\(\left.\begin{array}{|c}New methods of interpretation using marginal \\

effects for nonlinear models\end{array}\right]\)| Scott Long ${ }^{1}$ |
| :--- |
| 1Departments of Sociology and Statistics
 Indiana University |
| EUSMEX 2016: Mexican Stata Users Group |
| Mayo 18, 2016 |
| Version: 2016-05-03b |

Road map for talk

Goals

1. Demonstrate new methods for using marginal effects
2. Exploit the power of margins, factor syntax, and gsem
3. Illustrate the SPost13 m* commands

Outline

1. Statistical background

- Binary logit model
- Standard definitions of marginal effects
- Generalizations of marginal effects

2. Stata commands

- Estimation: factor notation, storing estimates, and gsem
- Post-estimation: margins and lincom
- SPost13's m* commands

3. Example: explaining the occurrence of diabetes

Logit model

Probability as outcome

1. Nonlinear in probabilities

$$
\pi(\mathbf{x})=\frac{\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}=\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)
$$

2. Interpretation with marginal effect: additive change in π for change in x_{k} holding other variables at specific values

Odds as outcome

Multiplicative in odds

$$
\Omega(\mathbf{x})=\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}=\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)
$$

4. Interpretation with odds ratio: multiplicative change in $\Omega(\mathbf{x})$ for change in x_{k} holding other variables constant

Logit model: nonlinear in probabilities

1. Odds ratios: identical at each arrow
2. Marginal effects: different at each arrow

Marginal and discrete change

1. Marginal change: instantaneous rate of change in $\pi(x)$
2. Discrete change: change in $\pi(x)$ for discrete change in x

Definition of discrete change

1. x_{k} changes from start to end
2. $\mathbf{x}=\mathbf{x}^{*}$ contains specific values of other variables
3. Discrete change of x_{k}

$$
\mathrm{DC}\left(x_{x}\right)=\frac{\Delta \pi(\mathbf{x})}{\Delta x_{k}(\text { start } \rightarrow \text { end })}=\pi\left(x_{k}=\text { end }, \mathbf{x}=\mathbf{x}^{*}\right)-\pi\left(x_{k}=\operatorname{start}, \mathbf{x}=\mathbf{x}^{*}\right)
$$

4. Interpretation

For a change in x_{k} from start to end, the probability changes by $\mathrm{DC}\left(x_{k}\right)$, holding other variables at the specified values.

Examples of discrete change

1. At observed values for observation i

$$
\frac{\Delta \pi\left(\mathbf{x}_{i}\right)}{\Delta x_{i k}\left(x_{i k} \rightarrow x_{i k}+1\right)}=\pi\left(x_{k}=x_{i k}, \mathbf{x}_{i}\right)-\pi\left(x_{k}=x_{i k}+1, \mathbf{x}_{i}\right)
$$

2. At representative values \mathbf{x}^{*}

$$
\frac{\Delta \pi\left(\mathbf{x}^{*}\right)}{\Delta x_{k}(0 \rightarrow 1)}=\pi\left(x_{k}=1, \mathbf{x}^{*}\right)-\pi\left(x_{k}=0, \mathbf{x}^{*}\right)
$$

3. Since $\Delta \pi / \Delta x_{k}$ depends on where it is evaluated, how should the effect of x_{k} be summarized?

Common summary measures of discrete change

Discrete change at the mean (DCM)

$\operatorname{DCM}\left(x_{k}\right)=\frac{\Delta \pi(\overline{\mathbf{x}})}{\Delta x_{k}(\text { start } \rightarrow \text { end })}=\pi\left(x_{k}=\right.$ end, $\left.\overline{\mathbf{x}}\right)-\pi\left(x_{k}=\right.$ start,$\left.\overline{\mathbf{x}}\right)$

For someone who is average on all variables, increasing x_{k} from start to end changes the probability by $\operatorname{DCM}\left(x_{k}\right)$.

Average discrete change (ADC)

$\operatorname{ADC}\left(x_{k}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{\Delta \pi\left(\mathbf{x}=\mathbf{x}_{i}\right)}{\Delta x_{i k}(\text { start } \rightarrow \text { end })}$

On average, increasing x_{k} from start to end changes the probability by $A D C\left(x_{k}\right)$.

Variation for computing discrete change
 * indicates generalization of standard methods

Conditional and average change

- Conditional effects
_ At observed values
. - At mean values
At representative values
_ Average effects
. Average in full sample
Amount of change
\downarrow Additive change
_ Proportional change*
. . Changes as function of predictors*
_ Change a component in multiplicative measure *
Number of variables changed
. _ One variable
. Two or more variables*

Comparing discrete changes

Comparisons within a model

._ Effects of different variables
_ $H_{0}: D C($ gender $)=D C($ age $)$
_ One variable's effect at different locations
$\downarrow H_{0}: D C\left(\right.$ age \mid age $\left.=50, \mathbf{x}^{*}\right)=D C\left(\right.$ age \mid age $\left.=65, \mathbf{x}^{*}\right)$
Comparisons across models
_ Different samples or groups
. . DC(weight) for whites compared to non-whites
_ Model specifications
■ DC(weight) in different model specifications

Stata: Overview

1. Requires Stata 12 or later; some examples need Stata 14
2. Assumes spost13_ado package is installed
3. Estimation uses factor syntax

