\(\left.\begin{array}{|c}New methods of interpretation using marginal \\

effects for nonlinear models\end{array}\right]\)| Scott Long ${ }^{1}$ |
| :--- |
| 1Departments of Sociology and Statistics
 Indiana University |
| EUSMEX 2016: Mexican Stata Users Group |
| Mayo 18, 2016 |
| Version: 2016-05-08b |

Road map for talk

Goals

1. Present new methods of interpretation using marginal effects
2. Show how to implement these methods with Stata

Outline

1. Statistical background

- Binary logit model
- Standard definitions of marginal effects
- Generalizations of marginal effects

2. Stata commands

- Estimation using factor notation, storing estimates, and gsem
- Post-estimation using margins and lincom
- SPost13's m* commands

3. Example modeling the occurrence of diabetes

Logit model

Nonlinear in probability

$\pi(\mathbf{x})=\frac{\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)}=\Lambda\left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)$

Marginal effect: additive change in probability for change in x_{k} holding other variables at specific values

Multiplicative in odds

$\Omega(\mathbf{x})=\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}=\exp \left(\mathbf{x}^{\prime} \boldsymbol{\beta}\right)$

Odds ratio: multiplicative change in $\Omega(\mathbf{x})$ for change in x_{k} holding other variables constant

Logit model: measures of effect

1. Odds ratios: identical at each arrow
2. Marginal effects: different at each arrow

Marginal effects

1. Marginal change: instantaneous rate of change in $\pi(x)$
2. Discrete change: change in $\pi(x)$ for discrete change in x

Definition of discrete change

1. Variable x_{k} changes from start to end
2. The remaining x^{\prime} s are held constant at specific values $\mathbf{x}=\mathbf{x}^{*}$
3. Discrete change for x_{k}

$$
\operatorname{DC}\left(x_{k}\right)=\frac{\Delta \pi(\mathbf{x})}{\Delta x_{k}(\text { start } \rightarrow \text { end })}=\pi\left(x_{k}=\text { end }, \mathbf{x}=\mathbf{x}^{*}\right)-\pi\left(x_{k}=\operatorname{start}, \mathbf{x}=\mathbf{x}^{*}\right)
$$

4. Interpretation

For a change in x_{k} from start to end, the probability changes by $D C\left(x_{k}\right)$, holding other variables at the specified values.

Examples of discrete change

1. $D C$ at representative values \mathbf{x}^{*}

$$
\frac{\Delta \pi\left(\mathbf{x}=\mathbf{x}^{*}\right)}{\Delta x_{k}(0 \rightarrow 1)}=\pi\left(x_{k}=1, \mathbf{x}^{*}\right)-\pi\left(x_{k}=0, \mathbf{x}^{*}\right)
$$

2. DC at observed values for observation i

$$
\frac{\Delta \pi\left(\mathbf{x}=\mathbf{x}_{i}\right)}{\Delta x_{i k}\left(x_{i k} \rightarrow x_{i k}+1\right)}=\pi\left(x_{k}=x_{i k}+1, \mathbf{x}_{i}\right)-\pi\left(x_{k}=x_{i k}, \mathbf{x}_{i}\right)
$$

Common summary measures of discrete change

DC at the mean: change at the center of the data

$\operatorname{DCM}\left(x_{k}\right)=\frac{\Delta \pi(\mathbf{x}=\overline{\mathbf{x}})}{\Delta x_{k}(\text { start } \rightarrow \text { end })}=\pi\left(x_{k}=\right.$ end, $\left.\overline{\mathbf{x}}\right)-\pi\left(x_{k}=\right.$ start,$\left.\overline{\mathbf{x}}\right)$
For someone who is average on all variables, increasing x_{k} from start to end changes the probability by $\operatorname{DCM}\left(x_{k}\right)$.

Average DC: average of change for each observation

$\operatorname{ADC}\left(x_{k}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{\Delta \pi\left(\mathbf{x}=\mathbf{x}_{i}\right)}{\Delta x_{i k}(\text { start } \rightarrow \text { end })}$

On average, increasing x_{k} from start to end changes the probability by $A D C\left(x_{k}\right)$.

The challenge of summarizing the effect of x_{k}

Since the value of $\Delta \pi / \Delta x_{k}$ depends on where it is evaluated, how do you summarize the effect?

