
Confidence Intervals for Predicted Outcomes in Regression
Models for Categorical Outcomes

Jun Xu and J. Scott Long

Indiana University

February 14, 2005

1 Overview

The interpretation of regression models often involves the examination of predicted outcomes
at specific values of the independent variables. The prvalue command by Long and Freese
(2003) makes it very simple to compute such post-estimation predictions. After estimating
a regression model, the user specifies values of interest for the independent variables and
prvalue computes the predicted value (or values) of the outcome. Changes in the predictions
as values of the independent variables change can also be computed. In this article, we
describe enhancements to prvalue that allow the computation of confidence intervals and
demonstrate the ways in which prvalue can be used. Depending on the regression model
and options chosen, confidence intervals are computed using standard maximum likelihood
methods, the method of endpoint transformations, the delta method, or bootstrapping. The
command works after estimating models using cloglog, cnreg, gologit, intreg, logit,
mlogit, nbreg, ologit, oprobit, poisson, probit, regress, tobit, zinb, and zip. In this
article, we describe prvalue2, discuss the methods used for computing confidence intervals,
and demonstrate various ways in which prvalue2 can be used. To complement prvalue2,
we also present prgen2 which enhances Long and Freese’s (2003) prgen to allow the plotting
of confidence intervals and marginal changes. (Note: When the review process is complete,
prvalue2 and prgen2 will be added to the spostado package using the original names
prvalue and prgen.)

2 Installation

prvalue2 and prgen2 are part of the spostado package (see Long and Freese 2003 and
www.indiana.edu/~jslsoc/spost.htm for details). If you have already installed spostado, we
recommend that you begin by uninstalling the package using the command ado uninstall
spostado. After spostado has been uninstalled or if you have never installed the package,
you should connect to the internet, enter the Stata command net search spostado, and
follow the instructions you will be given. prvalue2 and prgen2 require Stata version 8.0 or
later. The spostado package will also install prvalue and prgen which work with Stata 7.0,
but these commands do not compute confidence intervals except for a few simple cases.

1

Differences from prvalue and prgen Any program that works with prvalue and prgen
should work with prvalue2 and prgen2. The only exception is that prvalue2, ystar does
not print predicted probabilities as prvalue did. To compute the predicted probabilities,
simply run the command again without the ystar option. The formatting of output has
changed to incorporate the confidence intervals.

3 Syntax for prvalue2

prvalue2 [if exp] [in range] [, x(variable1= value1 [...]) rest(stat) all save diff
maxcnt(#) brief nobase nolabel ystar level(#) delta ept bootstrap
reps(#) dots match size(#) saving(...)][biascorrected | percentile |
normal]

Options

x(variable1= value1 [...]) sets the values of independent variables for calculating predicted
outcomes. The list must alternate variable names and either numeric values or terms
describing the value to use (mean, median, min, max, previous, upper, or lower). For
example, x(wc=1 age=median).

rest(stat) sets the independent variables not specified by x() to their mean, min, max, or
median when calculating predicted values. grmean sets these independent variables to
the mean conditional on the variables and values specified in x(); grmedian, grmax,
and grmin work in the same way using values for the median, maximum or minimum.
If prvalue2 has already been run, previous will set unspecified variables to their prior
values. If rest() is not specified, rest(mean) is assumed.

if exp and in range specify the sample used to compute the statistics (e.g., mean) used to
set the values with x() and rest().

all specifies that calculation of means, medians, and other statistics should use the entire
sample instead of the possibly smaller sample used to estimate the model.

save saves information from the current prvalue2 for use in computing changes in predic-
tions using the diff option.

diff computes difference between current predictions and those that were saved using
save. You must use the same method for computing confidence intervals with diff as
was used for the save results.

ystar requests that the predicted value of y∗ rather than predicted probabilities should be
computed for binary and ordinal models.

maxcnt(#) is the maximum count value for which the probability is computed in count
models. The default of 9 will list probabilities for values from 0 to 9.

2

brief prints only limited output showing predictions and confidence intervals, without
listing values of the independent variables.

nobase suppresses a listing of the base values that were specified with x() and/or rest().

nolabel uses the numeric values of the outcome rather than value labels in the output.

Option for computing confidence intervals

level(#) specifies the confidence level, in percent, for confidence intervals. For example,
level(95) specifies that you want a 95% confidence interval.

ept computes confidence intervals for predicted probabilities for cloglog, logit and probit
by endpoint transformation. This method cannot be used for changes in predictions.

delta calculates confidence intervals by the delta method using analytic derivatives.

bootstrap computes confidence intervals using the bootstrap method. This method takes
roughly 1,000 times longer to compute than other methods.

