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Road map for talk

Goals

1. Demonstrate new methods for using marginal effects

2. Exploit the power of margins, factor syntax, and gsem

3. Illustrate the SPost13 m* commands

Outline

1. Statistical background

� Binary logit model
� Standard definitions of marginal effects
� Generalizations of marginal effects

2. Stata commands

� Estimation: factor notation, storing estimates, and gsem
� Post-estimation: margins and lincom
� SPost13’s m* commands

3. Example: explaining the occurrence of diabetes
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Logit model

Probability as outcome

1. Nonlinear in probabilities

π(x) =
exp (x′β)

1 + exp (x′β)
= Λ(x′β)

2. Interpretation with marginal effect: additive change in π for change in xk

holding other variables at specific values

Odds as outcome

3. Multiplicative in odds

Ω(x) =
π(x)

1 − π(x)
= exp(x′β)

4. Interpretation with odds ratio: multiplicative change in Ω(x) for change
in xk holding other variables constant
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Logit model: nonlinear in probabilities

1. Odds ratios: identical at each arrow

2. Marginal effects: different at each arrow
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Marginal and discrete change

1. Marginal change: instantaneous rate of change in π(x)

2. Discrete change: change in π(x) for discrete change in x
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Definition of discrete change

1. xk changes from start to end

2. x = x∗ contains specific values of other variables

3. Discrete change of xk

DC(xx) =
Δπ(x)

Δxk(start → end)
= π(xk =end, x=x∗)−π(xk =start, x=x∗)

4. Interpretation

For a change in xk from start to end, the probability changes by

DC(xk), holding other variables at the specified values.
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Examples of discrete change

1. At observed values for observation i

Δπ(xi )

Δxik(xik → xik + 1)
= π(xk = xik , xi ) − π(xk = xik + 1, xi )

2. At representative values x∗

Δπ(x∗)
Δxk(0 → 1)

= π(xk = 1, x∗) − π(xk = 0, x∗)

3. Since Δπ / Δxk depends on where it is evaluated, how should the effect
of xk be summarized?
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Common summary measures of discrete change

Discrete change at the mean (DCM)

DCM(xk) =
Δπ(x)

Δxk(start → end)
= π(xk = end, x) − π(xk = start, x)

For someone who is average on all variables, increasing xk from
start to end changes the probability by DCM(xk).

Average discrete change (ADC)

ADC(xk) =
1

N

N∑
i=1

Δπ(x = xi )

Δxik(start → end)

On average, increasing xk from start to end changes the probability
by ADC(xk).
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Variation for computing discrete change
* indicates generalization of standard methods

Conditional and average change

Conditional effects

At observed values

At mean values

At representative values

Average effects

Average in full sample

Average in sub-sample *

Amount of change
Additive change

Proportional change *

Changes as function of predictors *

Change a component in multiplicative measure *

Number of variables changed

One variable

Two or more variables *
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Comparing discrete changes

Comparisons within a model

Effects of different variables

H0: DC(gender) = DC(age)

One variable’s effect at different locations

H0: DC(age | age = 50, x∗) = DC(age | age = 65, x∗)

Comparisons across models

Different samples or groups

DC(weight) for whites compared to non-whites

Model specifications

DC(weight) in different model specifications
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Stata: Overview

1. Requires Stata 12 or later; some examples need Stata 14

2. Assumes spost13 ado package is installed

3. Estimation uses factor syntax

� Logit model used but examples generalize
� Survey estimation can be used

4. Post-estimation with margins and lincom

5. In Stata, search eusmex2016 to download

� eusmex2016-effects-scott-long.do and dataset
� PDF of slides from talk
� In the slides, [#xx] points to locations in the do-file
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Stata: Estimation

1. Fitting a logit model

logit dependent independent [ , options ]

2. Factor variable syntax

i.var : categorical predictor (e.g., i.female)

c.var : continuous predictor (e.g., c.age)

c.var1 #c.var2: product (e.g., c.age#c.age ≡ c.age*c.age)

3. Regression estimates are stored for later use

estimates store ModelName

4. To replace current estimates with previously stored estimates

estimates restore ModelName
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Stata: post-estimation

1. margins estimates functions of predictions from regressions

2. margins, post stores these estimates to e(b) and e(V)

3. lincom estimates linear functions of e(b)

4. mchange, mtable, mgen and mlincom are SPost13 wrappers to generate
complex margins commands and improve output
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Example

1. Health and Retirement Survey1: cross-sectional data on health

2. Outcome is patient’s report of having diabetes

3. Begin with standard marginal effects to introduce Stata tools

4. Use these tools to compute more complex marginal effects

5. Demonstrate methods for statistically comparing effects

1Steve Heeringa generously provided the data used in Applied Survey Data Analysis
(Heeringa et al., 2010). Complex sampling is not used in my analyses.
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Variables and descriptive statistics

. use hrs-gme-analysis2, clear
(hrs-gme-analysis2.dta | Health & Retirement Study GME sample | 2016-04-08)

Variable Mean Min Max Label

diabetes .205 0 1 Respondent has diabetes?

white .772 0 1 Is white respondent?

bmi 27.9 10.6 82.7 Body mass index

weight 174.9 73 400 Weight in pounds
height 66.3 48 89 Height in inches

age 69.3 53 101 Age

female .568 0 1 Is female?

hsdegree .762 0 1 Has high school degree?

