	Road map for talk
New methods of interpretation using marginal effects for nonlinear models	Goals1. Present new methods of interpretation using marginal effects2. Show how to implement these methods with Stata
Scott Long ¹ ¹ Departments of Sociology and Statistics Indiana University <i>EUSMEX 2016: Mexican Stata Users Group</i> Mayo 18, 2016	 Outline Statistical background Binary logit model Standard definitions of marginal effects Generalizations to concept of marginal effects 2. Stata commands Estimation Post-estimation using margins and lincom SPost13's m* commands 3. Example modeling the occurrence of diabetes
1/	/92 2/92

٦Г

Logit model	Definition of discrete change
Outcome of probability or odds $\pi(\mathbf{x}) = Prob(y = 1 \mid \mathbf{x}) \text{and} \Omega(\mathbf{x}) = \pi(\mathbf{x})/[1 - \pi(\mathbf{x})]$	 x_k changes from <u>start</u> to <u>end</u> Remaining x's held constant at <u>specific</u> values x = x*
Multiplicative in odds	3. Discrete change $DC(x_k)$
$\Omega(\mathbf{x}) = rac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})} = exp(\mathbf{x}'eta) = exp(eta_0) imes exp(eta_1x_1) imes$	$\frac{\Delta \pi(\mathbf{x})}{\Delta x_k(\operatorname{start} \to \operatorname{end})} = \pi(x_k = \operatorname{end}, \mathbf{x} = \mathbf{x}^*) - \pi(x_k = \operatorname{start}, \mathbf{x} = \mathbf{x}^*)$
<u>Odds ratio</u> : multiplicative change in $\Omega(\mathbf{x})$ for change in x_k holding other variables constant.	4. Interpretation For a change in x_k from <u>start</u> to <u>end</u> , the probability changes by $DC(x_k)$ bolding other variables at the specified values
Nonlinear in probability	5. Everything that follows could be done using marginal changes
$\pi(\mathbf{x}) = \frac{\exp(\mathbf{x}'\beta)}{1 + \exp(\mathbf{x}'\beta)} = \Lambda(\mathbf{x}'\beta) = \Lambda(\beta_0 + \beta_1 x_1 +)$	$\frac{\partial \pi(\mathbf{x})}{\partial x_{k}} = \frac{\partial \Lambda(\beta_{0} + \beta_{1}x_{1} +)}{\partial x_{k}}$
Discrete change: additive change in probability for change in x_k holding other variables at specific values.	
3 / 9	2 4/92

Summary measures

DC at the mean: change at the center of the data

$$\mathsf{DCM}(x_k) = \frac{\Delta \pi(\mathbf{x} = \overline{\mathbf{x}})}{\Delta x_k(\mathsf{start} \to \mathsf{end})}$$

For someone who is average on all variables, increasing x_k from <u>start</u> to <u>end</u> changes the probability by $DCM(x_k)$.

Average DC: average change in estimation sample

$$ADC(x_k) = \frac{1}{N} \sum_{i=1}^{N} \frac{\Delta \pi(\mathbf{x} = \mathbf{x}_i)}{\Delta x_{ik} (\text{start} \rightarrow \text{end})}$$

On average, increasing x_k from <u>start</u> to <u>end</u> changes the probability by $ADC(x_k)$.

Generalized discrete change

My talk focuses on generalizing these standard measures

Variations in computing discrete change	Stata requirements			
Conditional and average change Conditional on specific values Averaged in the estimation sample Averaged in a subsample Amount of change Constant change Constant change Change as function of x's Change of a component in a multiplication measure	 Stata 14.1 (most things can be done with Stata 13) search spost13_ado to install SPost13 search eusmex to download example, dataset, and slides 			
Number of variables changed One variable Two or more related variables	8/92			

