.005 | 0.371 |
| Sum | 0.917 | 0.983 | 0.507 | 245.982 |
| <snip> |  |  |  |  |

Tests and Fit Statistics



## Datasets for CDA Exercises

There are the datasets that we provide for exercises.
cda-science 4 contains information on the careers of 308 Ph.D. biochemists. (Note that cda-scireview4 has dropped missing cases and therefore contains information on 264 scientists.) This data set is based on data collected by Scott Long with funding from the National Science Foundation. Please note that some variables have been modified.
cda-hsb4 contains 1647 observations on 68 variables from the 1983 High School and Beyond Study.
cda-nes4 contain 2487 observations on 45 variables from the 1992 National Election Study.
cda-addhealth 4 contains 2146 observations on 126 variables. It is an extract from the 1994-95 wave of the Add Health public use dataset, and contains information on the hobbies and activities of students aged 12-21, including delinquent behavior and drug/alcohol use. The dataset also includes information about the relationships between the respondents and their parents
The codebooks and data are like those you will encounter in the real world. They attempt to be accurate, but they probably are not. That means that it is up to you to make sure that the descriptions correspond to the distribution of the data in the file. As always in such things, caveat emptor.
cda-science4.dta (cda-scireview4): Codebook for Science Data

| id | ID Number of scientist |
| :--- | :--- |
| cit1 | Number of Citations: PhD year -1 to 1. |
| cit3 | Number of Citations: PhD year 1 to 3. |
| cit6 | Number of Citations: PhD year 4 to 6. |
| cit9 | Number of Citations: PhD year 7 to 9. |
| enroll | Number of years it took to get a Ph.D. after receipt of B.A. |
| fel | Prestige of Ph.D. if scientist is not a fellow; prestige of fellowship department if a fellow. Ranges from |
|  | 0.75 to 5.00. See phd for details on scores. |

felclass Fellow or Ph.D. prestige class: 1: adequate; 2: good; 3: strong; 4: distinguished
fellow $\quad$ Postdoctoral fellow? $(1=y e s ; 0=$ no $)$
female $\quad$ Female? ( $1=$ yes; $0=$ no $)$
jobimp Prestige of first job if first job is as a university faculty member. Ranges from 0.75 to 5.00 . See phd for details on prestige scores. Imputed.
jobprst Prestige of job: 1: adequate; 2: good; 3: strong; 4: distinguished.
mcit3 Mentor's \# of citations for 3 year period ending the year of the student's Ph.D.
mcitt Mentor's total \# of citations in 1961.
mmale $\quad$ Was mentor a male? ( $1=$ yes; $0=$ no)
mnas Was mentor in National Academy of Science? (1=yes; no)
mpub3 Mentor's 3 year publications.
nopub1 $\quad$ No pubs $\operatorname{PhD}$ year -1 to 1 ? (1=yes; $0=$ no $)$
nopub3 No pubs PhD year 1 to 3? $(1=$ yes; $0=$ no $)$
nopub6 No pubs PhD year 4 to 6? $(1=$ yes; $0=$ no $)$
nopub9 $\quad$ No pubs $\operatorname{PhD}$ year 7 to 9 ? ( $1=$ yes; $0=$ no $)$
phd Prestige of PhD department. Ranges is $0.75-5.00$. Prestige variables can be broken into categories as follows: 0.751 .99 is adequate; 2.002 .99 is good; 3.003 .99 is strong; and 4.005 .00 is distinguished.
phdclass Prestige class of Ph.D. department. 1: adequate; 2: good; 3: strong; 4: distinguished
pub1 Number of Publications: PhD year -1 to 1 .
pub3 Number of Publications: PhD year 1 to 3 .
pub6 Number of Publications: PhD year 4 to 6 .
pub9 Number of Publications: PhD year 7 to 9 .
pubtot Total Pubs in 9 years post-Ph.D.
work Type of first job. 1: Faculty in university; 2: Academic research; 3: College teacher; 4: Industrial research; 5: Administration
workadmn Work in Administration? ( $1=$ yes; $0=$ no $)$
workfac $\quad$ Work as Faculty in University? ( $1=$ yes; $0=$ no $)$
worktch Work in Teaching? ( $1=$ yes; $0=$ no $)$
workuniv $\quad$ Work in University? ( $1=$ yes; $0=$ no $)$