Body mass index: BMI =
weightkg
height2

m

=
703 × weightlb

height2
in
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Models of diabetes: estimate and store

1. Two models are fit [#02]

2. Model Mbmi measures body mass with the BMI index

logit diabetes c.bmi i.white c.age##c.age i.female i.hsdegree

estimates store Mbmi

3. Model Mwt measures body mass with height and weight

logit diabetes c.weight c.height i.white c.age##c.age i.female i.hsdegree

estimates store Mwt
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Models of diabetes: odds ratios and p-values

Variable Mbmi Mwt

bmi 1.1046*

weight 1.0165*

height 0.9299*

white
White 0.5412* 0.5313*

age 1.3091* 1.3093*

c.age#c.age 0.9983* 0.9983*

female
Women 0.7848* 0.8743#

hsdegree
HS degree 0.7191* 0.7067*

_cons 0.0000* 0.0001*

bic 14991.26 14982.03

Note: # significance at .05 level; * at the .001 level.
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Summarizing effects with average discrete change

1. mchange from SPost13 is a great first step for assessing effects [#03]

. estimates restore Mbmi

. mchange, amount(sd)

logit: Changes in Pr(y) | Number of obs = 16071

Change p-value

white
White vs Non-white -0.099 0.000

bmi
+SD 0.097 0.000

(output omitted )

2. Interpretation

On average the probability of diabetes is .099 less for white respondents
than non-white respondents.

Increasing BMI by one standard deviation on average increases the
probability of diabetes .097.

3. Where did these numbers come from?
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Tool: margins, at( ... ) and atmeans

1. By default, margins

1.1 Computes prediction for each observation

1.2 Then it averages these predictions

2. Average prediction assuming everyone is white

margins, at(white=1)

3. Two average predictions

margins, at(white=1) at(white=0)

4. Prediction if white with means for other variables

margins, at(white=1) atmeans
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ADC for binary xk : ADC(white)

1. ADC for white equals

ADC = 1
N

∑
i π(white = 1, x = xi ) − 1

N

∑
i π(white = 0, x = xi )

2. margins computes the two average predictions [#04]

. margins, at(white=0) at(white=1) post

Expression : Pr(diabetes), predict()

1._at : white = 0

2._at : white = 1

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2797806 .0073107 38.27 0.000 .265452 .2941092
2 .1805306 .0034215 52.76 0.000 .1738245 .1872367

3. 1. at is the average treating everyone as nonwhite

1. at = 1
N

∑
i π(white = 0, x = xi )

4. 2. at is the average treating everyone as white
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ADC for binary xk : ADC(white)

5. The post option saves the average probabilities

. matlist e(b)

1. 2.
_at _at

y1 .2797806 .1805306

6. lincom computes ADC as difference in predictions in e(b)

. lincom _b[2._at] - _b[1._at]

( 1) - 1bn._at + 2._at = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -.09925 .0082362 -12.05 0.000 -.1153927 -.0831073

7. Interpretation

On average, being white decreases the probability of diabetes by .099
(p < .001).
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TOOL: mlincom simplifies lincom

1. lincom requires column names from e(b) that can be complex

lincom ( b[2. at#1.white] - b[1. at#1.white]) ///
- ( b[2. at#0.white] - b[1. at#0.white])

2. mlincom uses column numbers which are rows in margins output

mlincom (4-2) - (3-1)
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Tool: margins, at( ... = gen(...) )

1. at(... = gen(...) ) generates new values from observed values

2. Trivially, predictions with observed values of bmi

margins, at( bmi = gen(bmi) )

3. Predictions with observed values of bmi plus 1

margins, at( bmi = gen(bmi + 1) )

4. Both observed and observed plus 1

margins, at( bmi = gen(bmi) ) at( bmi = gen(bmi + 1) )

5. Observed plus a standard deviation

1] quietly sum bmi

2] local sd = r(sd)

3] margins, at( bmi = gen(bmi + ‘sd’) )
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ADC for continuous xk : ADC(bmi)

1. Compute probabilities at observed bmi and observed+sd [#05]

. quietly sum bmi

. local sd = r(sd)

. margins, at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd´)) post

Expression : Pr(diabetes), predict()

1._at : bmi = bmi

2._at : bmi = bmi + sd

Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2047166 .0030338 67.48 0.000 .1987704 .2106627
2 .3017056 .005199 58.03 0.000 .2915159 .3118954

2. ADC(bmi+sd)

. mlincom 2 - 1, stats(all)

lincom se zvalue pvalue ll ul

1 0.097 0.004 27.208 0.000 0.090 0.104

On average, increasing BMI by one standard deviation, about 6 points,
increases the probability of diabetes by .097 (p < .001).
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Tool: mtable wrapper for margins

1. margins output is complete, not compact

2. mtable executes margins, then simplifies output (and more)