Stata commands

Steps in analysis using official Stata

1. Fit model using factor syntax

logit depuar i.female c.age c.age#c.age

- 2. Store estimates using estimates store Model
- 3. Make predictions from regression using margins, post
 - post replaces regression results with margins results
- 4. Estimate linear functions of predictions using lincom
- 5. estimates restore *Model* restores the regression estimates

Using SPost13

- $1.\ {\tt mchange,\ mtable,\ mgen\ and\ mlincom\ are\ SPost\ wrappers}$
- 2. They simplify things, but everything can be done without them

Modeling diabetes

Cross-sectional data from Health and Retirement Survey^1

. use hrs-gme-analysis2, clear (hrs-gme-analysis2.dta | Health & Retirement Study GME sample | 2016-04-08)

Variable	Mean	Min	Max	Label
diabetes	.205	0	1	Respondent has diabetes?
age	69.3	53	101	Age
bmi	27.9	10.6	82.7	Body mass index (weight/height^2)
weight	174.9	73	400	Weight in pounds
height	66.3	48	89	Height in inches
white	.772	0	1	Is white respondent?
female	.568	0	1	Is female?
hsdegree	.762	0	1	Has high school degree?
N=16,071				

 $^1 Steve$ Heeringa generously provided the data used in Applied Survey Data Analysis (Heeringa et al., 2010). Complex sampling is not used in my analyses.

10/92

Two logit model specifications	Odds ration	os and p	-values:	nuisance parameter	S
1. Diabetes	Variable	Mbmi	Mwt		
1.1 Given the diseases burden, small effects are substantively important	bmi	1.1046*			
1.2 With N=16,071 small effects are statistically significant	weight		1.0165*		
	height		0.9299*		
2. I wo models that vary in how body mass is included	white	0 5410*	0 5212*		
3. Model Mbmi uses the BMI index	white	0.5412*	0.5313*		
logit diabetes c.bmi ///	c.age#c.age	0.9983*	0.9983*		
estimates store Mbmi	female				
4. Model Mwt uses height and weight	Women	0.7848*	0.8743#		
logit diabetes c weight c height ///	hsdegree HS degree	0.7191*	0.7067*		
i.white c.age##c.age i.female i.hsdegree	_cons	0.0000*	0.0001*		
estimates store Mwt	bic	14991.26	14982.03		
5. The estimates are	Note: # signi	ficant at .0	5 level; * at	the .001 level.	
11/92					12/92

Average discrete change	Tool : margins, at() and atmeans		
 After estimation I always run mchange estimates restore Mbmi mchange, amount(sd) // compute average discrete change logit: Changes in Pr(y) Number of obs = 16071 Change p-value bmi +SD 0.097 0.000 white White vs Non-white -0.099 0.000 (output omitted) Interpretation Increasing BMI by one standard deviation on average increases the probability of diabetes .097 (p < .001). On average, the probability of diabetes is .099 less for white respondents than non-white respondents (p < .001). 	 By default, margins Makes predictions for every case <u>conditional</u> on observed values 		
3. How were the DCs computed?			
13/92	14/92		

Tool : margins, at(<i>varnm</i> = generate(<i>exp</i>))	ADC for continuous \mathbf{x}_k : ADC(bmi + sd)
 at(varnm = generate(exp)) is powerful but poorly documented Trivially, average prediction at observed values of bmi margins, at(bmi = gen(bmi)) Average prediction at the observed bmi plus 1 margins, at(bmi = gen(bmi+1)) Two average predictions margins, at(bmi = gen(bmi)) at(bmi = gen(bmi+1)) 	1. Compute probabilities at observed bmi and observed + sd . quietly sum bmi . local sd = r(sd) . margins, at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd`)) post Expression : Pr(diabetes), predict() 1at : bmi = bmi 2at : bmi = bmi + 5.770835041238605 Margin Std. Err. z P> z [95% Conf. Interval] at at at
5. Average at observed plus standard deviation quietly sum bmi // summary statics local sd = r(sd) // retrieve standard deviation margins, at(bmi = gen(bmi+'sd')) 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tool : mlincom simplifies lincom	Generalized measures of discrete change		
<pre>1. lincom requires column names from e(b) . lincom _b[2at]b[1at] (1) - lbnat + 2at = 0 Coef. Std. Err. z P> z [95% Conf. Interval]</pre>	 DCM and ADC can be computed more easily with other commands However, the commands showed are essential tools for computing generalized marginal effects 		
(1) .0969891 .0035648 27.21 0.000 .0900023 .1039759 2. mlincom uses column numbers in e(b) or rows in margins output . mlincom 2 - 1, stats(all)	 Examples of generalizations Proportional change in x_k Changing linked variables Distribution of effects Testing effects within a model Testing effects across models Testing effects across groups Changing a component of an interaction 		
19 / 92	20 / 92		