Variations in measuring discrete change

Conditional and average change
\downarrow Conditional on representative valuesAveraged in the estimation sample
_ Averaged in a subsample
Type of change
. Additive changeProportional changeChanges as a function of x 's
_ Change of a component in a multiplicative measure
Number of variables changed
. _ One variableTwo or more mathematically related variables
_ Two or more substantively related variables

Stata installation, data, and do-files

1. Stata 13, with some examples requiring Stata 14
2. The spost13_ado package is installed
3. Examples: search eusmex2016 to download example and talk

Stata commands

1. Fitting logit model with factor syntax
logit depvar i.var c.var c.var1\#c.var2
2. Regression estimates are stored and restored
```
estimates store ModelName
```

estimates restore ModelName
3. margins estimates predictions from regressions
4. margins, post stores these predictions allowing lincom to estimate functions of predictions
5. mchange, mtable, mgen and mlincom are SPost wrappers

Modeling diabetes

1. Health and Retirement Survey ${ }^{1}$ has cross-sectional data on health
2. Outcome is self-report of diabetes
2.1 Small changes are substantively important
2.2 Since changes can be statistically significant since $N=16,071$
3. Road map for examples
3.1 Compute standard measures of discrete change to explain commands
3.2 Extend these commands to compute complex types of effects
3.3 Illustrate methods for testing equality of effects within and across models
${ }^{1}$ Steve Heeringa generously provided the data used in Applied Survey Data Analysis (Heeringa et al., 2010). Complex sampling is not used in my analyses.

Dataset and variables

Two model specifications

1. Model Mbmi includes the BMI index
logit diabetes c.bmi ///
i.white c.age\#\#c.age i.female i.hsdegree
estimates store Mbmi
2. Model Mwt includes height and weight
logit diabetes c.weight c.height ///
i.white c.age\#\#c.age i.female i.hsdegree
estimates store Mwt
3. The estimates are...

Odds ratios and p-values tell us little

Variable	Mbmi	Mwt
bmi	1.1046*	
weight		1.0165*
height		0.9299*
white White	0.5412*	0.5313*
age	1.3091*	1.3093*
c.age\#c.age	0.9983*	0.9983*
female Women	0.7848*	0.8743\#
hsdegree HS degree	0.7191*	0.7067*
_cons	0.0000*	0.0001*
bic	14991.26	14982.03

Average discrete change

1. mchange is a useful first step after fitting a model

- estimates restore Mbmi
. mchange, amount(sd) // compute average discrete change
logit: Changes in $\operatorname{Pr}(\mathrm{y}) \mid$ Number of obs $=16071$

	Change	p-value
bmi +SD	0.097	0.000
White White vs Non-white	-0.099	0.000
(output omitted)		

(output omitted)
2. Interpretation

Increasing BMI by one standard deviation on average increases the probability of diabetes .097.
On average the probability of diabetes is .099 less for white respondents than non-white respondents.
3. Where did these numbers come from?

Tool: margins, at (...) and atmeans

1. By default,
1.1 margins computes prediction for every observation
1.2 Then the predictions are averaged
2. Options allow predictions at "counterfactual" values of variables
3. Average prediction assuming everyone is white margins, at(white=1)
4. Two average predictions under two conditions
margins, at(white=1) at(white=0)
5. Conditional prediction if white with means for other variables
margins, at(white=1) atmeans

ADC for binary $\mathrm{x}_{k}: \operatorname{ADC}$ (white)

1. ADC (white) is the difference in average probabilities

$$
\mathrm{ADC}=\frac{1}{N} \sum_{i} \pi\left(\text { white }=1, \mathbf{x}=\mathbf{x}_{i}\right)-\frac{1}{N} \sum_{i} \pi\left(\text { white }=0, \mathbf{x}=\mathbf{x}_{i}\right)
$$

2. margins computes the two averages

Expression1._at	Pr(diabetes), predict()					
	white	=	0			
2._at	white	=	1			
	Delta-method				[95\% Conf.	Interval]
_at						
1	. 2797806	. 0073107	38.27	0.000	. 265452	. 2941092
2	. 1805306	. 0034215	52.76	0.000	. 1738245	. 1872367

3. 1._at is the average treating everyone as nonwhite

$$
\text { 1._at }=\frac{1}{N} \sum_{i} \pi\left(\text { white }=0, \mathbf{x}=\mathbf{x}_{i}\right)
$$

4. 2. at is the average treating everyone as white

Tool: mlincom simplifies lincom

1. lincom requires column names from e(b) that can be complex
lincom (_b[2._at\#1.white] - _b[1._at\#1.white]) ///

- (_b[2._at\#0.white] - _b[1._at\#0.white])

2. mlincom uses column numbers in $e(b)$ or rows in margins output mlincom (4-2) - (3-1)

ADC for binary x_{k} : ADC(white)
5. Option post saves the predictions to e(b)
. matlist e(b)

	1. at	2. $y$$\quad$ at
.2797806	.1805306	

6. lincom computes ADC as the difference in predictions in $\mathrm{e}(\mathrm{b})$
. lincom _b [2._at] - _b[1._at]
(1) - 1bn._at + 2._at $=0$

| | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| (1) | -.09925 | .0082362 | -12.05 | 0.000 | -.1153927 | -.0831073 |

7. Interpretation

On average, being white decreases the probability of diabetes by .099 ($p<.001$).