Option used for bootstrapped confidence intervals

reps(#) specifies the number of bootstrap replications to be performed. The default
is 1,000. The accuracy of a bootstrap estimate depends critically on the number of
replications. While sources differ on the recommended number of replications, Efron
and Tibshirani (1993:188) suggest 1,000 replications for confidence intervals. You can
use bssize (Poi 2004) to calculate the number of bootstrap replications to be used.
In our experience, this method suggests over 1,000 replicatons. See the documentation
for saving below.

dots is used with bootstrap to write a . at the beginning of each replication and periodi-
cally prints the percent of total replications that have been completed. If computations
appears to be stuck (i.e., new dots do not appear), it is likely that the estimation is not
converging for the current bootstrap sample. We have found this to be most common
with zip, zinb and gologit. When this happens, you can click on the break sym-
bol to stop computations for the current sample or wait until the maximum number
of iterations have been computed (by default, the maximum number of iterations is
16,000). When a model does not converge for a given bootstrap sample, that sample
is dropped.

match specifies that the bootstrap will resample within each category of the dependent
variable in proportion to the distribution of the outcome categories in the estimation
sample. If match is not specified, the proportions in each category of the bootstrap
sample are determined entirely by the random draw and it is possible to have samples
with no cases in some of the categories. This option does not apply to cnreg, intreg,
nbreg, poisson, regress, tobit, zinb, and zip.

3

size(#) specifies the number of cases to be sampled when bootstrapping. The default
is the size of the estimation sample. If size(#) is specified, # must be less than or
equal to the size of the estimation sample. In general, it is best to not specify size
(see www.stata.com/support/faqs/stat/reps.html for further information).

saving(filename, save_options) creates a data file with the estimates from each of the
bootstrapped samples (i.e., one case for each replication). This option is useful when
you need to examine the distribution of bootstrapped estimates. For example, this
option is required if you plan to use bssize to calculate the number of replications to
be used (Poi 2004).

percentile computes the bootstrapped confidence interval using the percentile method.
This is the default method.

biascorrected computes the bootstrapped confidence interval using the bias-corrected
method.

normal computes the bootstrapped confidence interval using the normal approximation
method.

4 Syntax for prgen2

prgen2 varname [if exp] [in range], generate(prefix) [from(#) to(#) ncases(#)
gap(#) x(variable1=value1 [...]) rest(stat) maxcnt(#) brief all noisily
marginal ci][options from prvalue2]

Note that all options from prvalue2 except for save and diff can be used to specify the
way in which the upper and lower bounds are created when the ci option is used. And, the
options if, in, x(), rest(), maxcnt, brief and all work in the same way as for prvalue2.

Options

varname is the name of the variable that changes while all other variables are held at
specified values.

generate(prefix) sets the prefix for the new variables created by prgen. Choosing a prefix
that is different than the beginning letters of any of the variables in your data set
makes it easier to examine the results. For example, if you choose the prefix abcd then
you can use the command sum abcd* to examine all newly created variables.

from(#) and to(#) are the start and end values for varname. The default is for varname
to range from the observed minimum to the observed maximum of varname.

ncases(#) specifies the number of predicted values prgen2 computes as varname varies
from the start value to the end value. The default is 11.

4

gap(#) is an alternative to ncases. You specify the gap or size between tic marks and
prgen2 determines if the specified value divides evenly into the range specified with
from and to. If it does, prgen2 determines the appropriate value for ncases.

ci indicates that you want to generate confidence intervals corresponding to the predictions
that are created.

marginal requests that a variable or variables are created containing the marginal change
in the outcome relative to varname, holding all other variables constant.

noisily indicates that you want to see the output from prvalue2 that was was used to
generate the predicted values.

Variables generated prgen2 constructs variables that can be graphed. The observations
contain predicted values and/or probabilities for a range of values for the variable varname,
holding the other variables at the specified values. n observations are created, where n is 11
by default or specified by ncases()or gap(). The new variable names start with the prefix
specified by gen(). The variables created are:

For which models Name Content
All models prefixx The values of varname from from(#) to to(#).
logit, probit prefixp0 Predicted probability Pr(y = 0).

prefixp1 Predicted probability Pr(y = 1).
ologit, oprobit, gologit prefixpk Predicted probability Pr(y = k) for all outcomes.

prefixsk Cumulative probability Pr(y ≤ k) for all outcomes.
mlogit prefixpk Predicted probability Pr(y = k) for all outcomes.
poisson, nbreg, zip, zinb prefixmu Predicted rate μ.

prefixpk Predicted probability Pr(y = k), for 0 ≤ k ≤ maxcnt().
prefixsk Cumulative probability Pr(y ≤ k), for 0 ≤ k ≤ maxcnt().

zip, zinb prefixinf Predicted probability Pr(Always 0= 1) = Pr (inflate) .
regress, tobit, cnreg, intreg prefixxb Predicted value xbβ.
If ci is specified as an option for prgen2, variables are created containing the upper and
lower bounds for the confidence interval for the outcome. These variables have the same
names as those in the table above, except for adding ub at the end for the variable with
the upper bound and lb for the lower bound. If marginal is specified, variables are created
that contain the marginal change in the outcome with respect to varname, holding all other
variables constant. The variables containing marginals have the same names as those in the
table above, except for adding a D prior to the outcome abbreviation and Dvarname after.
For example, the marginal for prefixp0 is named prefixDp0Dvarname. Marginals are only
computed for those models for which the prchange command can compute the marginal
change (see Long and Freese 2003).