- Logit model used but examples generalize
- Survey estimation can be used

4. Post-estimation with margins and lincom
5. In Stata, search eusmex2016 to download

- eusmex2016-effects-scott-long.do and dataset
- PDF of slides from talk
- In the slides, $[\# x x]$ points to locations in the do-file

Stata: Estimation

1. Fitting a logit model
logit dependent independent [,options]
2. Factor variable syntax
i.var: categorical predictor (e.g., i.female)
c.var: continuous predictor (e.g., c.age)
c.var1\#c.var2: product (e.g., c.age\#c.age \equiv c.age*c.age)
3. Regression estimates are stored for later use estimates store ModelName
4. To replace current estimates with previously stored estimates estimates restore ModelName
Stata: post-estimation
5. margins estimates functions of predictions from regressions
6. margins, post stores these estimates to $\mathrm{e}(\mathrm{b})$ and $\mathrm{e}(\mathrm{V})$
7. lincom estimates linear functions of $\mathrm{e}(\mathrm{b})$
8. mchange, mtable, mgen and mlincom are SPost13 wrappers to generate
complex margins commands and improve output

Variables and descriptive statistics

Variable	Mean	Min	Max	Label
diabetes	. 205	0	1	Respondent has diabetes?
white	. 772	0	1	Is white respondent?
bmi	27.9	10.6	82.7	Body mass index
weight	174.9	73	400	Weight in pounds
height	66.3	48	89	Height in inches
age	69.3	53	101	Age
female	. 568	0	1	Is female?
hsdegree	. 762	0	1	Has high school degree?

Body mass index: $B M I=\frac{\text { weight }_{k g}}{\text { height }_{m}^{2}}=\frac{703 \times \text { weight }_{l b}}{\text { height }_{\text {in }}^{2}}$

Example

1. Health and Retirement Survey ${ }^{1}$: cross-sectional data on health
2. Outcome is patient's report of having diabetes
3. Begin with standard marginal effects to introduce Stata tools
4. Use these tools to compute more complex marginal effects
5. Demonstrate methods for statistically comparing effects
${ }^{1}$ Steve Heeringa generously provided the data used in Applied Survey Data Analysis (Heeringa et al., 2010). Complex sampling is not used in my analyses.

Models of diabetes: estimate and store

1. Two models are fit [\#02]
2. Model Mbmi measures body mass with the BMI index
logit diabetes c.bmi i.white c.age\#\#c.age i.female i.hsdegree
estimates store Mbmi
3. Model Mwt measures body mass with height and weight
logit diabetes c.weight c.height i.white c.age\#\#c.age i.female i.hsdegree estimates store Mwt

Models of diabetes: odds ratios and p-values

$\left.\begin{array}{r|cc}\text { Variable } & \text { Mbmi } & \text { Mwt } \\ \hline \text { bmi } & 1.1046 * & \\ \text { weight }\end{array}\right)$

Summarizing effects with average discrete change

1. mchange from SPost13 is a great first step for assessing effects [\#03]

- estimates restore Mbmi
. mchange, amount(sd)
logit: Changes in $\operatorname{Pr}(\mathrm{y}) \mid$ Number of obs $=16071$

	Change	p-value
White White vs Non-white	-0.099	0.000
bmi +SD	0.097	0.000
(output omitted)		

2. Interpretation

On average the probability of diabetes is .099 less for white respondents than non-white respondents.
Increasing BMI by one standard deviation on average increases the probability of diabetes .097 .
3. Where did these numbers come from?

Tool: margins, at (...) and atmeans

1. By default, margins
1.1 Computes prediction for each observation
1.2 Then it averages these predictions
2. Average prediction assuming everyone is white
margins, at(white=1)
3. Two average predictions
```
margins, at(white=1) at(white=0)
```

4. Prediction if white with means for other variables margins, at(white=1) atmeans

ADC for binary x_{k} : ADC(white)
5. The post option saves the average probabilities
. matlist e(b)

	1. 2. at	_at
y1	.2797806	.1805306

6. lincom computes ADC as difference in predictions in $e(b)$
. lincom _b[2._at] - _b[1._at]
(1) - 1bn._at +2 ._at $=0$

| | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| (1) | -.09925 | .0082362 | -12.05 | 0.000 | -.1153927 | -.0831073 |

7. Interpretation

On average, being white decreases the probability of diabetes by .099 ($p<.001$).

ADC for binary x_{k} : ADC(white)

1. ADC for white equals

$$
\mathrm{ADC}=\frac{1}{N} \sum_{i} \pi\left(\text { white }=1, \mathbf{x}=\mathbf{x}_{i}\right)-\frac{1}{N} \sum_{i} \pi\left(\text { white }=0, \mathbf{x}=\mathbf{x}_{i}\right)
$$

2. margins computes the two average predictions [\#04]
. margins, at(white=0) at(white=1) post
Expression : Pr(diabetes), predict()
1._at : white $=0$
2._at : white $\quad=\quad 1$

	Delta-method					
	Margin	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
- at						
1	.2797806	.0073107	38.27	0.000	.265452	.2941092
2	.1805306	.0034215	52.76	0.000	.1738245	.1872367

3. 1._at is the average treating everyone as nonwhite

$$
\text { 1._at }=\frac{1}{N} \sum_{i} \pi\left(\text { white }=0, \mathbf{x}=\mathbf{x}_{i}\right)
$$

4. 2._at is the average treating everyone as white

TOOL: mlincom simplifies lincom

1. lincom requires column names from $e(b)$ that can be complex
lincom (_b[2._at\#1.white] - _b[1._at\#1.white]) ///