Tool: margins, at (varnm = generate (exp))

1. margins, at (varnm = generate (\exp)) is a powerful, nearly undocumented option that generates values for making predictions
2. Trivially, average prediction at observed values of bmi
margins, at (bmi $=\operatorname{gen}(b m i))$
3. Average prediction at observed values plus 1
margins, at $(b m i=\operatorname{gen}(b m i+1))$
4. Two average predictions
margins, $\mathrm{at}(\mathrm{bmi}=\operatorname{gen}(\mathrm{bmi}))$ at $(\mathrm{bmi}=\operatorname{gen}(\mathrm{bmi}+1))$
5. Average at observed plus standard deviation

1] quietly sum bmi
2] local $s d=r(s d)$
3] margins, at(bmi $=$ gen(bmi + 'sd'))

Tool: mtable wrapper for margins

1. margins output is complete, not always compact
2. mtable executes margins and simplifies the output (and more)

- mtable, commands lists the margins commands used
- mtable, detail shows margins output and mtable output

DCM for continuous $\mathrm{x}_{k}: \operatorname{DCM}(\mathrm{bmi}+\mathrm{sd})$

1. Let bmi increase from mean to mean +sd
qui sum bmi
. local $m n=r($ mean $)$
. local mnplus $=r($ mean $)+r(s d)$
2. Option atmeans holds other variables at their means

- margins, atmeans at(bmi $\left.=` \mathrm{mn}{ }^{\prime}\right)$ at $\left(\mathrm{bmi}={ }^{`} \mathrm{mnplus}{ }^{\circ}\right)$ post

Expression : Pr(diabetes), predict()
1._at : bmi $=27.89787$.white $=.2284239$ (mean) age $\quad=69.29276($ mean $)$ O.female $=.4315226$ (mean) 1.female $=.5684774$ (mean) 0. hsdegree $=.2375086$ (mean) 1.hsdegree $=.7624914$ (mean)
2._at
bmi
$=33.668$
D. White $\quad=.2284239$ (mean)
<continued>

DCM for continuous $x_{k}: \operatorname{DCM}(\mathrm{bmi}+\mathrm{sd})$

	age 0. female 1.female 0.hsdegree 1.hsdegree		$\begin{aligned} & 29276 \\ & 15226 \\ & 157774 \\ & 75086 \\ & 24914 \end{aligned}$	$\begin{aligned} & \text { (mean) } \\ & \text { (mean) } \end{aligned}$		
	Margin	lta-method Std. Err.	z	P> \mid z \mid	[95\% Conf.	Interval]
$\begin{gathered} \text { _at } \\ 1 \\ 2 \end{gathered}$	$\begin{array}{r} .2097641 \\ .3202789 \end{array}$	$\begin{aligned} & .0045531 \\ & .0066246 \end{aligned}$	46.07 48.35	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{r} .2008401 \\ .307295 \end{array}$	$\begin{array}{r} .2186881 \\ .3332628 \end{array}$

Generalized measures of discrete change

1. mchange makes the above computations automatically
2. I did it the hard way to illustrate powerful commands
3. Now these commands are used for some interesting things
4. Computing ADC(weight +25)

- estimates restore Mwt
. mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post
Expression: $\operatorname{Pr}($ diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.271

quietly mlincom 2 - 1, rowname(ADC add) clear

Proportional change in $x_{k}: A D C($ weight*1.14)
2. A simple change computes ADC(weight * 1.14)

- estimates restore Mwt
. mtable, at(weight = gen(weight)) at(weight = gen(weight * 1.14)) post
Expression: $\operatorname{Pr}($ diabetes), predict()

. mlincom 2-1, rowname (ADC pct) add

	lincom	pvalue	11	ul
ADC add	0.067	0.000	0.062	0.071
ADC pct	0.068	0.000	0.063	0.073

3. The effects are deceptively similar

Discrete change with polynomials

1. With x and x^{2} only values on the blue curve are mathematically possible

Discrete change with polynomials

2. Changes in the probability reflect linked changes in x and x^{2}

Tool: factor notation for polynomials

Without factor notation

1. Generate age-squared
generate agesq = age * age
2. Model specification
logit diabetes c.age c.agesq ...
With factor notation
3. Model specification where c. is necessary logit diabetes c.age\#\#c.age ...
4. c.age\#\#c.age does three things
2.1 Adds c. age to the model
2.2 Creates c.age\#c.age \equiv c.age*c.age
2.3 Adds c.age\#c.age to the model
5. When c.age changes, margins automatically changes c.age\#c.age

Discrete change with age \& age ${ }^{2}$

Correct ADC with factor notation

1. age and age\#age automatically change together
logit diabetes c.age\#\#c.age c.bmi i.white i.female i.hsdegree, or (output omitted)
. mtable, at $($ age $=\operatorname{gen}($ age $))$ at $($ age $=$ gen (age +10$))$ post
Expression: Pr(diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.223

. mlincom 2-1, rowname(FV)

	lincom	pvalue	11	ul
1	0.018	0.000	0.011	0.024

2. Interpretation

On average, a ten-year increase in age increases the probability of diabetes by $.02(p<.001)$.