4.1 Predictions and Methods for Computing Confidence Intervals

Depending on the model and options chosen, prvalue2 computes predictions for different
outcomes. For models with categorical outcomes, the probability of each outcome is com-
puted. When these models can be derived from a latent variable model, the predicted value

5

for the latent variable can also be computed. For count models, both the predicted rate and
the probability of each count are computed. The values computed are summarized here:

Models Pr (y) y or y∗ Rate μ Pr (count)
cloglog, logit, probit default ystar1 no no
ologit, oprobit default ystar1 no no
gologit, mlogit, default no no no
zinb, zip, nbreg, poisson no no default default
regress, cnreg, no default no no

intreg, tobit
1: when ystar is specified.

While technical details on each method for computing confidence intervals are given
below, here we provide general information about these methods and why you might use each
method. prvalue2 uses four methods: 1) maximum likelihood, 2) endpoint transformation,
3) the bootstrap method, and 4) the delta method.

1. Maximum Likelihood For models such as the linear regression model, the standard
method of computing confidence intervals using maximum likelihood theory is used.

2. Endpoint TransformationWith the ept option, confidence intervals are computed
using endpoint transformations. This method is only appropriate for monotonic func-
tions, such as predicted probabilities in binary regression models. One advantage of
this method is that the bounds cannot be smaller than 0 or greater than 1. This
method cannot be used for computing confidence intervals for changes in predictions.

3. Delta Method With the delta option, confidence intervals are computed using the
delta method. This method takes a function that is too complex for analytically
computing the variance (for example, the change in the predicted probabilities in a
multinomial logit model) and creates a linear approximation of that function. The
variance of the simpler approximation is used for constructing the confidence interval.
Since prvalue2 uses analytic formulas for the derivatives, rather than numerical esti-
mation, the computation of confidence intervals is extremely fast. Unlike the method
of endpoint transformation, the bounds computed by the delta method can include
values that exceed the range of the statistic being estimated (e.g., a bound a predicted
probability could be negative or greater than one).

4. Bootstrap Method The bootstrap option computes bootstrapped confidence inter-
vals (see Guan 2003 for a introduction to the bootstrap using Stata). The idea of the
bootstrap is that by taking repeated samples from the sample used to estimate your
model, you can estimate the sampling variability that would occur by taking repeated
samples from the population. This is done by taking a random sample from the esti-
mation sample, compute the statistics of interest, and repeat this for some number of
replications. The variation in the estimates across the replications is used estimate the
standard deviation of the sampling distribution. While the bootstrap method generally

6

works quite well and avoids assumptions implicit in other methods, it is computation-
ally intensive. For example, computations of the confidence intervals for a multinomial
logit with 5 outcomes, three variables, and 337 cases by the delta method took .15
seconds, while computing the confidence intervals by bootstrap took 141 seconds for
1,000 replications. Computations of confidence intervals for a multinomial logit with 6
outcomes, 4 variables and 7,357 cases using the delta method took .61 seconds, while
computing the confidence intervals by bootstrap took 13 minutes 2 seconds for 1,000
replications.1 Roughly speaking, each replication in a bootstrap takes as long as the
entire computation for the delta method. The zip and zinb models are too complex
for computing the derivatives necessary for the delta method, so only the bootstrap
method can be used.

A summary of which methods work for which models is shown below:

Endpoint
Maximum transfor- Delta Bootstrap Default

Models Likelihood mations Method Method Method

cloglog, logit, probit yes1 yes2 yes yes delta
ologit, oprobit yes1 no yes yes delta
gologit, mlogit, no no yes yes delta

nbreg, poisson
zinb, zip no no no yes no ci
regress, cnreg, ystar no no no ml

intreg, tobit
1: when ystar is specified; 2: this does not work for changes in predictions.

5 Examples

The examples that follow illustrate increasingly complex ways in which prvalue2 can be
used. In addition to these examples, others can be downloaded when you install the program.
For further details on the data and models, see either Long (1997) or Long and Freese (2003).

5.1 Simple predictions2

Binary logit In this example, we use a binary logit model to predict labor force partici-
pation for a sample of women (these data were provided by Thomas Mroz).

. use binlfp2, clear

. logit lfp k5 k618 age wc hc lwg inc, nolog
<output deleted>

1Computations were made using Stata/SE 8.2 (born 10 Jan 2005) on a Dell XPS with an Intel
R°
Pentium

R°

4 running at 3.4GHz. Estimates of times for the delta method were based on the average of 1,000 computa-
tions.

2The commands generating the output in this section are in prvalue2_predict.do.