� mtable, commands lists the margins commands used

� mtable, detail shows margins output and mtable output
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DCM for continuous xk : DCM(bmi)

1. Let bmi increase from mean to mean+SD [#06]

. qui sum bmi

. local mn = r(mean)

. local mnplus = r(mean) + r(sd)

2. Option atmeans holds other variables at their means

. margins, atmeans at(bmi = `mn´) at(bmi = `mnplus´) post

Expression : Pr(diabetes), predict()

1._at : bmi = 27.89787
0.white = .2284239 (mean)
1.white = .7715761 (mean)
age = 69.29276 (mean)
0.female = .4315226 (mean)
1.female = .5684774 (mean)
0.hsdegree = .2375086 (mean)
1.hsdegree = .7624914 (mean)

2._at : bmi = 33.6687
0.white = .2284239 (mean)
1.white = .7715761 (mean)

<continued>
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DCM for continuous xk : DCM(bmi)

age = 69.29276 (mean)
0.female = .4315226 (mean)
1.female = .5684774 (mean)
0.hsdegree = .2375086 (mean)
1.hsdegree = .7624914 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2097641 .0045531 46.07 0.000 .2008401 .2186881
2 .3202789 .0066246 48.35 0.000 .307295 .3332628
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DCM for continuous xk : DCM(bmi)

2. Alternatively, mtable runs margins and reformats the results

. mtable, atmeans at(bmi = `mn´) at(bmi = `mnplus´) post

Expression: Pr(diabetes), predict()

bmi Pr(y)

1 27.9 0.210
2 33.7 0.320

Specified values of covariates

1. 1. 1.
white age female hsdegree

Current .772 69.3 .568 .762

3. DCM(bmi+sd)

. mlincom 2 - 1

lincom pvalue ll ul

1 0.111 0.000 0.102 0.119

For an average person, increasing BMI by one standard deviation
increases the probability of diabetes by .111 (p < .001).
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Proportional change in xk : changing weight

1. Body mass be measured with height and weight

logit diabetes c.weight c.height ///
i.white c.age##c.age i.female i.hsdegree, or

estimates store Mwt

2. ADC(weight) increases weight by a constant, say 25 pounds

3. A 25 pound increase in weight means different things

� A 25% increase from 100 pounds

� At 14% increase from average weight

� An 8% increase from 300 pounds

4. The effect of a percentage increase could be more useful than the effect
of a 25 pound increase

29 / 91

Proportional change in xk : ADC(weight+25)

1. Computing ADC(weight+25) [#07]

. estimates restore Mwt

. mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.271

. quietly mlincom 2 - 1, rowname(ADC add) clear
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Proportional change in xk : ADC(weight*1.14)

2. A simple change to gen() computes proportional change

. estimates restore Mwt

. mtable, at(weight = gen(weight)) at(weight = gen(weight * 1.14)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.273

. mlincom 2 - 1, rowname(ADC pct) add

lincom pvalue ll ul

ADC add 0.067 0.000 0.062 0.071
ADC pct 0.068 0.000 0.063 0.073

3. The average effects are close, but is the average a good summary?
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Tool: margins, generate()

1. margins, gen(stub ) creates variables containing predictions for each
observation (help margins generate)

2. For example, to save probabilities for 16,071 cases and average them

. margins, gen(Prob) at(weight = gen(weight))

Predictive margins Number of obs = 16,071

Expression : Pr(diabetes), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .2047166 .0030316 67.53 0.000 .1987747 .2106584

. sum Prob1 // matches margins estimate

Variable Obs Mean Std. Dev. Min Max

Prob1 16,071 .2047166 .1229016 .0123593 .9067207

3. Note that gen() is used two ways

32 / 91

Proportional change in xk : generating variables

1. For ADC(weight*1.14) compute effect and and create variables

. mtable, gen(PRpct) at(weight=gen(weight)) at(weight=gen(weight*1.14)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.273

. mlincom 2-1, rowname(ADC percent)

lincom pvalue ll ul

ADC percent 0.068 0.000 0.063 0.073

2. Compute DC(weight*1.14) for each observation

. generate DCpct = PRpct2 - PRpct1

. lab var DCpct "DC for 14 percent increase in weight"
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Proportional change in xk : generating variables

3. Similarly, ADC(weight+25)

. mtable, gen(PRadd) at(weight=gen(weight)) at(weight=gen(weight+25)) post

(output omitted )

. generate DCadd = PRadd2 - PRadd1

. lab var _DCadd "DC for 25 pound increase"

4. DC(weighti*1.14) and DC(weighti+25) have quite different distributions
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Proportional change in xk : comparing ADCs

5. Average effects are close, but individual effects can differ greatly

← 300 lbs

← 180 lbs

← 130 lbs
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Discrete change with polynomials

1. A standard discrete change allows only one variable to change

2. With polynomials multiple variables must change together

� You can’t change age, holding age-squared constant

3. For example,

Δπ(x)

Δage(50 → 60)
= π(age=60, agesq=602)−π(age=50, agesq=502)

4. This can be computed two ways

4.1 Automatically with factor syntax

4.2 Explicitly with at(... = gen(...) )
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Discrete change with polynomials

1. With x and x2 only values on the blue curve are mathematically possible
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Discrete change with polynomials
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2. Changes in the probability reflect linked changes in x and x2
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Discrete change with polynomials
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3. The probability can increase and decrease as x and implicity x2 change
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Tool: factor notation for polynomials

Without factor notation

1. Generate age-squared

generate agesq = age * age

2. Model specification

logit diabetes c.age c.agesq ...