Discrete change with age \& age ${ }^{2}$

Same results without factor notation

1] . logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or (output omitted)

The power of at (gen())

1. With factor syntax you do not need at (...=gen (...)) for polynomials
2. However, at(...=gen(...)) allows complex links among variables

Discrete change with associated variables

1. Age and age-squared are mathematically linked
2. Other variables could be substantively associated
3. Example: To examine the effect of cultural capital on health, change all assets together, not a single asset
4. Example: Are "larger people" (taller people with the same body mass) more likely to have diabetes?

- Use height to predict weight
- Use margins, at (...=gen()) to change height and weight together

This example illustrates the power of margins, at (. . . $\operatorname{gen}(\ldots$))

Associated variables: ADC(height, weight)

1. Regress weight on height and height squared
. regress weight c.height\#\#c.height, noci (output omitted)

R-squared $=0.2575$

R-squared	0.2575				
weight	Coef.	Std. Err.	t	P>\|t	
height	-6.338708	1.61073	-3.94	0.000	
c.height\#c.height	.0855799	.0120867	7.08	0.000	
_cons	217.5991	53.5548	4.06	0.000	

2. Save estimates
. scalar b0 = _b[_cons]
. scalar b1 = _b[height]
. scalar b2 = _b[c.height\#c.height]

Associated variables: ADC(height, weight)

3. margins, gen() predicts weight assuming a 6 " change in height

1] . mtable, post ///
2] $>$ at(height = gen(height) /// observed height
3] $>\quad$ weight $=$ gen(weight)) /// observed weight
4] $>$ at (height $=$ gen(height+6) /// +6 inches
$\begin{aligned}5] \quad>\quad \text { weight }=\operatorname{gen}(\mathrm{b} 0 & +\mathrm{b} 1 *(\text { height }+6) \quad / / / \text { +estimated weight } \\ 6] \quad & +\mathrm{b} 2 *((\text { height+6) }\end{aligned}$
Expression: $\operatorname{Pr}($ diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.208

. mlincom 2-1

	lincom	pvalue	11	ul
1	0.004	0.601	-0.010	0.017

4. Interpretation

There is no evidence that being physically larger without greater body mass contributes to the incidence of diabetes.

Distribution of effects

1. ADC and DCM are common summary measures of change
2. Each uses the mean to summarize a distribution
3. ADC: average discrete change

$$
\operatorname{ADC}\left(x_{1}\right)=\frac{1}{N} \sum_{i}\left[\frac{\Delta \pi}{\Delta\left(x_{1} \mid \mathbf{x}=\mathbf{x}_{i}\right)}\right]
$$

4. DCM: discrete change at the mean

$$
\operatorname{DCM}\left(x_{1}\right)=\frac{\Delta \pi}{\Delta\left(x_{1} \mid \mathbf{x}=\overline{\mathbf{x}}\right)} \text { where } \bar{x}_{k}=\frac{1}{N} \sum_{i} x_{i k}
$$

5. Hypothetical data shows why means can be misleading

Distribution of effects: ADC and DCM
Hypothetical data
6. $\mathrm{ADC}($ age $)$ and $\operatorname{DCM}($ age $)$ are near 0 . Does age affect diabetes?

Distribution of effects: ADC(age)

1. To evaluate $\mathrm{ADC}($ age $)$ look at the distribution of $\mathrm{DC}\left(\mathrm{age}_{i}\right)$
2. Create a variable with the DC for each observation

1] margins, generate(PRage) ///
2] \quad at $($ age $=\operatorname{gen}($ age $))$ at $($ age $=\operatorname{gen}($ age +10$))$
3] gen DCage10 = PRage2 - PRage1
4] lab var DCage10 "DC for 10 year increase in age"

Distribution of effects: ADC(weight)

1. Now consider ADC(weight+25) and ADC(weight*1.14)

1] mtable, gen(PRadd) at(weight=gen(weight)) at(weight=gen(weight+25)) post
2] generate DCadd $=$ PRadd2 - PRadd1
3] lab var DCadd "DC for 25 pound increase"
4] mtable, gen(PRpct) at(weight=gen(weight)) at(weight=gen(weight*1.14)) post
5] generate DCpct $=$ PRpct2 - PRpct1
6] lab var DCpct "DC for 14 percent increase in weight"
2. The changes have very different distributions

