

Marginal effects

- 1. Marginal change: instantaneous rate of change in $\pi(x)$
- 2. **Discrete change**: change in $\pi(x)$ for discrete change in x

Definition of discrete change

- 1. Variable x_k changes from start to end
- 2. The remaining x's are held constant at specific values $\mathbf{x} = \mathbf{x}^*$
- 3. Discrete change for x_k

$$\mathsf{DC}(x_k) = \frac{\Delta \pi(\mathbf{x})}{\Delta x_k(\mathsf{start} \to \mathsf{end})} = \pi(x_k = \mathsf{end}, \mathbf{x} = \mathbf{x}^*) - \pi(x_k = \mathsf{start}, \mathbf{x} = \mathbf{x}^*)$$

4. Interpretation

5 / 87

For a change in x_k from <u>start</u> to <u>end</u>, the probability changes by $DC(x_k)$, holding other variables at the specified values.

Examples of discrete change

1. DC at representative values \boldsymbol{x}^*

$$\frac{\Delta \pi(\mathbf{x} = \mathbf{x}^*)}{\Delta x_k(0 \rightarrow 1)} = \pi(x_k = 1, \mathbf{x}^*) - \pi(x_k = 0, \mathbf{x}^*)$$

2. DC at observed values for observation i

$$\frac{\Delta \pi(\mathbf{x} = \mathbf{x}_i)}{\Delta x_{ik}(x_{ik} \to x_{ik} + 1)} = \pi(x_k = x_{ik} + 1, \mathbf{x}_i) - \pi(x_k = x_{ik}, \mathbf{x}_i)$$

The challenge of summarizing the effect of x_k

Since the value of $\Delta \pi / \Delta x_k$ depends on where it is evaluated, how do you summarize the effect?

Common summary measures of discrete change Variations in measuring discrete change DC at the mean: change at the center of the data Conditional and average change ___ Conditional on representative values _ Averaged in the estimation sample $\mathsf{DCM}(x_k) = \frac{\Delta \pi(\mathbf{x} = \bar{\mathbf{x}})}{\Delta x_k(\mathsf{start} \to \mathsf{end})} = \pi(x_k = \mathsf{end}, \bar{\mathbf{x}}) - \pi(x_k = \mathsf{start}, \bar{\mathbf{x}})$ ____ Averaged in a subsample Type of change For someone who is average on all variables, increasing x_k from _ Additive change <u>start</u> to <u>end</u> changes the probability by $DCM(x_k)$. Proportional change _ Changes as a function of x's ___ Change of a component in a multiplicative measure Average DC: average of change for each observation Number of variables changed $\mathsf{ADC}(\mathsf{x}_k) = \frac{1}{N} \sum_{i=1}^{N} \frac{\Delta \pi(\mathbf{x} = \mathbf{x}_i)}{\Delta \mathsf{x}_{ik}(\mathsf{start} \to \mathsf{end})}$ ___ One variable _ Two or more mathematically related variables ____ Two or more substantively related variables On average, increasing x_k from <u>start</u> to <u>end</u> changes the probability by $ADC(x_k)$. 9 / 87 10/87

Stata installation, data, and do-files	Stata commands
 Stata 13, with some examples requiring Stata 14 The spost13_ado package is installed Examples: search eusmex2016 to download example and talk 	 Fitting logit model with factor syntax logit depvar i.var c.var c.var1#c.var2 Regression estimates are stored and restored estimates store ModelName estimates restore ModelName margins estimates predictions from regressions margins, post stores these predictions allowing lincom to estimate functions of predictions mchange, mtable, mgen and mlincom are SPost wrappers
11/87	12 / 87

Modeling diabetes

- $1. \ {\rm Health} \ {\rm and} \ {\rm Retirement} \ {\rm Survey}^1 \ {\rm has} \ {\rm cross-sectional} \ {\rm data} \ {\rm on} \ {\rm health}$
- 2. Outcome is self-report of diabetes
 - 2.1 Small changes are substantively important
 - $2.2\,$ Since changes can be statistically significant since N=16,071\,
- 3. Road map for examples
 - $3.1\,$ Compute standard measures of discrete change to explain commands
 - $3.2\ \mbox{Extend}$ these commands to compute complex types of effects
 - $3.3\,$ Illustrate methods for testing equality of effects within and across models

Variable	Mean	Min	Max	Label
diabetes	.205	0	1	Respondent has diabetes?
white	.772	0	1	Is white respondent?
bmi	27.9	10.6	82.7	Body mass index (weight/height^2)
weight	174.9		400	Weight in pounds
height	66.3	48	89	Height in inches
age	69.3	53	101	Age
female	.568	0	1	Is female?
hsdegree	.762	0	1	Has high school degree?