With factor notation

1. c.age##c.age with two #s does three things (you must include c.)

1.1 Adds c.age to the model

1.2 Create c.age#c.age ≡ c.age*c.age

1.3 Adds c.age#c.age to the model

2. Model specification

logit diabetes c.age##c.age ...

3. When c.age changes, margins automatically changes c.age#c.age
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Discrete change with age & age2

Correct ADC with factor notation

1. age and age#age automatically change together [#08]

. logit diabetes c.age##c.age c.bmi i.white i.female i.hsdegree, or
(output omitted )

. mtable, at(age = gen(age)) at(age = gen(age+10)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.223

. mlincom 2 - 1, rowname(FV right)

lincom pvalue ll ul

FV right 0.018 0.000 0.011 0.024

2. Why is the effect of age so small?
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Discrete change with age & age2

Incorrect ADC without factor notation

1. age and agesq are distinct variables

. logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or
(output omitted )

. mtable, at(age = gen(age)) at(age = gen(age+10)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.744

. mlincom 2 - 1, rowname(noFV wrong)

lincom pvalue ll ul

noFV wrong 0.540 0.000 0.445 0.634

2. When margins changes age, variable agesq does not change
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Discrete change with age & age2

Correct ADC without factor notation

1] . logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or
(output omitted )

2] . mtable, at(age = gen(age) agesq = gen(agesq) ) ///
3] > at(age = gen(age+10) agesq = gen((age+10)^2)) post

(output omitted )

4] . mlincom 2 - 1, rowname(noFV right)
(output omitted )

The power of at( gen() )

1. With factor syntax you do not need at(...=gen()) for polynomials

2. However, at(...=gen()) allows complex links among variables
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Discrete change with associated variables

1. Age and age-squared are mathematically linked

2. Other variables might be substantively associated

3. Example: To examine the effect of cultural capital on health, change all
assets together, not just one asset

4. Example: Are “larger people” (taller people with the same body mass)
more likely to have diabetes?

� Use height to predict weight
� Use margins, gen() to change height and weight together

This example illustrates the power of margins, gen()
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Associated variables: ADC(height, weight)

1. Regress weight on height and height squared [#09]

. regress weight c.height##c.height, noci

(output omitted )

R-squared = 0.2575

weight Coef. Std. Err. t P>|t|

height -6.338708 1.61073 -3.94 0.000

c.height#c.height .0855799 .0120867 7.08 0.000

_cons 217.5991 53.5548 4.06 0.000

2. Save estimates

. scalar b0 = _b[_cons]

. scalar b1 = _b[height]

. scalar b2 = _b[c.height#c.height]
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Associated variables: ADC(height, weight)

3. margins, gen() changes weight based on a 6” change in height

1] . mtable, post ///
2] > at(height = gen(height) /// observed height
3] > weight = gen(weight)) /// observed weight

4] > at(height = gen(height+6) /// +6 inches
5] > weight = gen(b0 + b1* (height+6) ///
6] > + b2*((height+6)^2))) // +estimated weight

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.208

. mlincom 2 - 1

lincom pvalue ll ul

1 0.004 0.601 -0.010 0.017

4. Interpretation

There is no evidence that being physically larger without greater
body mass contributes to the incidence of diabetes.
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Summary measures of change: ADC and DCM

1. ADC and DCM are common summaries of a variable’s effect

2. Each uses the mean to summarize a distribution

3. ADC: average discrete change

ADC(x1) =
1

N

∑
i

[
Δπ

Δ(x1|x = xi )

]

4. DCM: discrete change at the mean

DCM(x1) =
Δπ

Δ(x1|x = x)
where xk =

1

N

∑
i

xik

5. Hypothetical data shows why means can be misleading
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Summary measures of change: ADC and DCM
Hypothetical data
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Summary measures of change: distribution of effects

1. To evaluate ADC(age), look at the distribution of DC(age i )

2. Create a variable with the DC for each observation

1] margins, generate(PRage) ///

2] at(age = gen(age)) at(age = gen(age+10))

3] gen DCage10 = PRage2 - PRage1

4] lab var DCage10 "DC for 10 year increase in age"
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Summary measures of change: distribution of effects

3. The average effect of age is small, but is large and negative for some
people and large and positive for others
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Summary measures of change: distribution of effects

1. ADC and DCM are more useful than odds ratios

2. In nonlinear models, summary measure can be very misleading

3. The distribution of effects is valuable for assessing a variable’s effect and
is simple with margins, generate()

� Long and Freese (2014) do this before the gen() option was added

4. The best summary is the one that explains the process being modeled

5. For age, multiple DCRs are more useful than ADC or DCM

� I use DCR to introduce methods for comparing effects
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Comparing effects within a model

Examples

1. Compare DCRs for one variable at different values

� Is the effect of age the same at 60 as at 80?