## cda-hsb4.dta: Codebook for 1983 High School and Beyond Study

id ID number of respondent
sex $\quad$ : male; 2: female
male, female 0 : no; 1 : yes
region Region of country respondent lives in

| 1: New England | 2: Mid Atlantic | 3: South Atlantic | 4: East South Central |  |
| :--- | :--- | :--- | :--- | :--- |
| 5: West South Central | 6: East North Central 7: West North Central | 8: Mountain | 9: Pacific |  |

hsprog: High School program.
1: general 2: academic 3: agricultural 4: business $\quad$ 5: distributive educ.
6: health $\quad 7$ : home economics 8 : technical $\quad 9$ : trade/industrial
algebra2, geometry, trig, calc, physics, chem: Did you take ...?
0 : no; 1 : yes
hsgrades: What are your grades in HS?
.5: Mostly below D's 1: Mostly D's
2.5: Mostly B's \& C's3: Mostly B's
1.5: Mostly C's \& D's2: Mostly C's
3.5: Mostly A's \& B's 4: Mostly A's
mathabs: Are your math grades mostly A's and B's?
englabs: Are your English grades mostly A's and B's?
busiabs: Are your business grades mostly A's and B's?
0 : no; 1 : yes
remengl: Have you taken remedial English? remmath: Have you taken remedial math?
advengl: Have you taken advanced English? advmath: Have you taken advanced math?
0 : no; 1 : yes
hmwktime: How much time do you spend on homework each week?

| 1: None is assigned | 2: Don't do any | 3: Less than 1 hour | $4: 1$ to 3 hours |
| :--- | :--- | :--- | :--- |
| $5: 3$ to 5 hours | $6: 5$ to 10 hours | $7: 10$ or more hours |  |

workage: Age you first worked.
11: age 11 or less 12 to 19 : ages 12 to 19 respectively 21 : never worked
hrswork: Hours worked last week. hrslstyr: Hours worked per week last year
1: none $\quad 2: 1$ to $4 \quad 3: 5$ to $14 \quad 4: 15$ to 21
5: 22 to $29 \quad 6: 30$ to $34 \quad 7: 35$ or more
varsport: Did you participate in varsity sports?
pepclub: In pep club, cheerleading, or other activity?
1: no; 2: participant; 3: leader/officer
livealon: Did you live alone while attending HS? livedad: With your father while attending HS?
livemale: With other male guardian?
livfemal: With other female guardian? 1 ivsibs: With any brothers or sisters?
livgrand: With your grandparent(s)?
0 : no 1 : yes
momwkel: Did your mother work while you were in elementary school?
momwkhs: Did your mother work while you were in HS?
momwkpre: Did your mother work before you were in elementary school?
1: no paid work 2: part time work $\quad$ 3: full time work $\quad$ 4: DK $\quad$ 5: NA
dadocc: Father's occupation. momocc: Mother's occupation.

| 1: not living with father | 2: clerical | 3: craftsman | 4: farmer |
| :--- | :--- | :--- | :--- |
| 6: laborer | 5: homemaker |  |  |
| 9: operative | 10: professional | 8: military |  |
| 13: protective service | 14: sales | 11: advanced professional | 12: proprietor |
| 13: school teacher | 16: service |  |  |