7

After the model is estimated, we can compute the predicted probability of labor force par-
ticipation for a woman who is 35 years old, has two young children, did not attend college,
and is average on all other characteristics.

. prvalue2, x(age=35 k5=2 wc=0) rest(mean)

logit: Predictions for lfp

Confidence intervals by delta method

95% Conf. Interval
Pr(y=inLF|x): 0.1174 [0.0495, 0.1852]
Pr(y=NotInLF|x): 0.8826 [0.8148, 0.9505]

k5 k618 age wc hc lwg inc
x= 2 1.3532537 35 0 .39176627 1.0971148 20.128965

For someone with these characteristics (which are listed in the line beginning x=), the
predicted probability of being in the labor force is .117, with a 95% confidence interval from
.050 to .185.
With binary and ordinal models, we can also predict the latent y∗ used in the latent

variable formulation of the model. To do this, we add the option ystar:

. prvalue2, x(age=35 k5=2 wc=0) rest(mean) ystar

logit: Predictions for lfp

95% Conf. Interval
Predicted y*: -2.0177 [-2.6723, -1.3631]

k5 k618 age wc hc lwg inc
x= 2 1.3532537 35 0 .39176627 1.0971148 20.128965

Negative binomial regression In this example, we examine a count model predicting
the number of papers published by biochemists.

. use couart2, clear

. nbreg art fem mar kid5 phd ment, nolog
<output deleted>

Since very few publish more than six papers we use the option maxcnt(6) so that prvalue2
will only compute predicted probabilities for publications from 0 to 6. For a single woman
without children who is average on all other characteristics, we find:

. prvalue2, x(mar=0 fem=1 kid5=0) rest(mean) maxcnt(6)

nbreg: Predictions for art

8

95% Conf. Interval
Rate: 1.4079 [1.2237, 1.5921]
Pr(y=0|x): 0.3346 [0.2926, 0.3766]
Pr(y=1|x): 0.2905 [0.2761, 0.3048]
Pr(y=2|x): 0.1818 [0.1685, 0.1950]
Pr(y=3|x): 0.0991 [0.0859, 0.1122]
Pr(y=4|x): 0.0500 [0.0395, 0.0604]
Pr(y=5|x): 0.0240 [0.0169, 0.0312]
Pr(y=6|x): 0.0111 [0.0067, 0.0156]

fem mar kid5 phd ment
x= 1 0 0 3.1031093 8.7672131

We predict 1.4 publications, with a confidence interval from 1.22 to 1.59. Below the rate, the
probabilities that a person with these characteristics will publish a given number of papers
are listed along with confidence intervals computed with the delta method.

5.2 Discrete change3

Binary probit One way to interpret the results of regression type models is to see how the
predictions change when levels of the independent variables change. To illustrate this, we
examine how the probability of being in the labor force is expected to increase for someone
attending college. We begin by estimating a probit model:

. use binlfp2, clear

. probit lfp k5 k618 age wc hc lwg inc, nolog
<output deleted>

The next command predicts the probability for someone who is average on all characteristics
and who has not gone to college. Notice that this command is prefixed by quietly since we
do not want to see the results yet. But, we save the results with the save option.

. quietly prvalue2, x(wc=0) rest(mean) save

We run prvalue2 again, this time for someone who attended college. We use the dif option
to compute changes in predictions from the saved results:

. prvalue2, x(wc=1) rest(mean) dif

probit: Change in Predictions for lfp

Confidence intervals by delta method

Current Saved Change 95% CI for Change

3The commands generating the output in this section are in prvalue2_change.do.

9

Pr(y=inLF|x): 0.7082 0.5238 0.1844 [0.0892, 0.2795]
Pr(y=NotInLF|x): 0.2918 0.4762 -0.1844 [-0.2795, -0.0892]

k5 k618 age wc hc lwg
Current= .2377158 1.3532537 42.537849 1 .39176627 1.0971148
Saved= .2377158 1.3532537 42.537849 0 .39176627 1.0971148
Diff= 0 0 0 1 0 0

inc
Current= 20.128965
Saved= 20.128965
Diff= 0

Attending college increases the probability of being in the labor force by .18 [.09,.28] for
someone who is average on all other variables in the model. The same value of .18 could have
been computed with the prchange command (Long and Freese 2003), but that command
does not compute the confidence interval.

Poisson regression Our next example computes the change in the rate of publication
when two variables change at the same time. We also illustrate the computation of boot-
strapped confidence intervals.