- (_b[2._at\#0.white] - _b[1._at\#0.white])

2. mlincom uses column numbers which are rows in margins output mlincom (4-2) - (3-1)

Tool: margins, at ($\ldots=\operatorname{gen}(\ldots))$

1. $\mathrm{at}(\ldots=\operatorname{gen}(\ldots))$ generates new values from observed values
2. Trivially, predictions with observed values of bmi
margins, at(bmi = gen(bmi))
3. Predictions with observed values of bmi plus 1
margins, at $(b m i=\operatorname{gen}(b m i+1))$
4. Both observed and observed plus 1
```
margins, at(bmi = gen(bmi)) at(bmi = gen(bmi+1))
```

5. Observed plus a standard deviation

1] quietly sum bmi
2] local sd = r(sd)
3] margins, at(bmi = gen(bmi + 'sd'))

ADC for continuous x_{k} : ADC(bmi)

1. Compute probabilities at observed bmi and observed+sd [\#05]
. quietly sum bmi

- local $s d=r(s d)$
. margins, $\mathrm{at}(\mathrm{bmi}=\operatorname{gen}(\mathrm{bmi}))$ at $\left(\mathrm{bmi}=\operatorname{gen}\left(\mathrm{bmi}+{ }^{-} \mathrm{sd}^{`}\right)\right)$ post
Expression : Pr(diabetes), predict()
1._at : bmi = bmi
2._at : bmi = bmi + sd

	Margin	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
at						
1	.2047166	.0030338	67.48	0.000	.1987704	.2106627
2	.3017056	.005199	58.03	0.000	.2915159	.3118954

2. $\mathrm{ADC}(\mathrm{bmi}+\mathrm{sd})$
. mlincom 2-1, stats(all)

	lincom	se	zvalue	pvalue	ll	ul
1	0.097	0.004	27.208	0.000	0.090	0.104

On average, increasing BMI by one standard deviation, about 6 points, increases the probability of diabetes by 097 ($p<.001$).

Tool: mtable wrapper for margins

1. margins output is complete, not compact
2. mtable executes margins, then simplifies output (and more)

- mtable, commands lists the margins commands used
- mtable, detail shows margins output and mtable output

DCM for continuous x_{k} : DCM (bmi)

	age 0.female 1.female 0.hsdegree 1.hsdegree		$\begin{aligned} & 69.29276 \text { (mean) } \\ & .4315226 \text { (mean) } \\ & .5684774 \text { (mean) } \\ & .2375086 \text { (mean) } \\ & .7624914 \text { (mean) } \end{aligned}$			
	Delta-method				[95\% Conf.	Interval]
$\begin{gathered} \text { _at } \\ 1 \\ 2 \end{gathered}$	$\begin{aligned} & .2097641 \\ & .3202789 \end{aligned}$	$\begin{aligned} & .0045531 \\ & .0066246 \end{aligned}$	$\begin{aligned} & 46.07 \\ & 48.35 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{r} .2008401 \\ .307295 \end{array}$	$\begin{aligned} & .2186881 \\ & .3332628 \end{aligned}$

DCM for continuous x_{k} : $\mathrm{DCM}(\mathrm{bmi})$

1. Let bmi increase from mean to mean+SD [\#06]

$$
\begin{aligned}
& \text { qui sum bmi } \\
& \text { local } \mathrm{mn}=r(\text { mean }) \\
& \text { local mnplus }=r(\text { mean })+r(\text { sd })
\end{aligned}
$$

2. Option atmeans holds other variables at their means
. margins, atmeans at(bmi $\left.={ }^{`} m n{ }^{\prime}\right)$ at(bmi $=$ 'mnplus") post
Expression : Pr(diabetes), predict()
1._at : bmi $=27.89787$
3. white $=.2284239$ (mean) 1. White $=\quad .7715761$ (mean) age $=69.29276$ (mean) $=\quad=.4315226$ (mean) $\begin{array}{ll}\text { 1.female } & = \\ 0 . \text { hsdegree } & = \\ \text { O }\end{array}$ 1. hsdegree $=\quad .7624914$ (mean)
2._at : bmi $=33.6687$
4. white $=2284239$ (mean) 1. white $=\quad .7715761$ (mean)
<continued>

DCM for continuous x_{k} : DCM(bmi)

2. Alternatively, mtable runs margins and reformats the results
. mtable, atmeans at (bmi $\left.={ }^{`} \mathrm{mn}^{-}\right)$at (bmi $={ }^{\prime}$ mnplus $\left.{ }^{-}\right)$post
Expression: $\operatorname{Pr}($ diabetes), predict()

	bmi	$\operatorname{Pr}(\mathrm{y})$
1	27.9	0.210
2	33.7	0.320

Specified values of covariates

	1. white	age	1. female	1. hsdegree
Current	.772	69.3	.568	.762

3. $\operatorname{DCM}(b m i+s d)$
. mlincom 2-1

	lincom	pvalue	ll	ul
1	0.111	0.000	0.102	0.119

For an average person, increasing BMI by one standard deviation increases the probability of diabetes by 111 ($p<.001$).