2. Compare ADCs for two variables

� Does BMI have a larger impact than race?

3. Compare ADCs for two sub-samples

� Does BMI have a larger effect for whites than non-whites?
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Comparing DCR(age) at different ages

1. Are the DCR(age) significantly different at different ages?
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Other variables held at means
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Comparing DCR(age) at different ages

2. Compute probabilities at 4 ages with other variables at means [#11]

. mtable, at(age=(60(10)90)) post atmeans

Expression: Pr(diabetes), predict()

age Pr(y)

1 60 0.150
2 70 0.213
3 80 0.227
4 90 0.183

Specified values of covariates

1. 1. 1.
bmi white female hsdegree

Current 27.9 .772 .568 .762

3. DCRs at different ages

. mlincom 2-1, clear rowname(DCR60)

. mlincom 3-2, add rowname(DCR70)

. mlincom 4-3, add rowname(DCR80)
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Comparing DCR(age) at different ages

4. Test differences in DCRs

. mlincom (2-1) - (3-2), add rowname(DCR60 - DCR70)

. mlincom (2-1) - (4-3), add rowname(DCR60 - DCR80)

. mlincom (3-2) - (4-3), add rowname(DCR70 - DCR80)

5. Summarizing

. mlincom, twidth(14)

lincom pvalue ll ul

DCR60 0.063 0.000 0.054 0.073
DCR70 0.014 0.004 0.004 0.023
DCR80 -0.043 0.000 -0.061 -0.026

DCR60 - DCR70 0.049 0.000 0.037 0.062
DCR60 - DCR80 0.107 0.000 0.083 0.130
DCR70 - DCR80 0.057 0.000 0.046 0.069

6. Interpretation

The effects of a ten-year increase in age are significantly different at ages
60, 70, and 80 (p < .001).
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Comparing ADC(white) and ADC(bmi)

1. ADC(race) and ADC(bmi+sd) have similar sizes, but different signs [#12]

. est restore Mbmi
(results Mbmi are active now)

. mchange bmi white, amount(sd)

logit: Changes in Pr(y) | Number of obs = 16071

Expression: Pr(diabetes), predict(pr)

Change p-value

bmi
+SD 0.097 0.000

white
White vs Non-white -0.099 0.000

2. To test if the effects are equal, they must be estimated simultaneously
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Comparing ADC(white) and ADC(bmi)

3. Simultaneously compute components for ADC(white) and ADC(bmi)

. quietly sum bmi

. local sd = r(sd)

. margins, at(white=(0 1)) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd´)) post

Predictive margins Number of obs = 16,071
Model VCE : OIM

Expression : Pr(diabetes), predict()

1._at : white = 0

2._at : white = 1

3._at : bmi = bmi

4._at : bmi = bmi + 5.770835041238605

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2797806 .0073107 38.27 0.000 .265452 .2941092
2 .1805306 .0034215 52.76 0.000 .1738245 .1872367
3 .2047166 .0030338 67.48 0.000 .1987704 .2106627
4 .3017056 .005199 58.03 0.000 .2915159 .3118954
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Comparing ADC(white) and ADC(bmi)

4. Compute effects and test equality

. qui mlincom (2-1), rowname(ADC white) clear

. qui mlincom (4-3), rowname(ADC bmi) add

. mlincom (2-1) + (4-3), rowname(Sum of ADCs) add

lincom pvalue ll ul

ADC female -0.099 0.000 -0.115 -0.083
ADC bmi 0.097 0.000 0.090 0.104

Sum of ADCs -0.002 0.809 -0.021 0.016

5. Conclusion

The health cost of being non-white is equivalent to a standard deviation
increase in body mass (p > .80).
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Comparing ADC(bmi) by race

1. An ADC is typically averaged over the estimation sample

2. By averaging within groups, we can examine effects for different groups

� Is the average effect of BMI the same for whites and non-whites?

3. This requires margins, over()
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Tool: margins, over()

1. By default, margins averages over all observations

2. Averages on subsamples are possible with if and over()

3. Averaging for the non-white subsample

margins if white==0, ///
at(bmi = gen(bmi)) at(bmi = gen(bmi+‘sd’))

4. For the white subsample

margins if white==1, ///
at(bmi = gen(bmi)) at(bmi = gen(bmi+‘sd’))

5. For both subsamples simultaneously

margins, over(white) ///
at(bmi = gen(bmi)) at(bmi = gen(bmi+‘sd’))
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Comparing ADC(bmi) by race

1. Use over() to compute components for group specific ADC(bmi) [#13]

. margins, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd´)) post

Expression : Pr(diabetes), predict()
over : white

1._at : 0.white
bmi = bmi

1.white
bmi = bmi

2._at : 0.white
bmi = bmi + 5.770835041238605

1.white
bmi = bmi + 5.770835041238605

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at#white
1#Non-white .3097249 .0072773 42.56 0.000 .2954616 .3239881

1#White .173629 .0032892 52.79 0.000 .1671824 .1800757
2#Non-white .4302294 .009226 46.63 0.000 .4121468 .448312