daded: Father's education level. momed: Mother's education level.
1: not living with father 2: less than HS degree 3: HS or equivalent degree
4: vocational less than 2 years $\quad$ 5: vocational 2 or more years 6 : college less than 2 years
7: college 2 or more years $\quad$ 8: college graduate $\quad 9$ : masters degree
10: $\mathrm{PhD} / \mathrm{MD}$ advanced degree 11 : DK
dadhsgrd: Dad graduate high school? momhsgrd: Mom graduate high school?
dadcoll: Dad graduate college? momcoll: Mom graduate college?
0 : no 1 :yes
mommonit: Mother monitors your school work? dadmonit: Father monitors your school work?
$\begin{array}{ll}1: \text { yes } & 2 \text { : no } \\ 3: N A\end{array}$
talkpar: How often do you talk to your parents?
1 : rarely or never 2 : less than once a week
3: once or twice a week 4: almost every day
dadplans, momplans: How much did your father/father influence your HS plans?

1: not at all 2: somewhat $\quad$ 3: a great deal
edattain: What educational level do you expect to attain?
momatain: What educational level does your mother expect you to attain?
lowed: What is the lowest educational level you would be satisfied with?
1: Less than HS 2: HS graduate 3: vocational < 2 years 4: vocational 2+ years
5: college $<2$ years $\quad 6$ : college $2+$ years $\quad 7$ : college graduate $\quad 8$ : masters degree
9: $\mathrm{PhD} / \mathrm{MD}$ degree
10: DK
compserv: Which would you chose if forced into compulsory service?
1: military 2 : public service $\quad 3$ : undecided $\quad$ 4: avoid both
earnings: How much have you made this year?
0: None $\quad .5:<\$ 1 \mathrm{~K} \quad 2: \$ 1 \mathrm{~K}-\$ 3 \mathrm{~K} \quad 4: \$ 3 \mathrm{~K}-\$ 5 \mathrm{~K} \quad 6: \$ 5 \mathrm{~K}-\$ 7 \mathrm{~K}$
8: \$7K-\$9K 10: \$9K-\$11K $\quad 12$ : $\$ 11 \mathrm{~K}-\$ 13 \mathrm{~K} \quad 14$ : $\$ 13 \mathrm{~K}-\$ 15 \mathrm{~K} \quad 15: \$ 15 \mathrm{~K}+$
expenses: How many expenses do you have?
$\begin{array}{lllll}0 & .5 & 1.5 & 2.5 & 3.5\end{array}$

| 4.5 | 6 | 8.5 | 10 |
| :--- | :--- | :--- | :--- |

netearn: Net earnings this year sumearn: Net earnings from last year.
$\begin{array}{llllll}0 & 100 & 450 & 900 & 1600 & 2000\end{array}$
agewed: Age you expect to be married. agekid: have your first child. agejob: have first full time job. agehome: move out on your own. ageeduc: finish your education.

See values when tabulating these variables
age: $\quad 15$ to 20 is actual years; $21=21$ years and older.
race: Respondent's race
1: Black 2: White 3: American Indian 4: Asian/Pacific Islander 5: Other
white: White? black: Black? amerind: American Indian?
asian: Asian? othrace: Other race?

0 : no $\quad 1$ : yes
origin: Respondent's national origin/country of origin

| 1: Mexican | 2: Cuban | 3: Puerto Rican | 4: Latin American |
| :--- | :--- | :--- | :--- |
| 5: Afro-American | 6: West Indian | 7: Alaskan | 8: American Indian |
| 9: Chinese | 10: Filipino | 11: Indian: other | 12: Japanese |
| 13: Korean | 14: Vietnamese | 15: Pacific Islander | 16: Asian: other |
| 17: English/Welsh | 18: French | 19: German | 20: Greek |
| 21: Irish | 22: Italian | 23: Polish | 24: Portuguese |
| 25: Russian | 26: Scottish | 27: Europe-other | 28: Fr. Canadian |
| 29: Canadian | 30: USA. | 31: Other |  |

religion:

fincome: Family income
$\begin{array}{lllll}3.5 & 9.5 & 14 & 18 & 22.531 .538\end{array}$
college: Type of college you plan to attend
1: four year college 2 : two year college
pubpriv: Do you plan to attend a public or private college?
1: public college $\quad 2$ : private college
instate: Do you plan to attend a college in your state?
0 : No 1: Yes
ses: $\quad$ Socioeconomic status
1: low $\quad$ 2: medium $\quad$ 3: high
cda-nes4.dta: Codebook for 1992 National Election Study
caseid: ID number of respondent
prebush, preclint, preperot: Feelings about each candidate prior to the 1992 presidential election.
postbush, postclin, postpero: Feelings about each candidate after the 1992 presidential election.
Feeling thermometers range from 0 to 100 with higher score being more favorable. 50 is neutral.
partyid: Political party identification
1: Strong Democrat 2: Weak Democrat 3: Indep-leaning Democrat
4: Independent
5: Indep-leaning Republican 6: Weak Republican
7: Strong Republican 8: Other
abortion: View on abortion
1: Never permitted by law 2: If rape, incest, life threatening 3: If need is established
4: Abortion as personal choice 5: Law should not be involved 6: Other
election: Who do you think you will vote for?
1: Bush 2: Clinton 3: Perot 7: Other
religion: R eligious affiliation
1: Protestant 2: Catholic 3: Jewish 4: Other
relProt: Protestant? relCath: Catholic? relJew: Jewish? relOth: Other religion?
0 : no 1 : yes
age: $\quad 17-90$ is actual years; $91=91$ years and older.
marital: Marital status
1: Married, living with spouse 2: Never married 3: Divorced
4: Separated 5: Widowed 6: Unmarried partners
married: Married?
0 : no 1 : yes
educatio: Education level.
1: 8th grade or less 2: Some High School 3: High school 4: More than 12 years 5: Jr. college degree
6: BA level degrees 7: Advanced degree
collgrad: College graduate? hsgrad: High School graduate?
0 : no 1:yes
occup: Occupational code.

| 1: Executive, administrative and managerial | 8: Service except protective \& household |
| :--- | :--- |
| 2: Professional specialty occupations | 9: Farming, forestry, and fishing occup. |
| 3: Technicians and related support occup. | 10: Precision production, craft and repair |
| 4: Sales occupations | 11: Machine operators, assemblers, inspectors |
| 5: Administrative support, including clerical | 12: Transport \&material moving occup. |
| 6: Private household | 13: Handlers, equipment cleaners, laborers |
| 7: Protective service | 14: Member of the armed forces |

fincome: Family income. - Tabulate variable to see values.

| sex: | Respondent's sex | 1: Male | 2: Female |
| :--- | :--- | :--- | :--- |
| male: | Male? female: Female? | $0:$ no | 1:yes |

race: Respondent's race
1: White 2: Black 3: American Indian/Alaskan 4: Asian/Pacific Islander
white: White? black: Black? amerind: American Indian? asian: Asian?
0 : no $\quad 1$ : yes
didvote: Did you vote this November? regvote: Were you registered to vote?
0 : No 1 : Yes
regvote: Were you registered to vote?
0 : No 1: Yes 6: Not required
presvote: Presidential vote.
prefvote: Did not vote, but preferred
1: Bush 2: Clinton 3: Perot $\quad$ Other
canparty: Which party(ies) did the candidate you contributed to belong to?
whichpar: To which party did you give money?
1: Republican
2: Both
3: Democratic
7: Other
campaign*: Did you talk to people about voting for or against a party or candidate?
contact: Were you contacted by any person intent on showing you who to vote for?
support*: Did you wear or display a campaign button, sticker, or sign?
attend*: Did you attend any political meetings, rallies etc. in support of a candidate?
enlist: Did anyone enlist you to attend a political rally, meeting, speech, or dinner?
partywrk*: Did you do any work for one of the parties or candidates?
askwork: Did anyone ask you to do any work for one of the parties or candidates?
taxretur*: Did you make a political contribution on your income tax return this year?
fundcam:* Did you give any money to an individual candidate running for public office?
fundpart*: Did you give any money to a political party during this election year?
fundgrp*: Did you give money to any other group that supported or opposed candidates?
contvote: This year, did anyone talk to you about registering or getting out to vote?
mailfund: Did you receive any mail requests asking you to contribute to a party/candidate?
contmail: Did you contribute any money because of the mail you received?
phonfund: Did you receive any phone requests asking you to contribute to a party/candidate?
contphon: Did you contribute any money because of the phone calls you received?
persfund: Did you receive any personal requests asking you to contribute to a party/candidate?
contpers: Did you contribute any money because of the personal contacts you received?
0 : no $\quad 1$ : yes