Proportional change in x_{k} : changing weight

1. Body mass be measured with height and weight
logit diabetes c.weight c.height ///
i.white c.age\#\#c.age i.female i.hsdegree, or estimates store Mwt
2. ADC (weight) increases weight by a constant, say 25 pounds
3. A 25 pound increase in weight means different things

- A 25% increase from 100 pounds
- At 14% increase from average weight
- An 8% increase from 300 pounds

4. The effect of a percentage increase could be more useful than the effect of a 25 pound increase

Proportional change in $x_{k}: \mathrm{ADC}$ (weight+25)

1. Computing $\mathrm{ADC}($ weight +25$)[\# 07]$

- estimates restore Mwt
. mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post
Expression: $\operatorname{Pr}($ diabetes $)$, predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.271

quietly mlincom 2 - 1, rowname(ADC add) clear

Proportional change in $x_{k}:$ ADC(weight*1.14)
2. A simple change to gen() computes proportional change
. estimates restore Mwt
. mtable, at(weight = gen(weight)) at(weight = gen(weight * 1.14)) post
Expression: $\operatorname{Pr}($ diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.273

. mlincom 2-1, rowname(ADC pct) add				
	lincom	pvalue	ll	ul
ADC add	0.067	0.000	0.062	0.071
ADC pct	0.068	0.000	0.063	0.073

3. The average effects are close, but is the average a good summary?

Proportional change in x_{k} : generating variables

1. For ADC (weight*1.14) compute effect and and create variables
. mtable, gen(PRpct) at(weight=gen(weight)) at(weight=gen(weight*1.14)) post Expression: $\operatorname{Pr}($ diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.273

mlincom 2-1, rowname(ADC percent)

	lincom	pvalue	11	ul
ADC percent	0.068	0.000	0.063	0.073

2. Compute $\mathrm{DC}\left(\right.$ weight $\left.^{*} 1.14\right)$ for each observation
generate DCpct $=$ PRpct2 - PRpct1
lab var DCpct "DC for 14 percent increase in weight"

Tool: margins, generate()

1. margins, gen(stub) creates variables containing predictions for each observation (help margins generate)
2. For example, to save probabilities for 16,071 cases and average them

. sum Prob1 // matches margins estimate

Variable	Obs	Mean	Std. Dev.	Min	Max
Prob1	16,071	.2047166	.1229016	.0123593	.9067207

3. Note that gen() is used two ways

Proportional change in x_{k} : generating variables

3. Similarly, ADC (weight +25)
. mtable, gen(PRadd) at(weight=gen(weight)) at(weight=gen(weight+25)) post (output omitted)
. generate DCadd $=$ PRadd2 - PRadd1
. lab var _DCadd "DC for 25 pound increase"
4. $\mathrm{DC}\left(\right.$ weight $\left._{i}{ }^{*} 1.14\right)$ and $\mathrm{DC}\left(\right.$ weight $\left._{i}+25\right)$ have quite different distributions

Proportional change in x_{k} : comparing ADCs

5. Average effects are close, but individual effects can differ greatly

Discrete change with polynomials

1. A standard discrete change allows only one variable to change
2. With polynomials multiple variables must change together

- You can't change age, holding age-squared constant

3. For example,

$$
\frac{\Delta \pi(\mathbf{x})}{\Delta \operatorname{age}(50 \rightarrow 60)}=\pi\left(\text { age }=60, \text { agesq }=60^{2}\right)-\pi\left(\text { age }=50, \text { agesq }=50^{2}\right)
$$

4. This can be computed two ways
4.1 Automatically with factor syntax
4.2 Explicitly with at ($\ldots=\operatorname{gen}(\ldots)$)

Discrete change with polynomials

1. With x and x^{2} only values on the blue curve are mathematically possible

Discrete change with polynomials

3. The probability can increase and decrease as x and implicity x^{2} change

Discrete change with age \& age ${ }^{2}$

Correct ADC with factor notation

1. age and age\#age automatically change together [\#08]
. logit diabetes c.age\#\#c.age c.bmi i.white i.female i.hsdegree, or (output omitted)
. mtable, at (age $=\operatorname{gen}($ age $))$ at (age $=\operatorname{gen}($ age +10$))$ post Expression: $\operatorname{Pr}($ diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.223

. mlincom 2-1, rowname(FV right)

	lincom	pvalue	ll	ul
FV right	0.018	0.000	0.011	0.024

2. Why is the effect of age so small?

Discrete change with polynomials

2. Changes in the probability reflect linked changes in x and x^{2}

Tool: factor notation for polynomials

Without factor notation

1. Generate age-squared
generate agesq $=$ age $*$ age
2. Model specification
logit diabetes c.age c.agesq ...
With factor notation
3. c.age\#\#c.age with two \#s does three things (you must include c.)
1.1 Adds c . age to the model
1.2 Create c.age\#c.age \equiv c.age*c.age
1.3 Adds c.age\#c.age to the model
4. Model specification
logit diabetes c.age\#\#c.age ...
5. When c.age changes, margins automatically changes c.age\#c.age

Discrete change with age \& age ${ }^{2}$

Incorrect ADC without factor notation

1. age and agesq are distinct variables
. logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or (output omitted)
. mtable, at (age = gen(age)) at (age = gen (age+10)) post Expression: Pr(diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.744

. mlincom 2-1, rowname(noFV wrong)

	lincom	pvalue	11	ul
noFV wrong	0.540	0.000	0.445	0.634

2. When margins changes age, variable agesq does not change

Discrete change with age \& age ${ }^{2}$

Correct ADC without factor notation

1] . logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or (output omitted)

2] \quad mtable, at (age $=\operatorname{gen}($ age $) \quad \operatorname{agesq}=\operatorname{gen}($ agesq)) ///
3] $>\quad$ at $\left(\right.$ age $=\operatorname{gen}($ age +10$\left.) \quad \operatorname{agesq}=\operatorname{gen}\left((\text { age }+10)^{-} 2\right)\right)$ post (output omitted)
4] . mlincom 2-1, rowname(noFV right) (output omitted)

The power of at(gen())

1. With factor syntax you do not need at (...=gen()) for polynomials
2. However, at (...=gen()) allows complex links among variables

Discrete change with associated variables

1. Age and age-squared are mathematically linked
2. Other variables might be substantively associated
3. Example: To examine the effect of cultural capital on health, change all assets together, not just one asset
4. Example: Are "larger people" (taller people with the same body mass) more likely to have diabetes?