2#White .2636564 .0054903 48.02 0.000 .2528955 .2744172

61 / 91

Comparing ADC(bmi) by race

2. Computing ADC(bmi) by group

. qui mlincom 4-2, clear rowname(White: ADC bmi)

. mlincom 3-1, add rowname(Non-white: ADC bmi)

lincom pvalue ll ul

White
ADC bmi 0.090 0.000 0.083 0.097

Non-white
ADC bmi 0.121 0.000 0.112 0.129

3. A second difference compares effects for the groups

. mlincom (4-2) - (3-1), rowname(Difference: ADC bmi)

lincom pvalue ll ul

Difference
ADC bmi -0.030 0.000 -0.034 -0.027

4. Interpretation

The effect of BMI for non-whites is significantly larger than the effect for
whites (p < .001).
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Comparing DCs across models: examples

Examples of comparing effects from different models

1. Different specifications of predictors

� Does DC(female) depend on how body mass is measured?

2. Different groups

� Does DC(bmi) differ for whites and nonwhites
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TOOL: joint estimation in Stata

1. gsem simultaneously fits multiple equations

1.1 Limited to GLM models

1.2 margins behaves “normally”, but is slow

1.3 Robust standard errors are not required but vce(robust) and
vce(cluster clustvar ) are available

1.4 Some complex expressions() might not work...

2. suest combines stored estimates

2.1 Works with most regression models

2.2 margins computes x′ ̂β; computing π̂(x) is complicated

2.3 Average effects for subsamples cannot be computed

2.4 Robust standard errors must be used

3. Specialized commands like khb (Kohler et al., 2011) are available
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Comparing ADC(female) across models
Does the effect of female depend on how body mass is measured?

1. Since female is a factor variables, margins, dydx(female) computes
DC(female)

2. Computing ADC(female) for two models

. qui logit diabetes c.bmi i.white c.age##c.age i.hsdegree

. qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear

. qui logit diabetes c.weight c.height i.female i.white c.age##c.age i.hsdegree

. mtable, dydx(female) rowname(ADC(female) with Mwt) below

Expression: Pr(diabetes), predict()

d Pr(y)

ADC(female) with Mbmi -0.036
ADC(female) with Mwt -0.020

3. To test if they are equal, we compute the effects simultaneously
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Tool: gsem for multiple equations

1. This does not estimate two models

gsem ///
(diabetes <- c.bmi i.female i.white c.age##c.age i.hsdegree, logit) ///
(diabetes <- c.weight c.height i.female i.white c.age##c.age i.hsdegree, logit)

since it is interpreted as

gsem ///
(diabetes <- c.bmi i.female i.white c.age##c.age i.hsdegree ///

c.weight c.height, logit)

2. The solution is to create clones for each model

. clonevar lhsbmi = diabetes // outcome for bmi model

. clonevar lhswt = diabetes // outcome for weight height model
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Comparing ADC(female) across models

1. Estimating the models simultaneously [#14]

. gsem ///
> (lhsbmi <- c.bmi i.female i.white c.age##c.age i.hsdegree, logit) ///
> (lhswt <- c.weight c.height i.female i.white c.age##c.age i.hsdegree ///
> , logit) ///
> , vce(robust)

Generalized structural equation model Number of obs = 16,071

Response : lhsbmi
Family : Bernoulli
Link : logit

Response : lhswt
Family : Bernoulli
Link : logit

Log pseudolikelihood = -14914.007

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

lhsbmi <-
bmi .099441 .003747 26.54 0.000 .092097 .1067851

female
Women -.2423701 .0413006 -5.87 0.000 -.3233177 -.1614225

white
White -.614014 .0480926 -12.77 0.000 -.7082738 -.5197543 67 / 91

Comparing ADC(female) across models

2. Estimate ADC(female) for both models simultaneously

. qui est restore Mgsem

. margins, dydx(female) post

Average marginal effects Number of obs = 16,071
Model VCE : Robust

dy/dx w.r.t. : 1.female
1._predict : Predicted mean (Respondent has diabetes?), predict(pr

outcome(outcome(lhsbmi))
2._predict : Predicted mean (Respondent has diabetes?), predict(pr

outcome(lhswt))

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.female
_predict

1 -.0360559 .0061773 -5.84 0.000 -.0481631 -.0239487
2 -.0199213 .0089687 -2.22 0.026 -.0374997 -.0023429

Note: dy/dx for factor levels is the discrete change from the base level.
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Comparing ADC(female) across models

3. Testing if ADC(female) is the same in both models

. mlincom 1-2, stats(all)

lincom se zvalue pvalue ll ul

1 -0.016 0.006 -2.526 0.012 -0.029 -0.004

4. Interpretation

The effect of being female is significantly larger when body mass is
measured with the BMI index (p < .02).