* These variables used to create polacts using code in Stata Guide.
alotmail: How many mail requests for contributions to a candidate/party did you receive? alotphon: How many phone requests for contributions to a candidate/party did you receive? persalot: How many personal requests for contributions to a candidate/party did you receive?

1: not very many $\quad 5$ : quite a few

## cda-addhealth4: Codebook for 1994-95 Add Health Public Data extract

Note: missing values for all variables have these meainings
.d:Don't know .n: Not applicable .r: Refused .s: Skip
caseid: Respondent's case ID number
gswgt1: Grand sample weight
cluster2: Sample cluster, stratum 2
The syntax for setting the survey weights is:

```
svyset, clear
svyset [pweight=gswgt1], strata(cluster2)
```

age: $\quad$ Respondent's age (calculation includes months; ranges from 11.4167 to 20.1667).
sex: Respondent's sex 1: Male 2: Female
male: Male? female: Female? 0: no 1: yes
hispanic: Hispanic origin? white: Non-Hispanic white?
black: Non-Hispanic Black or African American? asian: Non-Hispanic Asian or Pacific Islander?
othrace: Another race?
0 : No 1 : Yes
bornUS: Respondent born in the United States? $\quad 0$ : No 1: Yes
hobbies: During the past week, how many times did you do hobbies, such as collecting baseball cards, playing a musical instrument, reading, or doing arts and crafts?
videos: During the past week, how many times did you watch television or videos, or play video games?
skating: During the past week, how many times did you go roller-blading, roller-skating, skate-boarding, or bicycling?
sport: During the past week, how many times did you play an active sport, such as baseball, softball, basketball, soccer, swimming, or football?
exercise: During the past week, how many times did you do exercise, such as jogging, walking, karate, jumping rope, gymnastics or dancing?
friends: During the past week, how many times did you just hang out with friends?
0 : None
1: 1-2 times
2: 3-4 times
3: 5+ times
hrstv: How many hours a week do you watch television?
hrsvideo: How many hours a week do you watch videos?
hrscomp: How many hours a week do you play video or computer games?
hrsradio: How many hours a week do you listen to the radio?
Continuous variables starting at 0 ,
brthetrl: If you wanted to use birth control, how sure are you that you could stop yourself and use birth control once you were highly aroused or turned on?

| 1: Very unsure | 2: Moderately unsure | 3: Neither sure or unsure |
| :--- | :--- | :--- |
| 4: Moderately sure | 5: Very sure | 6: Never want to use birth control |

intlgnce: Compared with other people your age, how intelligent are you?
1: Moderately below average 2: Slightly below average 3: About average
4: Slightly above average $\quad$ 5: Moderately above average $\quad$ 6: Extremely above average
How often in the past week did you experience the following?
bothered: You were bothered by things that usually don't bother you.
appetite: You didn't feel like eating, your appetite was poor.
blues: You felt that you could not shake off the blues, even with help from your family and your friends.
mindfoc: $Y$ ou had trouble keeping your mind on what you were doing.
depressed: You felt depressed.
failure: You thought your life had been a failure.
talkless: You talked less than usual.
tired: You felt that you were too tired to do things.
fearful: You felt fearful.
lonely: You felt lonely.
unfrndly: People were unfriendly to you.
dislike: You felt that people disliked you.
living: You felt life was not worth living.
sad: You felt sad.
getstart: It was hard to get started doing things.