Undocumented Tool: margins, generate()

1. margins, gen(stub) creates variables with predictions for each observation (help margins generate)
2. For example, to save probabilities for 16,071 cases and average them

. margins, gen(Prob)	
Predictive margins	Number of obs $=16,071$

Expression : Pr(diabetes), predict()

	Delta-method						
	Margin	Std. Err.	z	P>\|z		[95\% Conf. Interval]	
_cons	.2047166	.0030316	67.53	0.000	.1987747	.2106584	

| . sum Prob1 // matches margins estimate | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
| Prob1 | 16,071 | .2047166 | .1229016 | .0123593 | .9067207 |

Distribution of effects: ADC(age)

3. The average effect of age is small, but the effect is large and negative for some people and large and positive for others

Distribution of effects: ADC(weight)

3. While average effects are close, effects for individual can differ greatly

Distribution of effects: limitations of summaries

1. ADC and DCM are more useful than odds ratios!
2. In nonlinear models, any summary measures can be misleading
3. The distribution of effects is valuable for assessing effects and is simple with margins, generate()

- Long and Freese (2014) show how do this with the gen() option

4. For age, multiple DCRs are more useful than ADC or DCM

Comparing $\operatorname{DCR}($ age $)$ at different ages

2. Compute probabilities at 4 ages with other variables at means
. mtable, at (age $=(60(10) 90)$) post atmeans
Expression: $\operatorname{Pr}($ diabetes), predict()

	age	$\operatorname{Pr}(\mathrm{y})$
1	60	0.150
2	70	0.213
3	80	0.227
4	90	0.183

Specified values of covariates

3. DCRs at different ages
mlincom $2-1$, clear rowname(DCR60)
mlincom $3-2$, add
mlincom $4-3$, add
rowname(DCR70)

Comparing DCRs

1. Are the $\operatorname{DCR}($ age $)$ significantly different at different ages?

Comparing $\operatorname{DCR}($ age $)$ at different ages

4. Test differences in DCRs
. mlincom (2-1) - (3-2), add rowname(DCR60 - DCR70)
. mlincom (2-1) - (4-3), add rowname(DCR60 - DCR80)
. mlincom (3-2) - (4-3), add rowname(DCR70 - DCR80)
5. Summarizing
. mlincom, twidth(14)

	lincom	pvalue	ll	ul
DCR60	0.063	0.000	0.054	0.073
DCR70	0.014	0.004	0.004	0.023
DCR80	-0.043	0.000	-0.061	-0.026
DCR60 - DCR70	0.049	0.000	0.037	0.062
DCR60 - DCR80	0.107	0.000	0.083	0.130
DCR70 - DCR80	0.057	0.000	0.046	0.069

6. Interpretation

The effects of a ten-year increase in age are significantly different at ages 60, 70, and $80(p<.001)$.

Comparing ADCs for two variables

1. $\mathrm{ADC}($ race $)$ and $\mathrm{ADC}(\mathrm{bmi}+\mathrm{sd})$ have similar size, but different signs

. est restore Mbmi (results Mbmi are active now)		
. mchange bmi white, amount(sd)		
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ \| Number of obs $=1$		
Expression: Pr(diabetes), predict(pr)		
	Change	p-value
bmi		
+SD	0.097	0.000
white		
White vs Non-white	-0.099	0.000

2. To test if the effects are equal, they must be estimated simultaneously

Comparing ADC(white) and ADC(bmi)

3. Simultaneously compute components for ADC (white) and ADC (bmi)

quietly sum bmi - local sd = r(sd)						
Predictive ma Model VCE				Number	obs	16,071
Expression	: Pr(diabetes), predict()					
1._at	ite	=	0			
2._at	ite	=	1			
3._at	: bmi	$=\mathrm{bmi}$				
4._at	: bmi	$=\mathrm{bmi}+5.770835041238605$				
	Delta-method			$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
-at						
1	. 2797806	. 0073107	38.27	0.000	. 265452	. 2941092
2	. 1805306	. 0034215	52.76	0.000	. 1738245	. 1872367
3	. 2047166	. 0030338	67.48	0.000	. 1987704	. 2106627
4	. 3017056	. 005199	58.03	0.000	. 2915159	. 3118954

Comparing ADC(white) and ADC(bmi)

4. Compute effects and test equality

	lincom	pvalue	11	ul
ADC female	-0.099	0.000	-0.115	-0.083
ADC bmi	0.097	0.000	0.090	0.104
Sum of ADCs	-0.002	0.809	-0.021	0.016

5. Conclusion

The health cost of being non-white is equivalent to a standard deviation increase in body mass ($p>80$).