69 / 91

Comparing effects across models

1. Jointly estimating models with gsem and computing effects with
margins is a general approach for comparing effects across models
(Mize et al., 2009)

2. gsem

2.1 Fits the GLM class of models, but does not fit non-GLM models

2.2 margins is slow (grumble, grumble)

3. suest

3.1 Fits a much wider class of models

3.2 margins is fast, but hard to use (grumble, grumble)

4. suest and gsem produce identical results
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Comparing groups: outcomes and marginal effects

Linear regression

1. Coefficients differ by group such as βW
female and βN

female

2. Analysis focuses on Chow tests such as H0 : βN
female = βW

female

Logit and probit

1. Coefficients differ by group such as βW
female and βN

female

2. The coefficients combines

2.1 The effect of xk which can differ by group

2.2 The variance of the error which can differ by group

3. Since regression coefficients are identified to a scale factor, Chow-type
tests of H0 : βN

k = βW
k are invalid (Allison, 1999)

4. Probabilities and marginal effects are identified (Long, 2009)
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Comparing groups: outcomes and marginal effects

Group differences can be examined two ways

1. Differences in probabilities

H0: πW (x = x∗) = πN(x = x∗)

Is the probability of diabetes the same for white and non-white
respondents who have the same characteristics?

2. Differences in marginal effects

H0:
ΔπW

Δxk
=

ΔπN

Δxk

Is the effect of xk the same for whites and non-whites?

3. These dimensions of difference are shown in the next graph
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Comparing groups: outcome and marginal effects
Hypothetical data
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Comparing groups: model estimation

1. Factor syntax allows coefficients to differ by white

logit diabetes ibn.white ///
ibn.white#(i.female i.hsdegree c.age##c.age c.bmi), nocon

2. This is equivalent to simultaneously estimating

logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==1

logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==0

3. For example [#15]

Variable Whites NonWhites

female
Women 0.713 1.024 <== odds ratios

0.000 0.755 <== p-values
hsdegree

HS degree 0.706 0.743
0.000 0.000

age 1.278 1.369
0.000 0.000

::: ::::: :::::
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Group comparison of probabilities by age

1. dydx(white) computes DC(white)

. mtable, dydx(white) at(age=(55(10)85)) atmeans stats(est p)

Expression: Pr(diabetes), predict()

age d Pr(y) p

1 55 -0.078 0.000 <== DCR(white | age=55)
2 65 -0.124 0.000
3 75 -0.129 0.000 <== DCR(white | age=75)
4 85 -0.092 0.000

Specified values of covariates

0. 1. 1. 1.
white white female hsdegree bmi

Current .228 .772 .568 .762 27.9

2. Example of interpretation

The probability of diabetes is significantly larger for 55 year-old
non-whites than whites who are average on other characteristics (p<.01).

3. Graphically we can show effects at multiple ages
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Group comparison of probabilities by age

A: Probabilities B: DCR(race)
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Group comparison of effects: ADC or DCM?
Hypothetical data

1. ADC reflects the distribution of predictors

2. DCR is the effect at specific values
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Group comparison of effects: ADC or DCM?

Comparing ADCs

1. ADCs reflects

1.1 Differences in the probability curves

1.2 Differences in distribution of variables

2. Group differences in ADCs reflect both components

Comparing DCRs

1. DCRs show differences in probability curves at a specific location

2. Group differences in DCRs do not depend on the distribution of variables

Which to use?

1. The answer depends on what you want to know?
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Group comparison of effects: ADC(bmi+5)

1. To compute ADC(bmi+5) by race

. mtable, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi+5)) post

Expression: Pr(diabetes), predict()

Pr(y)

0.white#c.1 0.310
1.white#c.1 0.174
0.white#c.2 0.391
1.white#c.2 0.257

. qui mlincom 3-1, rowname(ADC(bmi) non) stats(est p) clear

. qui mlincom 4-2, rowname(ADC(bmi) wht) stats(est p) add

. mlincom (4-2) - (3-1), rowname(Difference) stats(est p) add

lincom pvalue

ADC(bmi) non 0.082 0.000
ADC(bmi) wht 0.083 0.000

Difference 0.002 0.826

2. Conclusion

The average effects of BMI are not significantly different for whites and
non-whites (p=.83).
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Group comparison of effects: DCR(age+10)

1. Since ADC(age) is not a useful measure, we compare DCR(age+10)

1.1 Other variables are held at sample means

1.2 Group specific means could be used (Long and Freese, 2014)

2. For example, DCR(age+10) at 55

mtable, at(age=55 white=(0 1)) at(age=55 white=(0 1)) atmeans post

mlincom 3-1, rowname(DC nonwhite) stats(est p) clear
mlincom 4-2, rowname(DC white) stats(est p) add
mlincom (4-2) - (3-1), rowname(Dif at 55) stats(est p) add

3. And so on, with the following results
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Group comparison of effects: DCR(age+10)

5. DCRs show group differences in effect of age at different ages [#14]

lincom pvalue

55: DC non 0.110 0.000
DC white 0.064 0.000

Difference -0.046 0.001

70: DC non 0.001 0.940
DC white 0.018 0.001

Difference 0.017 0.180

85: DC non -0.109 0.000
DC white -0.049 0.000

Difference 0.060 0.003
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6. These comparisons do not depend on group differences in the
distribution of age or other variables
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* Decomposing BMI