. use couart2, clear

. poisson art fem mar kid5 phd ment, nolog
<output deleted>

We want to compare the predicted productivity for an unmarried woman without children
to the productivity for a married, female scientist with two young children:

. quietly prvalue2, x(mar=0 fem=1 kid5=0) maxcnt(5) boot save

. prvalue2, x(mar=1 fem=1 kid5=2) maxcnt(5) boot dif

poisson: Change in Predictions for art

Bootstrapped confidence intervals using percentile method
(1000 of 500 replications completed)

Current Saved Change 95% CI for Change
Rate: 1.138 1.4102 -.27228 [-0.5110, -0.0300]
Pr(y=0|x): 0.3205 0.2441 0.0764 [0.0080, 0.1535]
Pr(y=1|x): 0.3647 0.3442 0.0205 [0.0022, 0.0384]
Pr(y=2|x): 0.2075 0.2427 -0.0352 [-0.0728, -0.0034]
Pr(y=3|x): 0.0787 0.1141 -0.0354 [-0.0652, -0.0039]
Pr(y=4|x): 0.0224 0.0402 -0.0178 [-0.0327, -0.0020]
Pr(y=5|x): 0.0051 0.0113 -0.0062 [-0.0121, -0.0007]

10

fem mar kid5 phd ment
Current= 1 1 2 3.1031093 8.7672131
Saved= 1 0 0 3.1031093 8.7672131
Diff= 0 1 2 0 0

By default, 1,000 replications are computed, all of which completed successfully as indicated
by the count of the number of replications completed.

5.3 Plotting confidence intervals4

Predicted probabilities with cloglog prgen2 makes it simple to plot predictions and
confidence bands for those predictions as one variable changes, holding all other variables
constant. First, we estimate a binary cloglog model:

. use binlfp2, clear

. cloglog lfp k5 k618 age wc hc lwg inc, nolog
<output deleted>

We want to plot the predicted probability of being in the labor force for average women at
various ages. The resulting plot looks like this:

.2

.4

.6

.8

1

P
ro

ba
bi

lit
y

of
 B

ei
ng

 in
 L

ab
or

 F
or

ce

20 30 40 50 60 70
Age

Predicted probability
95% upper limit
95% lower limit

As would be expected, the probability of being in the labor force decreases with age and the
confidence interval narrows at the center of our data. To create this graph, we use prgen2

4The commands generating the output in this section are in prgen2_plotpred.do.

11

to compute predictions at many different values of age and to store the predictions. The
command that follows includes several options governing the confidence iterval. First, ci
tells prgen2 that you want to save values for plotting the confidence interval. The ept option
indicates that the confidence interval should be computed using endpoint transformations,
rather than the default which is the delta method. Finally, noisily indicates that you
want to see the results of prvalue2 each time it is used to compute a prediction and its
confidence interval; normally, you would only use noisily if you were having problems
getting the results to converge.

. prgen2 age, from(20) to(70) gap(5) gen(prlfp) ci ept noisily
Results from prvalue2 called by prgen2

cloglog: Predictions for lfp

95% Conf. Interval
Pr(y=inLF|x): 0.8704 [0.7598, 0.9464]
Pr(y=NotInLF|x): 0.1296 [0.0536, 0.2402]

k5 k618 age wc hc lwg inc
x= .2377158 1.3532537 20 .2815405 .39176627 1.0971148 20.128965

<additional output from prvalue2 deleted>

cloglog: Predicted values as age varies from 20 to 70.

k5 k618 age wc hc lwg inc
x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148 20.128965

The variables that are created all begin with the prefix prlfp:

. desc prlfp*

storage display value
variable name type format label variable label

prlfpx float %9.0g Changing value of age
prlfpp0 float %9.0g pr(NotInLF)=Pr(0)
prlfpp1 float %9.0g pr(inLF)=Pr(1)
prlfpp0ub float %9.0g UB pr(NotInLF)=Pr(0)
prlfpp1ub float %9.0g UB pr(inLF)=Pr(1)
prlfpp0lb float %9.0g LB pr(NotInLF)=Pr(0)
prlfpp1lb float %9.0g LB pr(inLF)=Pr(1)

prlfpx contains values of age between 20 and 70. prlfpp1 is the probability of being in the
labor force, while prlfpp1ub and prlfpp1lb hold the upper and lower bounds. We can plot
these with the follwing commands, which generated the graph above.

12

. twoway ///
> (connected pr x_age, ///
> clcolor(black) clpat(solid) clwidth(medthick) ///
> msymbol(i) mcolor(none)) ///
> (connected pr_up x_age, ///
> msymbol(i) mcolor(none) ///
> clcolor(black) clpat(dash) clwidth(thin)) ///
> (connected pr_lo x_age, ///
> msymbol(i) mcolor(none) ///
> clcolor(black) clpat(dash) clwidth(thin)), ///
> ytitle("Probability of Being in Labor Force") yscale(range(0 .35)) ///
> ylabel(, grid glwidth(medium) glpattern(dot)) ///
> xscale(range(20 70)) xlabel(20(10)70)

5.4 Effects of the number of replications5

The number of replications is important for the quality of the bootstrapped confidence
interval. This is shown in the following graph:

-.05

0

.05

.1

.15

.2

.25

.3

P
r(l

fp
=1

)

0 500 1000 1500 2000 2500 3000
Number of Replications

Bootstrap: Lower bound
Bootstrap: Upper bound
Predicted value

Here is how the graph was generated. After estimating the binary logit model used in prior
examples, we computed: prvalue2, x(inc=100) rest(mean) to estimate the predicted
probability (shown by the solid line) and the upper and lower bounds by the delta method
(shown by the straight, dashed lines located at -0.015 and 0.176). Next, we computed
bootstrapped confidence intervals using the number of replications ranging from 50 to 3,000.
The program looks like this:

5The commands generating the output in this section are in prvalue2_boot_reps.do.