Comparing ADC across subsamples

1. An ADC is typically averaged over the estimation sample
2. By averaging within groups, we can examine effects for different groups

- Is the average effect of BMI the same for whites and non-whites?

3. This requires margins, over()

Comparing ADC(bmi) by race

1. Use over () to compute components for group specific ADC(bmi)

Expression over	```Pr(diabetes), predict() white```					
1._at	white bmi white bmi					
2._at	white bmi white bmi		$=\mathrm{bmi}+5.770835041238605$			
	Delta-method					
_at\#white 1\#Non-white	. 3097249	. 0072773	42.56	0.000	. 2954616	. 3239881
1\#White	. 173629	. 0032892	52.79	0.000	. 1671824	. 1800757
2\#Non-white	. 4302294	. 009226	46.63	0.000	. 4121468	. 448312
2\#White	. 2636564	. 0054903	48.02	0.000	. 2528955	. 2744172

Comparing ADC(bmi) by race

2. Computing $\mathrm{ADC}(\mathrm{bmi})$ by group

3. A second difference compares effects for the groups

. mlincom (4-2)	$-(3-1)$, rowname(Difference:	ADC bmi)		
	lincom	pvalue	11	ul
Difference ADC bmi	-0.030	0.000	-0.034	-0.027

4. Interpretation

The effect of BMI is significantly larger for non-whites than whites ($p<.001$).

Comparing ADCs across models

1. Does the effect of a variable change with model specification?
2. Tool: margins, dydx(female) computes DC(female) since i.female
3. Computing ADC(female) for two models
. qui logit diabetes c.bmi i.female i.white i.female c.age\#\#c.age i.hsdegree
. qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear
. qui logit diabetes c.weight c.height i.female i.white c.age\#\#c.age i.hsdegree
. mtable, dydx(female) rowname(ADC(female) with Mwt) below
Expression: $\operatorname{Pr}($ diabetes), predict()

	$\mathrm{d} \operatorname{Pr}(\mathrm{y})$
ADC(female) with Mbmi	-0.036
ADC(female) with Mwt	-0.020

4. To test if they are equal, the effects must be estimated simultaneously

Tool: simultaneous model estimation with gsem

1. gsem simultaneously fits multiple GLM models
2. The obvious approach does not work since
gsem ///
(diabetes <- c.bmi i.female i.white c.age\#\#c.age i.hsdegree, logit) /// (diabetes <- c.weight c.height i.female i.white c.age\#\#c.age i.hsdegree, logit)
is interpreted as a single model
gsem ///
(diabetes <- c.bmi i.female i.white c.age\#\#c.age i.hsdegree ///
c.weight c.height, logit)
3. The solution is to create cloned outcomes for each model
. clonevar lhsbmi = diabetes // outcome for bmi model
. clonevar lhswt = diabetes // outcome for weight height model
4. For example...

Comparing ADC(female) across models

2. Estimate ADC (female) for both models simultaneously

Note: dy/dx for factor levels is the discrete change from the base level.

Comparing ADC(female) across models

1. Estimating the models simultaneously

Comparing ADC(female) across models

3. Test if $A D C($ female $)$ is the same in both models

. mlincom 1-2, stats(all)						
	lincom	se	zvalue	pvalue	11	ul
1	-0.016	0.006	-2.526	0.012	-0.029	-0.004

4. Interpretation

The effect of being female is significantly larger when body mass is measured with the BMI index $(p<.02)$.

Comparing effects across models: summary

1. Jointly estimating models with gsem and computing effects with margins is a general approach for comparing effects across models (Mize et al., 2009)
2. gsem
2.1 Fits the GLM class of models, but does not fit non-GLM models
2.2 margins is slow (grumble, grumble)
3. suest
3.1 Fits a much wider class of models
3.2 margins is fast, but much harder to use (grumble, grumble)
4. suest and gsem produce identical results
5. Specialized commands like khb (Kohler et al., 2011) are available

Comparing groups

Linear regression

1. Coefficients differ by group such as $\beta_{\text {female }}^{W}$ and $\beta_{\text {female }}^{N}$
2. Analysis focuses on Chow tests such as $H_{0}: \beta_{\text {female }}^{N}=\beta_{\text {female }}^{W}$

Logit and probit

1. Coefficients differ by group such as $\beta_{\text {female }}^{W}$ and $\beta_{\text {female }}^{N}$
2. The coefficients combines
2.1 The effect of x_{k} which can differ by group
2.2 The variance of the error which can differ by group
3. Since regression coefficients are identified to a scale factor, Chow-type tests of $H_{0}: \beta_{k}^{N}=\beta_{k}^{W}$ are invalid (Allison, 1999)
4. Probabilities and marginal effects are identified (Long, 2009)