Tool : mtable wrapper for margins	Proportional change in x_k			
 margins output is complete, not compact mtable executes margins and simplifies the output and creates tables 1 To list the margins commands used, add option commands 2 To list margins and mtable output, add option details 	 Body mass is measured using height and weight logit diabetes c.weight c.height /// i.white c.age##c.age i.female i.hsdegree estimates store Mwt ADC(weight+25) increases weight by 25 pounds, which is i a 25% increase if you weigh 100 pounds i an 8% increase if you weigh 300 pounds Does increasing weight proportionally make more substantive sense? We compute ADC(weight+25) first, then ADC(weight*1.14) 			

Proportional change in x_k : ADC(weight+25)	Proportional change in x_k : ADC(weight*1.14)
<pre>1. Compute ADC(weight + 25) . estimates restore Mwt . mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post Expression: Pr(diabetes), predict()</pre>	<pre>2. A simple change computes ADC(weight * 1.14) . estimates restore Mwt . mtable, at(weight = gen(weight)) at(weight = gen(weight * 1.14)) post Expression: Pr(diabetes), predict()</pre>
. mlincom 2 - 1, rowname(ADC add) (output omitted)	. mlincom 2 - 1, rowname(ADC pct) add
23 / 92	24/92

Discrete change with linked variables

Mathematically linked variables

1. With polynomials multiple variables \underline{must} change together

$$\frac{\Delta \pi(\mathbf{x})}{\Delta \text{age}(50 \rightarrow 60)} = \pi(\text{age} = 60, \text{agesq} = 60^2) - \pi(\text{age} = 50, \text{agesq} = 50^2)$$

2. With factor syntax margins handles this automatically

Substantively linked variables

- $1. \ \mbox{Sometimes}$ it makes sense to change multiple variables that are not mathematically linked
- 2. If two people have the same body mass, is the larger person more likely to have diabetes (the person who it taller and proportionally heavier)?
- 3. I compute an effect where height and weight change proportionally
- 4. Use height to predict weight
- 5. Use at(...=gen()) to change height and weight together

25 / 92

Linked variables: ADC(height, weight)

- 1. Regress weight on height and height squared
 - . regress weight c.height##c.height, noci
 (output omitted)

R-squared = 0.2575

	weight	Coef.	Std. Err.	t	P> t
beight#c	height	-6.338708	1.61073	-3.94	0.000
.nergut#c	_cons	217.5991	53.5548	4.06	0.000

- 2. Save the estimates
 - . scalar b0 = $b[_cons]$
 - . scalar b1 = _b[height]
 - . scalar b2 = _b[c.height#c.height]
- Weight can be predicted weighthat = b0 + b1*height + b2*height#height