13

// variables to hold predicted probabilities and bounds

gen reps = .
label var reps "# of replications"

gen pred = .
label var pred "Predicted value"

gen ubboot = .
label var ubboot "Bootstrap: Upper bound"

gen lbboot = .
label var lbboot "Bootstrap: Lower bound"

// compute delta ci

prvalue2, x(inc=100) rest(mean) delta
local UpperDelta = peupper[2,2]
local LowerDelta = pelower[2,2]

// get bootstrapped ci with different #s of replications

set seed 2399194 // so exact results can be reproduced

local j = 0

foreach reps in 50 100 200 300 400 500 600 700 800 900 1000 ///
1200 1400 1600 1800 2000 2200 2400 2600 3000 {

local ++j
di "= Start for ‘reps’ replications: " c(current_time)
di "= Seed: " c(seed)
prvalue2, x(inc=100) rest(mean) boot rep(‘reps’)
scalar prob1 = pepred[2,2] // pr(lfp=1)
scalar UpperBoot = peupper[2,2]
scalar LowerBoot = pelower[2,2]
qui replace pred = prob1 if _n==‘j’
qui replace reps = ‘reps’ if _n==‘j’
qui replace lbboot = LowerBoot if _n==‘j’
qui replace ubboot = UpperBoot if _n==‘j’

di
di "= End for ‘reps’ replications: " c(current_time)
di

} // reps

The results were then plotted.

14

6 Methods for Computing Confidence Intervals

In this section we provide a more technical discussion of the ideas behind the methods used
by prvalue2 to compute confidence intervals. Let δ be some parameter estimated by your
model (e.g., Pr (y = 1) in the logit model). We are interested in computing the lower and
upper bounds such that:

Pr (LB ≤ δ ≤ UB) = α .

This can be interpreted as saying that the population parameter δ is contained within the
interval with confidence 1−α. In the simplest case, the confidence interval can be computed
directly using results from maximum likelihood theory. Under the usual conditions for ML,bβ a∼ N

³
β,Var

³bβ´´. Then, xbβ a∼ N
³
xβ,x0Var

³bβ´x´, which can be used to compute
confidence intervals for linear combinations xbβ, such as by in linear regression. For example,
to compute the 100 (1− α) confidence interval, define z as the

¡
1− α

2

¢
percentile from a

standard normal distribution (i.e., the probability of being greater than z is α/2 and the
probability of being less than −z is α/2). Since xbβ is asymptotically normal with variance
x0Var

³bβ´x, the 100 (1− α) confidence interval for xβ is:Ã
xbβ − z

r
x0Var

³bβ´x! ≤ xβ ≤ Ãxbβ + z

r
x0Var

³bβ´x! . (1)

Since many of the quantities computed by prvalue2 are nonlinear transformations of xβ,
other methods are required.

6.1 Endpoint Transformations

The method of endpoint transformation can compute confidence intervals for monotonic
functions of xβ (i.e., a function that is always increasing or always decreasing), such as
the predicted probabilities in binary logit or probit. First, the confidence interval for xbβ
is computed as the symmetric interval [LBxβ ≤ xβ ≤ UBxβ]. Since Pr (xβ) = F (xβ) is a
monotonic transformation of xβ, the confidence interval for F (xβ) is computed by trans-
forming the bounds using the same function F :£

LBPr(xβ) ≤ Pr (xβ) ≤ UBPr(xβ)
¤
= [F (LBxβ) ≤ F (xβ) ≤ F (UBxβ)] .

For example, consider the binary logit model. Using equation 1, we compute the 100 (1− α)

confidence interval for xbβ. To compute the predicted probability, we take the logit transfor-
mation xbβ:

Pr
³
xbβ´ = exp

³
xbβ´

1 + exp
³
xbβ´ = Λ

³
xbβ´ ,

where Λ (.) is the cdf for the logistic distribution. By applying the logit transformation to
the endpoints from equation 1, we obtain the asymmetric confidence interval for Pr (xβ):

Λ

Ã
xbβ − z

r
x0Var

³bβ´x! ≤ Pr (xβ) ≤ Λ

Ã
xbβ + z

r
x0Var

³bβ´x! .

15

While computationally simple, this method is limited to those few cases in which the outcome
of interest is a monotonic function of xβ. For further discussion, see Cox and Ma (1995)
and Liao (2000).