Comparing groups: outcomes and effects

Group differences can be examined two ways

1. Differences in probabilities

$$
H_{0}: \pi_{W}\left(\mathbf{x}=\mathbf{x}^{*}\right)=\pi_{N}\left(\mathbf{x}=\mathbf{x}^{*}\right)
$$

Is the probability of diabetes the same for white and non-white respondents who have the same characteristics?
2. Differences in marginal effects

$$
H_{0}: \frac{\Delta \pi_{W}}{\Delta x_{k}}=\frac{\Delta \pi_{N}}{\Delta x_{k}}
$$

Is the effect of x_{k} the same for whites and non-whites?
3. These dimensions of difference are shown in the next graph

Comparing groups: outcomes and effects
Hypothetical data

Comparing groups: model estimation

1. Factor syntax allows coefficients to differ by group white
logit diabetes ibn.white ///
ibn. white\#(i.female i.hsdegree c.age\#\#c.age c.bmi), nocon
2. This is equivalent to simultaneously estimating
logit diabetes i.female i.hsdegree c.age\#\#c.age c.bmi if white==1 logit diabetes i.female i.hsdegree c.age\#\#c.age c.bmi if white==0
3. For example

Variable	Whites	NonWhites	
female			
Women	0.713	1.024	<== odds ratios
	0.000	0.755	<== p-values
hsdegree			
HS degree	0.706	0.743	
	0.000	0.000	
age	1.278	1.369	
	0.000	0.000	
: :	: : : :	:: ::	

Comparing groups: probabilities by age

1. $d y d x$ (white) computes $D C$ (white)
. mtable, dydx(white) at(age=(55(10)85)) atmeans stats(est p) Expression: Pr(diabetes), predict()

2. Example of interpretation

The probability of diabetes is significantly larger for 55 year-old non-whites than whites who are average on other characteristics ($p<.01$).
3. Graphically we can show effects at multiple ages

Comparing groups: probabilities by age

A: Probabilities

B: DCR(race)

Comparing groups: ADC or DCM?
Hypothetical data

1. ADC reflects coefficients and the distribution of predictors
2. DCR is the effect at specific values

Comparing groups: ADC or DCM?

Comparing ADCs

1. Differences in ADCs are determined by both
1.1 Differences in the probability curves
1.2 Differences in distribution of variables

Comparing DCRs

1. DCRs show differences in probability curves at a specific location
2. DCRs do not depend on the distribution of variables

Which to use?

1. The answer depends on what you want to know?

Comparing groups: $\mathrm{ADC}(\mathrm{bmi}+5)$

1. To compute $\mathrm{ADC}(\mathrm{bmi}+5)$ by race
. mtable, over(white) at(bmi $=\operatorname{gen}(b m i))$ at $(b m i=\operatorname{gen}(b m i+5))$ post Expression: $\operatorname{Pr}($ diabetes), predict()

2. Conclusion

The average effects of BMI are not significantly different for whites and non-whites ($p=.83$).

Comparing groups: $\operatorname{DCR}(\mathrm{age}+10)$

1. Since $A D C($ age $)$ is not useful due to nonlinearity, we compare DCR(age+10)
1.1 Other variables are held at sample means
1.2 Group specific means could be used (Long and Freese, 2014)
2. For example, $\operatorname{DCR}(a g e+10)$ at 55 mtable, at(age=55 white=(0 1)) at(age=65 white=(0 1)) atmeans post mlincom 3-1, rowname(DC nonwhite) stats (est p) clear mlincom 4-2, rowname(DC white) stats(est p) add mlincom (4-2) - (3-1), rowname(Dif at 55) stats(est p) add
3. And so on, with the following results

Comparing groups: $\operatorname{DCR}($ age +10$)$

5. DCRs show group differences in

	lincom	pvalue
55:DC non DC white	0.110	0.000
Difference	-0.064	0.000
70: \quad DC non	0.001	0.940
DC white	0.018	0.001
Difference	0.017	0.180
85: DC non	-0.109	0.000
DC white	-0.049	0.000
Difference	0.060	0.003

6. The differences in DCRs do not depend on group differences in the distribution of age or other variables

* Decomposing an effect

1. The BMI index measures relative weight or body mass

$$
\mathrm{BMI}=\frac{\text { weight }_{\mathrm{kg}}}{\text { height }_{m}^{2}}=703 \times \frac{\text { weight }_{l b}}{\text { height }_{\text {in }}^{2}}
$$