0: Never 1: Some 2: A lot 3: Mostly
goodas: You felt that you were just as good as other people.
hopeful: You felt hopeful about the future.
happy: You were happy.
enjlife: You enjoyed life.
0: Mostly 1: A lot 2: Some 3: Never
depress: Depression scale, above 19 items added together.
momeduc: How far in school did your mom go?
dadeduc: How far in school did your dad go?

| 1: eighth grade or less | 2: more than 8th grade, but not HS grad |
| :--- | :--- |
| 3: business/trade/vocational instead of HS | 4: high school graduate |
| 5: completed a GED | 6: business/trade/vocational after HS |
| 7: went to college, but did not graduate | 8: graduated from a college/univ |
| 9: prof. training beyond a 4yr college/univ. | 10: Never went to school. |
| 11: Went, but R doesn't know what level. | 12: R doesn't know if went to school. |

momcoll: Mom graduated from college? dadcoll: Dad graduated from college?
momhsgrd: Mom graduated from high school? dadhsgrd: Dad graduated from high school?
0 : No 1: Yes
mombrnUS: Was your mom born in the United States?
dadbrnUS: Was your dad born in the United States?
0 : No 1: Yes
Which of the things listed on this card have you done with your mother in the past 4 weeks?
momshop: gone shopping
momsport: played a sport
momrel: gone to a religious service or church-related event
momlife: talked about someone you're dating, or a party you went to
mommovie: gone to a movie, play, museum, concert, or sports event
momprob: had a talk about a personal problem you were having
mombehav: had a serious argument about your behavior
momgrades: talked about your school work or grades
momproj: worked on a project for school
momoth: talked about other things you're doing in school
momnone: didn't do any of these things with your mom
0 : No 1: Yes
actsmom: Number of above activities respondent did with mom, except talk about personal problems, argue about behavior, and talk about grades (range 0-7)
Which of these things have you done with your father in the past 4 weeks?

```
dadshop: gone shopping
dadsport: played a sport
dadrel: gone to a religious service or church-related event
dadlife: talked about someone you're dating, or a party you went to
dadmovie: gone to a movie, play, museum, concert, or sports event
dadprob: had a talk about a personal problem you were having
dadbehav: had a serious argument about your behavior
dadgrades: talked about your school work or grades
dadproj: worked on a project for school
dadoth: talked about other things you're doing in school
dadnone: didn't do any of these things with your dad
    0: No 1:Yes
```

actsdad: Number of above activities respondent did with dad, except talk about personal problems, argue about behavior, and talk about grades (range 0-7)
momrshp: Overall, you are satisfied with your relationship with your mother.
dadrshp: Overall, you are satisfied with your relationship with your father.
0: No 1: Yes
momcare: How much do you think your mom cares about you?
dadcare: How much do you think your dad cares about you?
adultcare: How much do you feel that adults care about you?
tchrcare: How much do you feel that your teachers care about you?
prntscare: How much do you feel that your parents care about you?
frndscare: How much do you feel that your friends care about you?
1: Not at all 2: Very little 3: Somewhat 4: Quite a bit 5: Very much 6:DNApply
How much do you agree with the following statements?
goodqual: You have a lot of good qualities.
proud: You have a lot to be proud of.
likeself: You like yourself just the way you are.
doright: You feel like you are doing everything just about right.
accepted: You feel socially accepted.
loved: You feel loved and wanted.
1: Strongly disagree 2 : Disagree 3 : Neither 4 : Agree 5: Strongly agree
esteem: Self-esteem scale, six above items added together
abpledge: Have you taken a public or written pledge to remain a virgin until marriage? (0: No; 1: Yes)
havesex: Have you ever had sexual intercourse? (0: No; 1: Yes)
smokereg: Have you ever smoked cigarettes regularly, that is, at least 1 cigarette every day for 30 days? 0: No 1: Yes
dayssmok: During the past 30 days, on how many days did you smoke cigarettes? (range 0-30)
numcigs: During the past 30 days, on days you smoked, how many cigarettes did you smoke daily? (0-60)
numdrinks: Think of all the times you have had a drink during the past 12 months. How many drinks did you usually have each time? (range: 0-90)
daysdrink: During the past 12 months, on how many days did you drink alcohol?
drink5: Over the past 12 months, on how many days did you drink five or more drinks in a row?
daysdrunk: Over the past 12 months, on how many days have you gotten drunk or "very, very high" on alcohol?