6.2 Delta Method

The delta method is a more general method for computing confidence intervals. This
method takes a function that is too complex for analytically computing the variance (e.g.,

Var
µ
exp

³
xbβ´h1 + exp³xbβ´i−1¶, creates a linear approximation of the function, and

then computes the variance of the simpler linear function that is used for large sample
inference. While we illustrate this approach with a simple, one-parameter example, the
approach generalizes readily to the case with multiple parameters. Details on the equa-
tions used to implement the delta method for the models in prvalue2 are available at
www.indiana.edu\~jslsoc\spost.htm.
Let F (xβ) be the estimator of interest, for example, Pr (xβ) = Φ (xβ). The first step is

to use a Taylor expansion to linearize the function evaluated at bβ:
F
³
xbβ´ ≈ F (xβ) + (bβ − β)f(xβ) ,

where f (β) = F 0 (β) is the derivative of F evaluated at β. Then, taking the variance of both
sides of the equation:

Var
h
F
³
xbβ´i ≈ Var hF (xβ) + (bβ − β)f(xβ)

i
.

We can easily simplify the right-hand side:

Var
h
F (xβ) + (bβ − β)f(xβ)

i
= Var [F (xβ)] +Var

h
(bβ − β)f(xβ)

i
+2Cov

h
F (xβ), (bβ − β)f(xβ)

i
= 0 +Var

h
(bβ − β)f(xβ)

i
+ 0

= [f (β)]2Var
³bβ − β

´
= [f(β)]2Var

³bβ´ ,

where we use the fact that β, f (xβ), and F (xβ) are constants.

To make our example concrete, consider binary probit where Pr
³
xbβ´ = Φ

³
xbβ´ and x

is any specific value. The linear expansion is:

Φ
³
xbβ´ ≈ Φ (xβ) +

³bβ − β
´ ∂Φ (xβ)

∂β
, (2)

where
∂Φ (xβ)

∂β
= xφ (βx) .

16

Then,
Var

h
Φ (xβ) +

³bβ − β
´
φ (xβ)

i
= [xφ (βx)]2Var

³bβ´ ,

which leads to the symmetric confidence interval

Pr
³
xbβ´− z

rh
xφ
³
xbβ´i2Var ³bβ´ ≤ Pr (xβ) ≤ Pr³xbβ´+ z

rh
xφ
³
xbβ´i2Var ³bβ´ .

Unlike the asymmetric confidence interval based on end-point transformations, this symmet-
ric confidence interval could include values less than 0 or greater than 1.
Next, consider a discrete change Pr

³
xabβ´− Pr³xbbβ´ = Φ

³
xabβ´− Φ

³
xbbβ´, where xa

and xb are two values of x. The linearization is

Φ
³
xabβ´− Φ

³
xbbβ´ ≈ [Φ (βxa)− Φ (βxb)] +

³bβ − β
´ ∂ [Φ (xaβ)− Φ (xbβ)]

∂β
.

Taking the variance of the right-hand-side and simplifying:

Var
µ
[Φ (xaβ)− Φ (xbβ)] +

³bβ − β
´ ∂ [Φ (xaβ)− Φ (xbβ)]

∂β

¶
= Var

∙³bβ − β
´ ∂ [Φ (xaβ)− Φ (xbβ)]

∂β

¸
=

µ
∂ [Φ (xaβ)− Φ (xbβ)]

∂β

¶2
Var

³bβ´
=

£
x2aφ (xaβ)

2 + x2bφ (xbβ)
2 − 2xaφ (xaβ)xbφ (xbβ)

¤
Var

³bβ´ .

To evaluate it, we simply replace β with bβ.
6.3 Bootstrap

The bootstrap is a computationally expensive, nonparametric technique for making statisti-
cal inferences. The bootstrap method allows us to approximate the variation of parameter
estimates (or function of these estimates). For a basic introduction with specific applications
using Stata, we recommend Poi (2004) and Guan (2003). For a thorough treatment of this
method, see Efron and Tibshirani (1986) and Mooney and Duval (1993). Here we present
only the most basic information.
To compute bootstrap confidence intervals for predicted outcome, the following steps are

taken:

1. From the original estimation sample, draw a simple random sample of size N with
replacement. This is called a resample. Using the resample, estimate the model and
compute the quantities of interest.

2. Repeat step 1 R times and collect the estimates from each subsample. Use the R
estimates to create an empirical probability distribution of the quantities of interest.
This distribution, known as the bootstrap distribution, is used to construct the confi-
dence interval. Essentially, the variation in estimates among the resamples is used to
estimate the standard error of the sample estimate.

17

We use three methods for computing confidence intervals from the R empirical estimates
of each parameter. The normal method assumes that the bootstrap distribution is approxi-
mately normal and uses the standard deviation from the bootstrap distribution to compute
the appropriate percentiles from a normal distribution. The percentile method determines
the α and 1−α percentile from the bootstrap distribution without any assumption about the
shape of that distribution. With this method, the bounds cannot exceed possible values for
the statistic in question. The bias-corrected method adjusts for bias between the predicted
probabilities and the average of simulated predicted probabilities. By default, prvalue2
presents the percentile results.