14 / 87

Dataset and variables

. use hrs-gme-analysis2, clear

¹Steve Heeringa generously provided the data used in *Applied Survey Data Analysis* (Heeringa et al., 2010). Complex sampling is not used in my analyses.

Two model specifications		Odds ratio	os and p	-values t	ell us little	
1. Model Mbmi includes the BMI index		Variable	Mbmi	Mwt		
logit diabetes c.bmi ///		bmi	1.1046*			
i.white c.age##c.age i.female i.hsdegree estimates store Mbmi		weight		1.0165*		
2. Model Mwt includes height and weight		height		0.9299*		
logit diabetes c.weight c.height ///		white White	0.5412*	0.5313*		
i.white c.age##c.age i.female i.hsdegree		age	1.3091*	1.3093*		
estimates store Mwt		c.age#c.age	0.9983*	0.9983*		
3. The estimates are		female Women	0.7848*	0.8743#		
		hsdegree HS degree	0.7191*	0.7067*		
		_cons	0.0000*	0.0001*		
		bic	14991.26	14982.03		
		Note: # signi	ficant at .0	5 level; * at	the .001 level.	
	15 / 87					16 / 87

Average discrete change	Tool : margins, at() and atmeans
 mchange is a useful first step after fitting a model estimates restore Mbmi mchange, amount(sd) // compute average discrete change logit: Changes in Pr(y) Number of obs = 16071 Change p-value bmi SD 0.097 0.000 white white output omitted) Interpretation Interpretation Increasing BMI by one standard deviation on average increases the probability of diabetes .097. On average the probability of diabetes is .099 less for white respondents than non-white respondents. 	 By default, 1.1 margins computes prediction for every observation
3. Where did these numbers come from? $$17/87$$	18 / 87

ADC for binary x_k : ADC(white)

5. Option post saves the predictions to e(b)

		_at	2. _at	
	y1	.2797806	.1805306	

6. lincom computes ADC as the difference in predictions in e(b)

. lincom _b[2._at] - _b[1._at] $(1) - 1bn._at + 2._at = 0$

	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
(1)	09925	.0082362	-12.05	0.000	1153927	0831073

7. Interpretation

On average, being white decreases the probability of diabetes by .099 (p < .001).

Tool: mlincom simplifies lincom	Tool : margins, at(<i>varnm</i> = generate(<i>exp</i>))
 lincom requires column names from e(b) that can be complex <pre>lincom (_b[2at#1.white]b[1at#1.white]) ///</pre>	 margins, at(<i>varnm</i> = generate(<i>exp</i>)) is a powerful, nearly undocumented option that generates values for making predictions Trivially, average prediction at observed values of bmi margins, at(bmi = gen(bmi)) Average prediction at observed values plus 1 margins, at(bmi = gen(bmi+1)) Two average predictions margins, at(bmi = gen(bmi)) at(bmi = gen(bmi+1)) Average at observed plus standard deviation quietly sum bmi local sd = r(sd) margins, at(bmi = gen(bmi+'sd'))
21/87	22/87

DC for co	ntinuou	s x _k : /	ADC(b	$m_1 + s$	d)		
1. Compute pro	pabilities at	observed	l bmi and	d observe	d + sd		
. quietly sum . local sd = r							
. margins, at(bmi = gen(bm:	.)) at(bmi	= gen(bmi	+ `sd'))	post		
Expression :	Pr(diabetes)	, predict	0				
1at :	bmi	= bmi					
2at :	bmi	= bmi	+ 5.77083	504123860	5		
	Margin	Std. Err	. z	P> z	[95% Conf	. Interval]	
_at 1 2	.2047166 .3017056	.0030338 .005199					
2. $ADC(bmi + set a b b b)$	d)						
. mlincom 2 -	 stats(all) lincom 		zvalue	pvalue	11	ul	
1	0.097	se 0.004	27.208	0.000	0.090	0.104	
On average, i increases the	0	2				б points,	