- Use height to predict weight
- Use margins, gen() to change height and weight together

This example illustrates the power of margins, gen()

Associated variables: ADC(height, weight)

3. margins, gen() changes weight based on a 6 " change in height

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.208

. mlincom 2-1

	lincom	pvalue	ll	ul
1	0.004	0.601	-0.010	0.017

4. Interpretation

There is no evidence that being physically larger without greater body mass contributes to the incidence of diabetes.

Summary measures of change: ADC and DCM
Hypothetical data

Summary measures of change: distribution of effects

1. To evaluate $\operatorname{ADC}($ age $)$, look at the distribution of $\mathrm{DC}\left(\mathrm{age}_{i}\right)$
2. Create a variable with the DC for each observation

1] margins, generate(PRage) ///
2] \quad at $($ age $=\operatorname{gen}($ age $))$ at $($ age $=\operatorname{gen}($ age +10$))$
3] gen DCage10 = PRage2 - PRage1
4] lab var DCage10 "DC for 10 year increase in age"

Summary measures of change: distribution of effects

1. ADC and DCM are more useful than odds ratios
2. In nonlinear models, summary measure can be very misleading
3. The distribution of effects is valuable for assessing a variable's effect and is simple with margins, generate()

- Long and Freese (2014) do this before the gen() option was added

4. The best summary is the one that explains the process being modeled
5. For age, multiple DCRs are more useful than ADC or DCM

- I use DCR to introduce methods for comparing effects

Summary measures of change: distribution of effects
3. The average effect of age is small, but is large and negative for some people and large and positive for others

Comparing effects within a model

Examples

1. Compare DCRs for one variable at different values

- Is the effect of age the same at 60 as at 80 ?

2. Compare ADCs for two variables

- Does BMI have a larger impact than race?

3. Compare ADCs for two sub-samples

- Does BMI have a larger effect for whites than non-whites?

Comparing DCR(age) at different ages

1. Are the $\operatorname{DCR}($ age $)$ significantly different at different ages?

Comparing $\operatorname{DCR}($ age $)$ at different ages

2. Compute probabilities at 4 ages with other variables at means [\#11]
. mtable, at (age $=(60(10) 90)$) post atmeans
Expression: $\operatorname{Pr}($ diabetes), predict()

	age	$\operatorname{Pr}(\mathrm{y})$
1	60	0.150
2	70	0.213
3	80	0.227
4	90	0.183

Specified values of covariates

3. DCRs at different ages
. mlincom 2-1, clear rowname(DCR60)
. mlincom 3-2, add rowname(DCR70)
. mlincom 4-3, add rowname(DCR80)
mlincom 3-2, add rowname(DCR70)
mlincom 4-3, add rowname(DCR80)

Comparing $\operatorname{DCR}($ age $)$ at different ages

4. Test differences in DCRs
. mlincom (2-1) - (3-2), add rowname(DCR60 - DCR70)
. mlincom (2-1) - (4-3), add rowname(DCR60 - DCR80)
. mlincom (3-2) - (4-3), add rowname(DCR70 - DCR80)
5. Summarizing

. mlincom, twidth(14)				
	lincom	pvalue	ll	ul
DCR60	0.063	0.000	0.054	0.073
DCR70	0.014	0.004	0.004	0.023
DCR80	-0.043	0.000	-0.061	-0.026
DCR60 - DCR70	0.049	0.000	0.037	0.062
DCR60 - DCR80	0.107	0.000	0.083	0.130
DCR70 - DCR80	0.057	0.000	0.046	0.069

6. Interpretation

The effects of a ten-year increase in age are significantly different at ages 60, 70, and 80 ($p<.001$).

Comparing ADC(white) and ADC(bmi)

1. $\mathrm{ADC}($ race $)$ and $\mathrm{ADC}(\mathrm{bmi}+\mathrm{sd})$ have similar sizes, but different signs [\#12]

. est restore Mbmi (results Mbmi are active now)		
. mchange bmi white, amount(sd)		
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ \| Number of obs $=1607$		
Expression: Pr(diabetes), predict(pr)		
	Change	p-value
bmi		
+SD	0.097	0.000
white		
White vs Non-white	-0.099	0.000

2. To test if the effects are equal, they must be estimated simultaneously

Comparing ADC(white) and ADC(bmi)

4. Compute effects and test equality
. qui mlincom (2-1), rowname(ADC white) clear
. qui mlincom (4-3), rowname(ADC bmi) add
mlincom (2-1) + (4-3), rowname(Sum of ADCs) add

	lincom	pvalue	ll	ul
ADC female	-0.099	0.000	-0.115	-0.083
ADC bmi	0.097	0.000	0.090	0.104
Sum of ADCs	-0.002	0.809	-0.021	0.016

5. Conclusion

The health cost of being non-white is equivalent to a standard deviation increase in body mass ($p>80$).