7 Saved Results

All results that might be useful for Monte Carlo simulations, plotting, or other post-estimation
analysis are saved to global strings or matrices. While the typical user will not need this
information, it is needed when you are writing programs that use the results computed by
prvalue2. Additional information can be obtained with help _pecollect.

petype is a global string with the type of model being estimated. The string contains
three words. The first word contains e(cmd) for the model being analyzed. Word 2 classifies
the type of model as either typical for all model except zip and zinb which are classified as
twoeq. Word 3 indicates the general type of outcome and is one of the words: binary, count,
mlogit, ordered, regress, or tobit.

pecimethod is a global string indicating the type of confidence interval that was com-
puted. The first word is ml, delta, ept, or bootstrap. The second word indicates how the
bootstrap confidence intervals were computed, either normal, percentile or biascorrected.

peinfo is a 3×11matrix with information about the model and options used with prvalue2.
Row 1 contains information on the current call to prvalue2. Row 2 contains information
on prvalue2 for the model last saved with the save option. Row 3 contains information
on the differences between the current and saved information. Normally, rows 1 and 2 have
identical information. Columns contain the following information:
Column 1: number of right-hand-side variables.
Column 2: number of categories in outcome.
Column 3: level for confidence interval (e.g., 95 not .95).
Column 4: z-value for confidence interval at given level.
Column 5: number of right-hand-side variables for inflation in zip and zinb.
Column 6: 1 if model has no constant, else 0.
Column 7: base category for mlogit.
Column 8: stdp for binary models.
Column 9: number of requested replications for bootstrap (i.e., the number specified by

the rep option).
Column 10: number of completed replications for bootstrap. When a estimates cannot

be computed for a given bootstrap sample, it is not counted.

18

Column 11: value of the maximum number of values of predicted probabilities in count
models, corresponding to the maxcnt option.

pebase and pebase2 contain the base values for the x’s in computing the predictions.
These matrices correspond to PR_in and PR_in2 saved by prvalue. The jth column of
pebase is the jth right-hand-side variable in the model. The jth column of pebase2 is the
jth right-hand-side inflation variable in zip or zinb. If save and dif are used, the three
rows are in the matrix correspond to: 1) the current model; 2) the saved model; and 3)
differences between the current and save values.

pepred contains the predictions computed by prvalue2. This is a 7 by (number of outcome
categories) matrix. Rows contain the following information.
Row 1: values of the outcome category (e.g., 0, 1, 2)
Row 2: predicted probabilities for the value in row 1 for the current model.
Row 3: predictions for the current model.

Column 1 contains xbb from first part of model.
Column 2 contains bμ for count models.
Column 3: xbb from inflation part of zip and zinb.
Column 4: cPr (always 0) for zip and zinb.

Row 4: predicted probabilities for the value in row 1 for the saved model.
Row 5: predictions for the saved model, with columns corresponding to those for Row 3.
Row 6: the difference between rows 2 and 4.
Row 7: the difference between rows 3 and 5.

peupper and pelower contains the lower and upper confidence limits corresponding to
the information in pepred.

peuppct, pelopct, peupbias, pelobias, peupnorm and pelonorm are created when
the bootstrap method is used. They contain the upper and lower limits for all three methods
of computing confidence intervals: percentile, bias-corrected, and normal approximation.
Whichever method is selected as an option in the prvalue2 command (e.g., prvalue2,
boot normal) is also contained in peupper and pelower.

8 References

Cox, Christopher and Guangqin Ma. 1995. “Asymptotic Confidence Bands for Generalized
Nonlinear Regression Models.“ Biometrics 51:142-50.

Efron, Bradley and R. Tibshirani. 1986. “Bootstrap Methods for Standard Errors, Confi-
dence Intervals, and Other Measures of Statistical Accuracy.“ Statistical Science 1:54-
75.

Efron, Bradley and Robert Tibshirani. 1993. An introduction to the bootstrap. New York:
Chapman & Hall.

19

Guan, Weihua. 2003. From the help desk: Bootstrapped standard errors. The Stata
Journal 3:71-80.

Liao, Tim Futing. 2000. “Estimated Precision for Predictions from Generalized Linear
Models in Sociological Research.“ Quality & Quantity 34:137-52.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables.
Thousand Oaks, CA: SAGE Publications.

Long, Scott and Jeremy Freese. 2001. Regression Models for Categorical Dependent Vari-
ables Using Stata. Revised Edition. College Station, Texas: Stata Corporation.

Mooney, Christopher Z. and Robert D. Duval. 1993. Bootstrapping: A Nonparametric
Approach to Statistical Inference. Newbury Park: SAGE Publications.

Poi, Brian P. 2004. From the help desk: Some bootstrapping techniques. The Stata Journal
4:312-328.

File prvalue2-050214.tex

20