26 / 92

28 / 92

Linked variables: ADC(height, weight) Distribution of effects: limitations of summaries 4. at(gen(...)) predicts weight for a 6 inch change in height 1. ADC and DCM use averages 1] . mtable, post /// 2. Average discrete change at(height = gen(height) weight = gen(weight)) 2a] 2b] /// observed > 111 > $ADC(x_1) = \frac{1}{N} \sum_{i} \left[\frac{\Delta \pi}{\Delta(x_1 | \mathbf{x} = \mathbf{x}_i)} \right]$ at(height = gen(height+6) /// weight = gen(b0 + b1* (height+6) /// + b2*((height+6)^2))) // /// +6 inches height 3a] > 3Ъ] /// +estimated weight 3c] Expression: Pr(diabetes), predict() 3. Discrete change at the mean Pr(y) $\mathsf{DCM}(x_1) = \frac{\Delta \pi}{\Delta(x_1 | \mathbf{x} = \overline{\mathbf{x}})} \text{ where } \overline{x}_k = \frac{1}{N} \sum_i x_{ik}$ 1 2 0.205 0 208 . mlincom 2 - 1 4. Sometimes the averages distort the effect of a variables pvalue 11 ul lincom 0.017 1 0.004 0.601 -0.010 5. Age has a large impact on diabetes, but ADC and DCM are small. Why? Change p-value 5. Interpretation There is no evidence that being physically larger without greater ADC(age+10) 0.018 0.000 DCM(age+10) 0.018 0.000 body mass contributes to the incidence of diabetes. 27 / 92

Distribution of effects: ADC(age)

- 1. To evaluate ADC(age) look at the distribution of $DC(age_i)$
- 2. Create a variable with the DC for each observation
 - 1a] margins, generate(PRage) ///
 - 1b] at(age = gen(age)) at(age = gen(age+10))
 - 2a] gen DCage10 = PRage2 PRage1
 - 2b] lab var DCage10 "DC for 10 year increase in age"
- 3. Since age-squared was specified using factor syntax, when age is changed age#age is automatically changed
- 4. A histogram shows why ADC(age) is small

Comparing ADCs for two variables	Comparing ADC(white) and ADC(bmi)
<pre>1. Consider ADC(race) and ADC(bmi+sd) . est restore Mbmi (results Mbmi are active now) . mchange bmi white, amount(sd) logit: Changes in Pr(y) Number of obs = 16071 Expression: Pr(diabetes), predict(pr)</pre>	<pre>4. Merge the commands for ADC(white) and ADC(bmi) . quietly sum bmi . local sd = r(sd) . margins, at(white = 0) at(white = 1) /// > at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd`)) post Predictive margins Number of obs = 16,071 Model VCE : 0IM Expression : Pr(diabetes), predict() 1at : white = 0 2at : white = 1 3at : bmi = bmi 4at : bmi = bmi + 5.770835041238605 </pre>
 Do the effects have the same size? To answer this, the effects must be <u>estimated simultaneously</u> 	Delta-method Margin Delta-method Std. Err. z P> z [95% Conf. Interval] _at

Comparing ADC(white) and ADC(bmi)

5. Compute ADCs and test equality

- . qui mlincom (2-1), rowname(ADC white)
- . mlincom (2-1) + (4-3), rowname(Sum of ADCs) add

	lincom	pvalue	11	u
ADC white ADC bmi	-0.099 0.097	0.000	-0.115 0.090	-0.083 0.104
Sum of ADCs	-0.002	0.809	-0.021	0.016

6. Conclusion

The health cost of being non-white is equivalent to a standard deviation increase in body mass (p > .80).