Tool: mtable wrapper for margins
1. margins output is complete, not always compact
2. mtable executes margins and simplifies the output (and more)
 mtable, commands lists the margins commands used
mtable, detail shows margins output and mtable output

DCM for continuous x _k : DCM(bmi + sd)	DCM for continuous x_k : DCM(bmi + sd)
<pre>1. Let bmi increase from mean to mean + sd . qui sum bmi . local mn = r(mean) . local mnplus = r(mean) + r(sd) 2. Option atmeans holds other variables at their means . margins, atmeans at(bmi = `mn`) at(bmi = `mnplus`) post Expression : Pr(diabetes), predict() 1at : bmi = 27.89787</pre>	age = 69.29276 (mean) 0.female = .4315226 (mean) 1.female = .5684774 (mean) 0.hsdegree = .2375086 (mean) 1.hsdegree = .7624914 (mean) Delta-method Margin Std. Err. z P> z [95% Conf. Interval]
2at : bmi = <u>33.6687</u> 0.white = .2284239 (mean) 1.white = .7715761 (mean) <continued></continued>	
25 / 87	

Proportional change in x _k	Proportional change in x_k : ADC(weight+25)
 Body mass can be measured with height and weight logit diabetes c.weight c.height /// i.white c.age##c.age i.female i.hsdegree estimates store Mwt ADC(weight + 25) increases weight by 25 pounds for everyone An increase of 25 pound is 25% increase from 100 pounds 14% increase from average weight 8% increase from 300 pounds Would the effect of a percentage increase in weight be more meaningful? First, compute ADC(weight+25) 	<pre>1. Computing ADC(weight + 25) . estimates restore Mwt . mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post Expression: Pr(diabetes), predict()</pre>
29 / 87	30 / 87

Tool: factor notation for polynomials Without factor notation 1. Generate age-squared generate agesq = age * age 2. Model specification logit diabetes c.age c.agesq ... With factor notation 1. Model specification where c. is necessary logit diabetes c.age##c.age ... 2. c.age##c.age does three things 2.1 Adds c.age to the model 2.2 Creates c.age#c.age = c.age*c.age 2.3 Adds c.age to the model 3. When c.age changes, margins automatically changes c.age#c.age

Discrete change with age & age²

Discrete change with age & age²

Same results without factor notation

 logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or (output omitted)

2] . mtable, at(age = gen(age) ///
3] > agesq = gen(agesq)) ///
4] > at(age = gen(age+10) ///
5] > agesq = gen((age+10)^2)) ///
6] > post
 (output omitted)
7] . mlincom 2 - 1

(output omitted)

The power of at(gen())

- 1. With factor syntax you do not need at(...=gen(...)) for polynomials
- 2. However, at(...=gen(...)) allows complex links among variables

Discrete change with associated variables Associated variables: ADC(height, weight) 1. Regress weight on height and height squared 1. Age and age-squared are mathematically linked 2. Other variables could be substantively associated . regress weight c.height##c.height, noci (output omitted) 3. Example: To examine the effect of cultural capital on health, change all R-squared 0.2575 assets together, not a single asset 4. Example: Are "larger people" (taller people with the same body mass) weight Coef. Std. Err. t P>|t| more likely to have diabetes? -6.338708 1.61073 0.000 height -3.94 Use height to predict weight .0120867 c.height#c.height .0855799 7.08 0.000 Use margins, at(...=gen()) to change height and weight together 217.5991 53.5548 4.06 0.000 cons This example illustrates the power of margins, at(...=gen(...)) 2. Save estimates . scalar b0 = _b[_cons] . scalar b1 = _b[height] . scalar b2 = _b[c.height#c.height] 39 / 87 40 / 87

body mass contributes to the incidence of diabetes.