Comparing ADC(bmi) by race

1. An ADC is typically averaged over the estimation sample
2. By averaging within groups, we can examine effects for different groups

- Is the average effect of BMI the same for whites and non-whites?

3. This requires margins, over()

Tool: margins, over()

1. By default, margins averages over all observations
2. Averages on subsamples are possible with if and over()
3. Averaging for the non-white subsample
```
margins if white==0, ///
    at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```

4. For the white subsample
```
margins if white==1, ///
    at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```

5. For both subsamples simultaneously
```
margins, over(white) ///
    at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```


Comparing ADC(bmi) by race

1. Use over () to compute components for group specific ADC(bmi) [\#13]

Expression over	```Pr(diabetes), predict() white```					
1._at	$\begin{array}{r} \text { 0. white } \\ \text { bmi } \\ \text { 1. white } \\ \text { bmi } \end{array}$	$=$	$=\mathrm{bmi}$			
2._at	$\begin{array}{r} \text { 0. white } \\ \text { bmi } \\ \text { 1. white } \\ \text { bmi } \end{array}$		+5.77 +5.7	8835041		
	Delta-method					
_at\#white						
1\#Non-white	. 3097249	. 0072773	42.56	0.000	. 2954616	. 3239881
1\#White	. 173629	. 0032892	52.79	0.000	. 1671824	. 1800757
2\#Non-white	. 4302294	. 009226	46.63	0.000	. 4121468	. 448312
2\#White	. 2636564	. 0054903	48.02	0.000	. 2528955	. 2744172

Comparing DCs across models: examples

Examples of comparing effects from different models

1. Different specifications of predictors

- Does DC(female) depend on how body mass is measured?

2. Different groups

- Does DC(bmi) differ for whites and nonwhites

TOOL: joint estimation in Stata

1. gsem simultaneously fits multiple equations
1.1 Limited to GLM models
1.2 margins behaves "normally", but is slow
1.3 Robust standard errors are not required but vce(robust) and vce(cluster clustvar) are available
1.4 Some complex expressions() might not work..
2. suest combines stored estimates
2.1 Works with most regression models
2.2 margins computes $\mathbf{x}^{\prime} \widehat{\boldsymbol{\beta}}$; computing $\widehat{\boldsymbol{\pi}}(\mathbf{x})$ is complicated
2.3 Average effects for subsamples cannot be computed
2.4 Robust standard errors must be used
3. Specialized commands like khb (Kohler et al., 2011) are available

Comparing ADC(female) across models

Does the effect of female depend on how body mass is measured?

1. Since female is a factor variables, margins, dydx (female) computes DC(female)
2. Computing $\mathrm{ADC}($ female) for two models
. qui logit diabetes c.bmi i.white c.age\#\#c.age i.hsdegree
. qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear

- qui logit diabetes c.weight c.height i.female i.white c.age\#\#c.age i.hsdegree . mtable, dydx(female) rowname(ADC(female) with Mwt) below

Expression: $\operatorname{Pr}($ diabetes), predict()

	$\mathrm{d} \operatorname{Pr}(\mathrm{y})$
ADC(female) with Mbmi ADC (female) with Mwt	-0.036
-0.020	

3. To test if they are equal, we compute the effects simultaneously

Comparing ADC(bmi) by race
2. Computing $\mathrm{ADC}(\mathrm{bmi})$ by group
. qui mlincom 4-2, clear rowname(White: ADC bmi)

. mlincom	$\begin{array}{r} 3-1, \text { add } \\ \text { lincom } \end{array}$	rowname pvalue	white: 11	$\begin{array}{r} C \text { bmi) } \\ \mathrm{ul} \end{array}$
White				
ADC bmi	0.090	0.000	0.083	0.097
Non-white				
ADC bmi	0.121	0.000	0.112	0.129

3. A second difference compares effects for the groups

. mlincom (4-2)	$-(3-1)$, rowname(Difference:	ADC bmi)		
	lincom	pvalue	ll	ul
Difference ADC bmi	-0.030	0.000	-0.034	-0.027

4. Interpretation

The effect of BMI for non-whites is significantly larger than the effect for whites ($p<.001$).

Comparing ADC(female) across models

1. Estimating the models simultaneously [\#14]

Comparing ADC(female) across models

2. Estimate ADC(female) for both models simultaneously

Average marginal effects				Number of obs		16,071
Model VCE : Robust						
dy/dx w.r.t. : 1.female						
1._predict : Predicted mean (Respondent has diabetes?), pr outcome(outcome(lhsbmi))						
2._predict	Predicted mean (Respondent has diabetes?), pr outcome(lhswt))					
	$\mathrm{dy} / \mathrm{dx}$	lta-metho Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\%	Interval]
$\begin{aligned} & \text { 1.female } \\ & \text { _predict } \end{aligned}$						
1	-. 0360559	. 0061773	-5.84	0.000	-. 048	-. 0239487
2	-. 0199213	. 0089687	-2.22	0.026	-. 037	-. 0023429

Note: $d y / d x$ for factor levels is the discrete change from the base level.

Comparing ADC(female) across models

3. Testing if $\operatorname{ADC}($ female) is the same in both models

. mlincom 1-2, stats(all)						
	lincom	se	zvalue	pvalue	1l	ul
1	-0.016	0.006	-2.526	0.012	-0.029	-0.004

4. Interpretation

The effect of being female is significantly larger when body mass is measured with the BMI index $(p<.02)$.