2. Question 1: With BMI in the model, what is the effect of weight?

- Why do this? DC(weight) is clearer to patients than $\mathrm{DC}($ bmi $)$

3. Question 2: Does DC (weight) depend on how body mass is measured?
4. To answer these questions think of BMI as an interaction

$$
\mathrm{BMI}=703 \times \text { weight } \times \text { height }^{-1} \times \text { height }^{-1}
$$

Decomposing BMI: BMI as an interaction

1. Create components of BMI
generate heightinv $=1 /$ height label var heightinv "1/height"
generate $S=703$
label var S "scale factor to convert from metric"
2. These models are identical
logit diabetes c.bmi i.white c.age\#\#c.age i.female i.hsdegree estimates store Mbmi
logit diabetes c.S\#c.weight\#c.heightinv\#c.heightinv /// i.white c.age\#\#c.age i.female i.hsdegree estimates store MbmiFV
3. The estimates are identical

Variable	MbmiFV	Mbmi	
c.S\#c.weight\# c.heightinv\# c.heightinv	1.104553		
	0.000		$<==$ odds ratio for BMI
bmi		1.1045533	$<==$ odds ratio for BMI
		0.000	
white	.5411742	.5411742	
White	0.000	0.000	

Decomposing BMI: ADC(weight)

4. margins with factor syntax makes the rest trivial
5. ADC(weight) in MbmiFV changes only weight
. qui estimates restore MbmiFV
. mchange weight, amount(sd) delta(25)
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ | Number of obs $=16071$
Expression: Pr(diabetes), predict(pr)

	Change	p-value
${ }^{\text {weight }}+25$	0.065	0.000

6. ADC (weight) in Mwt is slightly larger

- qui estimates restore Mwt
. mchange weight, amount(sd) delta(25)
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ | Number of obs $=16071$
Expression: Pr(diabetes), predict(pr)

	Change	p-value
${ }^{\text {weight }}+25$	0.067	0.000

Decomposing an effect: summary

1. Factor variables and margins make the difficult decompositions trivial
2. Factor syntax understands interactions in model specifications
3. margins in turn understands interactions and handles the messy details

Comparing ADC(weight) in two models

2. Computing the average predictions for both equations

Predictive ma Model VCE				Numbe	obs	16,071
1._predict	```Predicted mean (Diabetes?), predict(pr outcome(lhsbmi)) Predicted mean (Diabetes?), predict(pr outcome(lhswt))```					
2._predict						
1._at	ight	= weight				
2._at	weight = wei					
	Delta-method			$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
_predict\#_at						
11	. 2047166	. 0030419	67.30	0.000	. 1987546	. 2106786
12	2701404	. 0044591	60.58	0.000	. 2614007	. 27888
21	. 2047166	. 0030394	67.35	0.000	. 1987595	. 2106737
22	. 271305	. 0044054	61.58	0.000	. 2626705	. 2799394

Conclusions

Model interpretation and Stata

1. Too often interpretation ends with the estimated coefficients
2. Interpretations using predictions are more informative

- Think of regression coefficients as "nuisance parameters"

3. Methods of interpretation must be practical
4. margins makes hard things easy, very hard things merely hard
5. Hopefully, Stata 15 will make impossible things possible

Conclusions

Marginal effects are only one method of interpretation

1. Standard marginal effects are more useful than odds ratios

- mchange is designed to make the computations of marginal effects a routine part of model estimation

2. Today's talk illustrate many extensions to standard effects
3. Marginal effects are not the only or best method of interpretation
4. Tables of predictions and plots are often informative (Long and Freese, 2014)
5. The best interpretation is motivated by your substantive question

Thanks to many people

Thank you for listening

Collaborators Parts of this work were developed with Long Doan, Jeremy Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker provided valuable help. Mistakes are my own.

Relevant publications There is a large literature on marginal effects and interpreting models. Long and Freese (2014) include many citations. The references directly related to this presentation are given below.

Bibliography

Allison, P. D. 1999. Comparing logit and probit coefficients across groups Sociological Methods \& Research 28(2): 186-208.
Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics using Stata. Revised ed. College Station, Tex.: Stata Press.

Heeringa, S., B. West, and P. Berglund. 2010. Applied survey data analysis. Boca Raton, FL: Chapman and Hall/CRC.
Kohler, U., K. B. Karlson, and A. Holm. 2011. Comparing coefficients of nested nonlinear probability models. Stata Journal 11(3): 420-438.
Long, J. S. 2009. Group comparisons in logit and probit using predicted probabilities.

Long, J. S., and J. Freese. 2014. Regression Models for Categorical Dependent Variables Using Stata. Third Edition. College Station, Texas: Stata Press

Mize, T. D., L. Doan, and J. S. Long. 2009. A General Framework for Comparing Marginal Effects Across Models