Distribution of effects

- $1.\ {\rm ADC}$ and DCM are common summary measures of change
- 2. Each uses the mean to summarize a distribution
- 3. ADC: average discrete change

$$ADC(x_1) = \frac{1}{N} \sum_{i} \left[\frac{\Delta \pi}{\Delta(x_1 | \mathbf{x} = \mathbf{x}_i)} \right]$$

4. DCM: discrete change at the mean

$$\mathsf{DCM}(x_1) = \frac{\Delta \pi}{\Delta(x_1 | \mathbf{x} = \overline{\mathbf{x}})} \text{ where } \overline{x}_k = \frac{1}{N} \sum_i x_{ik}$$

5. Hypothetical data shows why means can be misleading

41/87

Distribution of effects: ADC and DCM Hypothetical data

Undocumented Tool: margins, generate()

- margins, gen(stub) creates variables with predictions for each observation (help margins generate)
- 2. For example, to save probabilities for 16,071 cases and average them

_cons	00.171.00						Interva
	.2047166	.0030316	67.53	0.000	.198	7747	.21065
Variable	Obs	Mean	Std. I	Dev.	Min	М	lax
Prob1	16,071	.2047166	.12290	016 .012	3593	.90672	207

43 / 87

Distribution of effects: ADC(weight)

1. Now consider ADC(weight+25) and ADC(weight*1.14)

- 1] mtable, gen(PRadd) at(weight=gen(weight)) at(weight=gen(weight+25)) post
- 2] generate DCadd = PRadd2 PRadd1
- 3] lab var DCadd "DC for 25 pound increase"
- 4] mtable, gen(PRpct) at(weight=gen(weight)) at(weight=gen(weight*1.14)) post
- 5] generate DCpct = PRpct2 PRpct1
- 6] lab var DCpct "DC for 14 percent increase in weight"

Distribution of effects: ADC(weight)

3. While average effects are close, effects for individual can differ greatly

Distribution of effects: limitations of summaries

- 1. ADC and DCM are more useful than odds ratios!
- 2. In nonlinear models, any summary measures can be misleading
- 3. The distribution of effects is valuable for assessing effects and is simple with margins, generate()
 - ▶ Long and Freese (2014) show how do this with the gen() option
- 4. For age, multiple DCRs are more useful than ADC or DCM

Comparing DCRs

1. Are the DCR(age) significantly different at different ages?

Comparing ADCs	for two variables	Comparing ADC(white) and ADC(bmi)					
. est restore Mbmi (results Mbmi are act . mchange bmi white,	amount(sd) y) Number of obs = 16071	<pre>3. Simultaneously compute components for ADC(white) and ADC(bmi) . quietly sum bmi . local sd = r(sd) . margins, at(white=(0 1)) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd')) post Predictive margins Number of obs = 16,071 Model VCE : OIM Expression : Pr(diabetes), predict() 1at : white = 0 2at : white = 1 3at : bmi = bmi 4at : bmi = bmi + 5.770835041238605</pre>					
2. To test if the effects a	re equal, they must be estimated simultaneously	Delta-method Margin Delta-method Std. Err. z P> z [95% Conf. Interval] at 1 .2797806 .0073107 38.27 0.000 .265452 .2941092 2 .1805306 .0034215 52.76 0.000 .1738245 .1872367 3 .2047166 .003038 67.48 0.000 .2915159 .311854					

Comparing ADC(white) and ADC(bmi)

4. Compute effects and test equality

- . qui mlincom (2-1), rowname(ADC white) clear
- . qui mlincom (4-3), rowname(ADC bmi) add (AD())) (0-1) + (1-2)

. mlincom	(2-1) + (4-	-3), rownam	ne(Sum of	ADCs) add
	lincom	pvalue	11	ul
ADC female ADC bmi	-0.099 0.097	0.000 0.000	-0.115 0.090	-0.083 0.104
Sum of ADCs	-0.002	0.809	-0.021	0.016

5. Conclusion

The health cost of being non-white is equivalent to a standard deviation increase in body mass (p > .80).

Comparing ADC across subsamples

- 1. An ADC is typically averaged over the estimation sample
- 2. By averaging within groups, we can examine effects for different groups Is the average effect of BMI the same for whites and non-whites?