| 1: Never | 2: 1 to 2 days | 3: Once a month |
| :--- | :--- | :--- |$\quad$ 4: A few times a month

potlife: During your life, how many times have you used marijuana? (range 0-900)
potlstmo: During the past 30 days, how many times did you use marijuana? (range $0-800$ )
In the past 12 months, how often did you ...
graffiti: paint graffiti or signs on someone else's property or in a public place?
damage: deliberately damage property that didn't belong to you?
lieprnts: lie to your parents or guardians about where you had been or whom you were with?
shoplift: take something from a store without paying for it?
fight: get into a serious physical fight?
injureoth: hurt someone badly enough to need bandages or care from a doctor or nurse?
runaway: run away from home?
stealcar: drive a car without its owner's permission?
stealGT50: steal something worth more than $\$ 50$ ?
burglar: go into a house or building to steal something?
weapon: use or threaten to use a weapon to get something from someone?
selldrugs: sell marijuana or other drugs?
stealLT50: steal something worth less than $\$ 50$ ?
grpfight: take part in a fight where a group of your friends was against another group? rowdy: act loud, rowdy, or unruly in a public place?
0 : None
1: 1-2 times
2: 3-4 times
3: 5+ times
delinq: $\quad$ Number of the above items respondent did at least once in the last 12 months. (range 0-15)
leavehome: How much do you feel that you want to leave home?
famundrst: How much do you feel that people in your family understand you?
famfun: How much do you feel that you and your family have fun together?
famattn: How much do you feel that your family pays attention to you?

| 1: Not at all | 2: Very little | 3: Somewhat |
| :--- | :--- | :--- |
| 4: Quite a bit | 5: Very much | 6: Does not apply |

relig: What is your religion?

| 0: none | 1: Adventist | 2: African Methodist Episcopal, AME Zion, CME |
| :--- | :--- | :--- |
| 3 Assemblies of God | 4: Baptist | 5: Christian Church (Disciples of Christ) |
| 6: Christian Science | 7: Congregational | 8: Episcopal |
| 9: Friends/Quaker | 10: Holiness | 11: Jehovah’s Witness |
| 12: Latter Day Saints (Mormon) 13: Lutheran | 14: Methodist |  |
| 15: National Baptist | 16: Pentecostal | 17: Presbyterian |
| 18: United Church of Christ | 19: other Protestant | 20: Baha'i |
| 21: Buddhist | 22: Catholic | 23: Eastern Orthodox |
| 24: Hindu | 25: Islam, Muslim | 26: Jewish |
| 27: Unitarian | 28: other religion |  |
| Prot: Protestant? | relCath: Catholic? | relJew: Jewish? |
| Oth: Other religion? | relNone: No religion? |  |

0 : No 1: Yes
service: In the past 12 months, how often did you attend religious services?

| 1: Never | 2: Less than once a month |
| :--- | :--- |
| 3: Less than once a week | 4: Once a week or more |

pray: How often do you pray?

| 1: Never | 2: Less than once a month |
| :--- | :--- |
| 4: Once a week | 3: Once a month |

wantcoll: On a scale of 1 to 5 , where 1 is low and 5 is high, how much do you want to go to college?
likelycol: On a scale of 1 to 5 , where 1 is low and 5 is high, how likely is it that you will go to college?
1: Low 2434 5: High
AHvocab: Add Health Picture Vocabulary Test standardized score (range 16-137)
RAWvocab: Add Health Picture Vocabulary Test raw score (range 4-87)
*higher score indicates better performance