Comparing effects across models

1. Jointly estimating models with gsem and computing effects with margins is a general approach for comparing effects across models (Mize et al., 2009)
2. gsem
2.1 Fits the GLM class of models, but does not fit non-GLM models
2.2 margins is slow (grumble, grumble)
3. suest
3.1 Fits a much wider class of models
3.2 margins is fast, but hard to use (grumble, grumble)
4. suest and gsem produce identical results

Comparing groups: outcomes and marginal effects

Linear regression

1. Coefficients differ by group such as $\beta_{\text {female }}^{W}$ and $\beta_{\text {female }}^{N}$
2. Analysis focuses on Chow tests such as $H_{0}: \beta_{\text {female }}^{N}=\beta_{\text {female }}^{W}$

Logit and probit

1. Coefficients differ by group such as $\beta_{\text {female }}^{W}$ and $\beta_{\text {female }}^{N}$
2. The coefficients combines
2.1 The effect of x_{k} which can differ by group
2.2 The variance of the error which can differ by group
3. Since regression coefficients are identified to a scale factor, Chow-type tests of $H_{0}: \beta_{k}^{N}=\beta_{k}^{W}$ are invalid (Allison, 1999)
4. Probabilities and marginal effects are identified (Long, 2009)

Comparing groups: outcomes and marginal effects

Group differences can be examined two ways

1. Differences in probabilities

$$
H_{0}: \pi_{W}\left(\mathbf{x}=\mathbf{x}^{*}\right)=\pi_{N}\left(\mathbf{x}=\mathbf{x}^{*}\right)
$$

Is the probability of diabetes the same for white and non-white respondents who have the same characteristics?
2. Differences in marginal effects

$$
H_{0}: \frac{\Delta \pi_{W}}{\Delta x_{k}}=\frac{\Delta \pi_{N}}{\Delta x_{k}}
$$

Is the effect of x_{k} the same for whites and non-whites?
3. These dimensions of difference are shown in the next graph

Comparing groups: outcome and marginal effects
Hypothetical data

Comparing groups: model estimation

1. Factor syntax allows coefficients to differ by white
logit diabetes ibn.white ///
ibn.white\#(i.female i.hsdegree c.age\#\#c.age c.bmi), nocon
2. This is equivalent to simultaneously estimating
logit diabetes i.female i.hsdegree c.age\#\#c.age c.bmi if white==1 logit diabetes i.female i.hsdegree c.age\#\#c.age c.bmi if white==0
3. For example [\#15]

Variable	Whites	NonWhites	
female			
Women	0.713	1.024	<== odds ratios
	0.000	0.755	<== p-values
hsdegree			
HS degree	0.706	0.743	
	0.000	0.000	
age	1.278	1.369	
	0.000	0.000	
: :	: : : :	: : : :	

Group comparison of probabilities by age
A: Probabilities

B: DCR(race)

Group comparison of effects: ADC or DCM?
Hypothetical data

1. ADC reflects the distribution of predictors
2. DCR is the effect at specific values

Group comparison of effects: ADC or DCM?

Comparing ADCs

1. $A D C$ reflects
1.1 Differences in the probability curves
1.2 Differences in distribution of variables
2. Group differences in ADCs reflect both components

Comparing DCRs

1. DCRs show differences in probability curves at a specific location
2. Group differences in DCRs do not depend on the distribution of variables

Which to use?

1. The answer depends on what you want to know?

Group comparison of effects: $\operatorname{ADC}(b m i+5)$

1. To compute $\mathrm{ADC}(\mathrm{bmi}+5)$ by race
. mtable, over(white) at (bmi $=$ gen $(b m i))$ at $(b m i=\operatorname{gen}(b m i+5))$ post Expression: $\operatorname{Pr}($ diabetes), predict()

The average effects of BMI are not significantly different for whites and non-whites ($p=.83$).

Group comparison of effects: $\operatorname{DCR}($ age +10$)$

5. DCRs show group differences in

	lincom	pvalue
55:DC non DC white	0.110	0.000
Difference	-0.046	0.000
		0.001
70: DC non	0.001	0.940
DC white	0.018	0.001
Difference	0.017	0.180
85: DC non	-0.109	0.000
DC white	-0.049	0.000
Difference	0.060	0.003

6. These comparisons do not depend on group differences in the distribution of age or other variables

Group comparison of effects: DCR(age +10)

1. Since $\operatorname{ADC}($ age $)$ is not a useful measure, we compare $\operatorname{DCR}($ age +10$)$
1.1 Other variables are held at sample means
1.2 Group specific means could be used (Long and Freese, 2014)
2. For example, $\operatorname{DCR}(\mathrm{age}+10)$ at 55
mtable, at(age=55 white=(0 1)) at(age=55 white=(0 1)) atmeans post mlincom 3-1, rowname(DC nonwhite) stats(est p) clear mlincom 4-2, rowname(DC white) stats(est p) add mlincom (4-2) - (3-1), rowname(Dif at 55) stats(est p) add
3. And so on, with the following results

* Decomposing BMI

1. The BMI index measures relative weight or body mass

$$
\mathrm{BMI}=\frac{\text { weight }_{\mathrm{kg}}}{\text { height }_{m}^{2}}=703 \times \frac{\text { weight }_{l b}}{\text { height }_{\text {in }}^{2}}
$$

2. Question 1: If BMI is in the model, can we compute the effect of increasing weight?

- DC(weight) is clearer to patients then DC(bmi)

3. Question 2: Does $D C$ (weight) differ depending on how body mass is included in the model?
4. To do this we create BMI as a product variable