56 / 87

60 / 87

3. This requires margins, over()

Tool: margins, over() Comparing ADC(bmi) by race 1. By default, margins averages over all observations 1. Use over () to compute components for group specific ADC(bmi) . margins, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd`)) post 2. Averages on subsamples are possible with if and over() Expression : Pr(diabetes), predict() : white over 3. Averaging for the non-white subsample : 0.white 1._at = bmi margins if white==0, /// bmi 1.white at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd')) bmi = bmi : 0.white 2._at 4. For the white subsample bmi = bmi + 5.770835041238605 1.white margins if white==1, /// bmi = bmi + 5.770835041238605 at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd')) Delta-method Margin Std. Err. z P>|z| [95% Conf. Interval] 5. For both subsamples simultaneously _at#white margins, over(white) /// 1#Non-white .3097249 .0072773 42.56 0.000 .2954616 .3239881 at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd')) 1#White .173629 .0032892 52.79 0.000 .1671824 .1800757 .4302294 .4121468 .448312 2#Non-white .009226 46.63 0.000 2#White .2636564 .0054903 48.02 0.000 .2528955 .2744172 57 / 87 58 / 87

55 / 87

mparing ADC(bmi) by race	Comparing ADCs across models
Computing ADC(bmi) by group	1. Does the effect of a variable change with model specification?
. qui mlincom 4-2, clear rowname(White: ADC bmi)	Tool: margins, dydx(female) computes DC(female) since i.female
. mlincom 3-1, add rowname(Non-white: ADC bmi) lincom pvalue 11 ul	3. Computing ADC(female) for two models
White ADC bmi 0.090 0.000 0.083 0.097 Non-white	. qui logit diabetes c.bmi i.female i.white i.female c.age##c.age i.hsdegree . qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear
ADC bmi 0.121 0.000 0.112 0.129 A second difference compares effects for the groups	<pre>. qui logit diabetes c.weight c.height i.female i.white c.age##c.age i.hsdeg . mtable, dydx(female) rowname(ADC(female) with Mwt) below</pre>
. mlincom (4-2) - (3-1), rowname(Difference: ADC bmi)	Expression: Pr(diabetes), predict() d Pr(y)
Difference ADC bmi -0.030 0.000 -0.034 -0.027	ADC(female) with Mbmi -0.036 ADC(female) with Mwt -0.020
Interpretation	4. To test if they are equal, the effects must be estimated simultaneously
The effect of BMI is significantly larger for non-whites than whites $(p < .001)$.	

omparing ADC(female) across models						Comparing ADC(female) across models	
dy/dx w.r.t. 1predict	tore Mgsem dx(female) po nal effects : Robust : 1.female : Predicted m outcome(out	nean (Respond come (lhsbmi) nean (Respond	ent has (Number diabetes?	-		 3. Test if ADC(female) is the same in both models . mlincom 1-2, stats(all) lincom se zvalue pvalue 11 ul 1 -0.016 0.006 -2.526 0.012 -0.029 -0.004 4. Interpretation The effect of being female is significantly larger when body mass is measured with the BMI index (p < .02).
	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]	
1.female _predict 1 2 Note: dy/dx f	0360559 0199213 or factor lev	.0061773 .0089687 rels is the d	-5.84 -2.22	0.000 0.026 change fr	0481631 0374997 om the base 1	0239487 0023429 evel.	

Comparing effects across models: summary	Comparing groups			
 Jointly estimating models with gsem and computing effects with margins is a general approach for comparing effects across models (Mize et al., 2009) gsem Fits the GLM class of models, but does not fit non-GLM models margins is slow (grumble, grumble) 	 Linear regression Coefficients differ by group such as β^W_{female} and β^N_{female} Analysis focuses on Chow tests such as H₀: β^N_{female} = β^W_{female} Logit and probit Coefficients differ by group such as β^W_{female} and β^N_{female} 			
 Suest Fits a much wider class of models 2 margins is fast, but much harder to use (grumble, grumble) suest and gsem produce identical results Specialized commands like khb (Kohler et al., 2011) are available 	 2. The coefficients combines 2.1 The effect of xk which can differ by group 2.2 The variance of the error which can differ by group 3. Since regression coefficients are identified to a scale factor, Chow-type tests of H₀: β^N_k = β^W_k are invalid (Allison, 1999) 4. Probabilities and marginal effects are identified (Long, 2009) 			

Comparing groups: outcomes and effects

Group differences can be examined two ways

1. Differences in probabilities

$$H_0: \pi_W(\mathbf{x} = \mathbf{x}^*) = \pi_N(\mathbf{x} = \mathbf{x}^*)$$

Is the probability of diabetes the same for white and non-white respondents who have the same characteristics?