1. The BMI index measures relative weight or body mass

BMI =
weightkg
height2

m

= 703 × weightlb
height2

in

2. Question 1: If BMI is in the model, can we compute the effect of
increasing weight?

� DC(weight) is clearer to patients then DC(bmi)

3. Question 2: Does DC(weight) differ depending on how body mass is
included in the model?

4. To do this we create BMI as a product variable

BMI = 703 × weight × height−1 × height−1
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Decomposing BMI: bmi as an interaction

1. Create components of BMI [#16]

generate heightinv = 1/height
label var heightinv "1/height"

generate S = 703
label var S "scale factor to convert from metric"

2. These models are identical

logit diabetes c.bmi i.white c.age##c.age i.female i.hsdegree
estimates store Mbmi

logit diabetes c.S#c.weight#c.height_inv#c.height_inv ///
i.white c.age##c.age i.female i.hsdegree

estimates store MbmiFV

3. The estimates are identical

Variable MbmiFV Mbmi

c.S#c.weight#
c.heightinv#
c.heightinv 1.104553 <== odds ratio for BMI

0.000
bmi 1.1045533 <== odds ratio for BMI

0.000
white

White .5411742 .5411742
0.000 0.000

::: ::: :::
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Decomposing BMI: ADC(weight)

4. margins with factor syntax makes the rest trivial

5. ADC(weight) in MbmiFV changes only weight

. qui estimates restore MbmiFV

. mchange weight, amount(sd) delta(25)

logit: Changes in Pr(y) | Number of obs = 16071

Expression: Pr(diabetes), predict(pr)

Change p-value

weight
+25 0.065 0.000

6. ADC(weight) in Mwt is slightly larger

. qui estimates restore Mwt

. mchange weight, amount(sd) delta(25)

logit: Changes in Pr(y) | Number of obs = 16071

Expression: Pr(diabetes), predict(pr)

Change p-value

weight
+25 0.067 0.000
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Decomposing BMI: summary

1. Factor variables and margins make the difficult decompositions trivial

2. Factor syntax understands interactions in model specifications

3. margins in turn understands interactions and handles the messy details
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* Comparing ADC(weight) in two models

1. To compare ADC(weight) requires joint estimation [#16]

. clonevar lhsbmi = diabetes

. clonevar lhswt = diabetes

. gsem ///
> (lhsbmi <- c.s#c.weight#c.height_inv#c.height_inv ///
> i.white c.age##c.age i.female i.hsdegree, logit) ///
> (lhswt <- c.weight c.height i.female i.white c.age##c.age i.hsdegree ///
> , logit) ///
> , vce(robust)

Generalized structural equation model Number of obs = 16,071

Response : lhsbmi
Family : Bernoulli
Link : logit

Response : lhswt
Family : Bernoulli
Link : logit

Log pseudolikelihood = -14914.007

(output omitted )
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Comparing ADC(weight) in two models

2. Computing the average predictions for both equations

. margins, at(weight=gen(weight)) at(weight=gen(weight+25)) post

Predictive margins Number of obs = 16,071
Model VCE : Robust

1._predict : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi))
2._predict : Predicted mean (Diabetes?), predict(pr outcome(lhswt))

1._at : weight = weight

2._at : weight = weight+25

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_predict#_at
1 1 .2047166 .0030419 67.30 0.000 .1987546 .2106786
1 2 .2701404 .0044591 60.58 0.000 .2614007 .27888
2 1 .2047166 .0030394 67.35 0.000 .1987595 .2106737
2 2 .271305 .0044054 61.58 0.000 .2626705 .2799394
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Comparing ADC(weight) in two models

3. ADC(weight) for each model and their difference

. qui mlincom 2-1, rowname(Mbmi ADC) clear

. qui mlincom 4-3, rowname(Mwt ADC) add

. mlincom (4-3) - (2-1), rowname(Difference) add

lincom pvalue ll ul

Mbmi ADC 0.065 0.000 0.061 0.070
Mwt ADC 0.067 0.000 0.062 0.071

Difference 0.001 0.029 0.000 0.002

4. Conclusion

The effect of weight on diabetes are nearly identical whether body mass
is measured with BMI or with height and weight (p = .03).
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Conclusions: Stata, margins, and interpretation

Model interpretation and Stata

1. Too often interpretation ends with the estimated coefficients

2. Interpretations using predictions are more informative

3. Without margins what I suggested today (and more) would be
impractical

Marginal effects is only one method

1. Marginal effects are more useful than odds ratios and should be routinely
computed (mchange makes this trivial)

2. margins allow many extensions to standard marginal effects

3. The best measure is the one that answers your question and might not
be a standard measure

4. Marginal effects are one method, not the only or best method. Tables
and graphs are often more useful (Long and Freese, 2014)

5. The best interpretation must be motivated by your substantive question
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Thanks to many people

Thank you for listening

Collaborators Parts of this work were developed with Long Doan, Jeremy
Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker
provided valuable help. Mistakes are my own.

Relevant publications There is a large literature on marginal effects and
interpreting models. Long and Freese (2014) include many citations. The
references directly related to this presentation are given below.
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