$$
\mathrm{BMI}=703 \times \text { weight } \times \text { height }^{-1} \times \text { height }^{-1}
$$

Decomposing BMI: bmi as an interaction

1. Create components of $\mathrm{BMI}[\# 16]$
generate heightinv $=1 /$ height label var heightinv "1/height"
generate $S=703$
label var S "scale factor to convert from metric"
2. These models are identical
logit diabetes c.bmi i.white c.age\#\#c.age i.female i.hsdegree estimates store Mbmi
logit diabetes c.S\#c.weight\#c.height_inv\#c.height_inv /// i.white c.age\#\#c.age i.female i.hsdegree estimates store MbmiFV
3. The estimates are identical

Variable	MbmiFV	Mbmi	
c.S\#c.weight\# c.heightinv\#			
c.heightinv	1.104553		<= odds ratio for BMI
bmi	0.000		1.1045533
		0.000	
white			
White	.5411742	.5411742	
	0.000	0.000	

Decomposing BMI: ADC(weight)

4. margins with factor syntax makes the rest trivial
5. ADC(weight) in MbmiFV changes only weight
. qui estimates restore MbmiFV
. mchange weight, amount(sd) delta(25)
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ | Number of obs $=16071$
Expression: $\operatorname{Pr}($ diabetes), predict(pr)

	Change	p-value
weight +25	0.065	0.000

6. ADC (weight) in Mwt is slightly larger
. qui estimates restore Mwt

- mchange weight, amount(sd) delta(25)
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ | Number of obs $=16071$
Expression: Pr(diabetes), predict(pr)

	Change	p-value
weight		
+25	0.067	0.000

* Comparing ADC(weight) in two models

1. To compare ADC (weight) requires joint estimation [\#16]
```
. clonevar 1 hsbmi \(=\) diabetes
. clonevar lhswt = diabetes
. gsem ///
> (lhsbmi <- c.s\#c.weight\#c.height_inv\#c.height_inv ///
> \(\quad\) i.white c.age\#\#c.age i.female i.hsdegree, logit) ///
> (lhswt <- c.weight c.height i.female i.white c.age\#\#c.age i.hsdegree ///
, logit) ///
> , vce(robust)
Generalized structural equation model Number of obs \(=16,071\)
Response : lhsbmi
Link : logit
Response : lhswt
Family : Bernoulli
Link : logit
Log pseudolikelihood \(=-14914.007\)
    (output omitted
```


Comparing ADC (weight) in two models

2. Computing the average predictions for both equations

C

	Delta-method					
	Margin	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
_predict\#_at						
1	1	.2047166	.0030419	67.30	0.000	.1987546
12	.2701404	.0044591	60.58	0.000	.2614007	.2106786
2	1	.2047166	.0030394	67.35	0.000	.1987595
2	.271305	.0044054	61.58	0.000	.2626705	.2706737

Comparing ADC(weight) in two models

3. ADC (weight) for each model and their difference
. qui mlincom 2-1, rowname(Mbmi ADC) clear
. qui mlincom 4-3, rowname(Mwt ADC) add
. mlincom (4-3) - (2-1), rowname(Difference) add

	lincom	pvalue	11	ul
Mbmi ADC	0.065	0.000	0.061	0.070
Mwt ADC	0.067	0.000	0.062	0.071
Difference	0.001	0.029	0.000	0.002

4. Conclusion

The effect of weight on diabetes are nearly identical whether body mass is measured with BMI or with height and weight $(p=.03)$.

Conclusions: Stata, margins, and interpretation

Model interpretation and Stata

1. Too often interpretation ends with the estimated coefficients
2. Interpretations using predictions are more informative
3. Without margins what I suggested today (and more) would be impractical

Marginal effects is only one method

1. Marginal effects are more useful than odds ratios and should be routinely computed (mchange makes this trivial)
2. margins allow many extensions to standard marginal effects
3. The best measure is the one that answers your question and might not be a standard measure
4. Marginal effects are one method, not the only or best method. Tables and graphs are often more useful (Long and Freese, 2014)
5. The best interpretation must be motivated by your substantive question

Thanks to many people

Thank you for listening

Collaborators Parts of this work were developed with Long Doan, Jeremy Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker provided valuable help. Mistakes are my own.
Relevant publications There is a large literature on marginal effects and interpreting models. Long and Freese (2014) include many citations. The references directly related to this presentation are given below.

Bibliography

Allison, P. D. 1999. Comparing logit and probit coefficients across groups. Sociological Methods \& Research 28(2): 186-208.
Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics using Stata. Revised ed. College Station, Tex.: Stata Press.
Heeringa, S., B. West, and P. Berglund. 2010. Applied survey data analysis. Boca Raton, FL: Chapman and Hall/CRC.
Kohler, U., K. B. Karlson, and A. Holm. 2011. Comparing coefficients of nested nonlinear probability models. Stata Journal 11(3): 420-438.
Long, J. S. 2009. Group comparisons in logit and probit using predicted probabilities.

Long, J. S., and J. Freese. 2014. Regression Models for Categorical Dependent Variables Using Stata. Third Edition. College Station, Texas: Stata Press.
Mize, T. D., L. Doan, and J. S. Long. 2009. A General Framework for Comparing Marginal Effects Across Models.