2. Differences in marginal effects

$$H_0: \ \frac{\Delta \pi_W}{\Delta x_k} = \frac{\Delta \pi_N}{\Delta x_k}$$

Is the effect of x_k the same for whites and non-whites?

Comparing groups: outcomes and effects Hypothetical data

Comparing g	roups: r	nodel es	timation		Comparing gr	roups:	orobabil	ities by	/ age		
logit diab ibn.wh 2. This is equiv	etes ibn.whi ite#(i.femal valent to sir	te /// e i.hsdegree nultaneous	<pre>differ by group white e c.age##c.age c.bmi), nocon y estimating e c.age##c.age c.bmi if white==1</pre>		<pre>1. dydx(white) . mtable, dyd Expression: P 1 2 </pre>	x(white) a	t(age=(55(1)85)) atm	<pre>neans stats(est</pre>	- age=55)	
logit diab 3. For example 	 3. For example 				2 3 4 Specified val	75 85	-0.129 -0.092	0.000 0.000 0.000 1. female	<pre><== DCR(white <== DCR(white <== DCR(white 1. hsdegree</pre>	age=75)	
Variable female Women hsdegree HS degree age	Whites 0.713 0.000 0.706 0.000 1.278 0.000	NonWhites 1.024 0.755 0.743 0.000 1.369 0.000	<== odds ratios <== p-values			.228 nterpretati ity of diab nan whites	.772 on etes is sigr who are a	.568 nificantly verage on	.762 larger for 55 ye	27.9	
				69 / 87				t multiple		7	70 / 87

67 / 87

<text>

White

Observed

-- Non-white

Observed

Comparing groups: ADC or DCM? Comparing groups: ADC(bmi + 5)**Comparing ADCs** 1. To compute ADC(bmi + 5) by race 1. Differences in ADCs are determined by both 1.1 Differences in the probability curves Expression: Pr(diabetes), predict() Pr(y) 1.2 Differences in distribution of variables

Comparing DCRs

- 1. DCRs show differences in probability curves at a specific location
- 2. DCRs do not depend on the distribution of variables

Which to use?

1. The answer depends on what you want to know?

. mtable, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi+5)) post 0.white#c.1 0.310 1.white#c.1 0.174 0.white#c.2 0.391 1.white#c.2 0.257 . qui mlincom 3-1, rowname(ADC(bmi) non) stats(est p) clear . qui mlincom 4-2, rowname(ADC(bmi) wht) stats(est p) add mlincom (4-2) - (3-1), rowname(Difference) stats(est p) add lincom pvalue ADC(bmi) non 0.082 0.000 ADC(bmi) wht 0.083 0.000 Difference 0.002 0.826 2. Conclusion The average effects of BMI are not significantly different for whites and non-whites (p=.83). 74 / 87

* Decomposing an effect	Decomposing BMI: BMI as an interaction
1. The BMI index measures relative weight or body mass	1. Create components of BMI
$BMI = \frac{weight_{kg}}{height_m^2} = 703 \times \frac{weight_{lb}}{height_{in}^2}$	generate heightinv = 1/height label var heightinv "1/height" generate S = 703 label var S "scale factor to convert from metric"
2. Question 1: With BMI in the model, what is the effect of weight?	2. These models are <i>identical</i>
Why do this? DC(weight) is clearer to patients than DC(bmi)	logit diabetes c.bmi i.white c.age##c.age i.female i.hsdegree estimates store Mbmi
3. <u>Question 2</u> : Does DC(weight) depend on how body mass is measured?	<pre>logit diabetes c.S#c.weight#c.heightinv#c.heightinv ///</pre>
4. To answer these questions think of BMI as an interaction	3. The estimates are identical
$BMI = 703 \times weight \times height^{-1} \times height^{-1}$	Variable MbmiFV Mbmi
$BNII = 103 \times weight \times neight \times neight$	c.S#c.weight# c.heightinv# c.heightinv 1.104553 <== odds ratio for BMI
	c.heightinv 1.104553 <== odds ratio for BMI 0.000
	bmi 1.1045533 <== odds ratio for BMI 0.000
	white
	White .5411742 .5411742 0.000 0.000 70 (07
77 / 87	0.000 0.000 78 / 87

Decomposing BMI: ADC(weight)	Decomposing an effect: summary
4. margins with factor syntax makes the rest trivial 5. ADC(weight) in MbmiFV changes only weight . qui estimates restore MbmiFV . mchange weight, amount(sd) delta(25) logit: Changes in Pr(y) Number of obs = 16071 Expression: Pr(diabetes), predict(pr) Change p-value weight +25 0.065 0.000 6. ADC(weight) in Mwt is slightly larger qui estimates restore Mwt mchange weight, amount(sd) delta(25) logit: Changes in Pr(y) Number of obs = 16071 6. ADC(weight) in Mwt is slightly larger qui estimates restore Mwt mchange weight, amount(sd) delta(25) logit: Changes in Pr(y) Number of obs = 16071 Expression: Pr(diabetes), predict(pr) Change p-value weight +25 0.067 0.000 	 Factor variables and margins make the difficult decompositions trivial Factor syntax <u>understands</u> interactions in model specifications margins in turn understands interactions and handles the messy details
79 / 87	80/87

* Comparing ADCs across models	Comparing ADC(weight) in two models					
<pre>1. To compare ADC(weight) requires joint estimation . clonevar lhsbmi = diabetes . clonevar lhsbmi = diabetes . grem /// (lhsbmi <- c.s#c.weight#c.heightinv#c.heightinv ////</pre>	2. Computing the average predictions for both equations . margins, at(weight=gen(weight)) at(weight=gen(weight+25)) post Predictive margins Number of obs = 16,071 Model VCE : Robust 1predict : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi)) 2.predict : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi)) 1at : weight 2at : weight at : 2047166 at : 21.2071404 .2ndt166 : 0030394 at : 21.207166 .2047166 : 0030394 at : 21.207166 at					

Conclusions

Model interpretation and Stata

- $1. \ \mbox{Too}$ often interpretation ends with the estimated coefficients
- 2. Interpretations using predictions are more informative
 - ► Think of regression coefficients as "nuisance parameters"
- 3. Methods of interpretation must be practical
- 4. margins makes hard things easy, very hard things merely hard
- 5. Hopefully, Stata 15 will make impossible things possible

Conclusions	Thanks to many people		
Marginal effects are only one method of interpretation			
1. Standard marginal effects are more useful than odds ratios			
 mchange is designed to make the computations of marginal effects a routine part of model estimation 			
2. Today's talk illustrate many extensions to standard effects	Thank <i>you</i> for listening		
3. Marginal effects are not the only or best method of interpretation			
4. Tables of predictions and plots are often informative (Long and Freese, 2014)			
5. The best interpretation is motivated by your substantive question	Collaborators Parts of this work were developed with Long Doan, Jeremy Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker provided valuable help. Mistakes are my own.		
	Relevant publications There is a large literature on marginal effects and interpreting models. Long and Freese (2014) include many citations. The references directly related to this presentation are given below.		
85 / 87	86 / 87		

Bibliography

- Allison, P. D. 1999. Comparing logit and probit coefficients across groups. Sociological Methods & Research 28(2): 186–208.
- Cameron, A. C., and P. K. Trivedi. 2010. *Microeconometrics using Stata*. Revised ed. College Station, Tex.: Stata Press.
- Heeringa, S., B. West, and P. Berglund. 2010. *Applied survey data analysis*. Boca Raton, FL: Chapman and Hall/CRC.
- Kohler, U., K. B. Karlson, and A. Holm. 2011. Comparing coefficients of nested nonlinear probability models. *Stata Journal* 11(3): 420–438.
- Long, J. S. 2009. Group comparisons in logit and probit using predicted probabilities.
- Long, J. S., and J. Freese. 2014. *Regression Models for Categorical Dependent Variables Using Stata. Third Edition.* College Station, Texas: Stata Press.
- Mize, T. D., L. Doan, and J. S. Long. 2009. A General Framework for Comparing Marginal Effects Across Models.