Comparing ADCs across models

- 1. Is ADC(female) the same across model specifications?
- 2. Tool: margins, dydx(female) computes DC(female) since i.female
- 3. Compute ADC(female) for two models separately
 - . qui logit diabetes c.bmi $\underline{\text{i.female}}$ i.white i.female c.age##c.age i.hsdegree
 - . qui mtable, <u>dydx(female)</u> rowname(ADC(female) with Mbmi) clear
 - . qui logit diabetes c.weight c.height i.female i.white c.age##c.age i.hsdegree
 - . mtable, $\underline{\texttt{dydx}(\texttt{female})}$ <code>rowname(ADC(female)</code> with <code>Mwt)</code> below

Expression: Pr(diabetes), predict()

	d Pr(y
ADC(female) with Mbmi	-0.03
ADC(female) with Mwt	-0.02

4. To test if effects are equal, they must be estimated simultaneously

37 / 92

Tool : simultaneous model estimation with gsem	Comparing ADC(female) across models
 1. gsem simultaneously fits multiple generalized linear models 2. The obvious approach does <u>not</u> work since <pre> gsem /// (diabetes <= c.bmifemale, logit) /// (diabetes <= c.weight c.height i.female, logit) </pre> 3. The solution is a cloned outcome for each model <pre> (lowvar lhsbmi = diabetes // outcome for Mbmi clonevar lhswt = diabetes // outcome for Mbmi </pre>	<pre>1. Fit two models simultaneously with robust standard errors</pre>

Comparing ADC(female) across models

4. Testing if the effects are equal

. mlincom 1-2	stats(all)					
	lincom	se	zvalue	pvalue	11	ul
1	-0.016	0.006	-2.526	0.012	-0.029	-0.004

5. Interpretation

The effect of being female is significantly larger when body mass is measured with the BMI index then when height and weight are used to measure body mass (p < .02).

Tool: margins, over()	Comparing ADC(bmi) by race
1. By default, margins averages all observations	1. To compute components for group specific ADC(bmi)
2. Average for the non-white subsample margins if white==0, /// at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd')) 3. Average for the white subsample	<pre>. margins, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd`)) post Expression : Pr(diabetes), predict() over : white 1at : 0.white bmi = bmi 1.white bmi = bmi</pre>
<pre>margins if white==1, /// at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))</pre>	2at : 0.white bmi = bmi + 5.770835041238605 1.white bmi = bmi + 5.770835041238605
<pre>4. Average for both subsamples simultaneously margins, over(white) ///</pre>	Delta-method Margin Std. Err. z P> z [95% Conf. Interval]
<pre>at(bm1 = gen(bm1)) at(bm1 = gen(bm1+'sd'))</pre>	_at#white 1#Non-white 1#White 1#White 2#Non-white .3097249 .0072773 42.56 0.000 .2954616 .3239881 1#White .173629 .0032892 52.79 0.000 .1671824 .1800757 2#Non-white .2636564 .009226 46.63 0.000 .4121468 .448312 2#White .2636564 .0054903 48.02 0.000 .2528955 .2744172
	45 / 92 46 / 92

Comparing ADC(bmi) by race	Decomposing an effect
2. Computing ADC(bmi) by group . qui mlincom 4-2, clear rowname(White: ADC bmi) . mlincom 3-1, add rowname(Non-white: ADC bmi) . mlincom 0.090 0.000 0.083 0.097 Mon-white 0.121 0.000 0.112 0.129 3. A second difference compares effects for the groups . mlincom (4-2) - (3-1), rowname(Difference: ADC bmi) 1 . mlincom (4-2) - (3-1), rowname(Difference: ADC bmi) 1 1 ul Difference -0.030 0.000 -0.034 -0.027 4. Interpretation The average effect of BMI is significantly larger for non-whites than whites (p < .001).	 1. The BMI index measures relative weight BMI = 703 × weight_{ib} height_{in}² = 703 × weight × height⁻¹ × height⁻¹ 2. With BMI in the model, can we compute the effect of weight change? Why do this? DC(weight) is clearer to patients than DC(bmi)
	47/92

Decomposing	BMI: B	MI is an	interaction		Decomposing	BMI: ADC(weight)	
1. Create compo	onents of BI	IIV			4. margins with	factor syntax makes the rest	easy
generate heig label var generate S = label var 2. These models logit diabetes	htinv = 1/hei heightinv "1/ 703 S "scale fact S are <i>identic</i>	ght 'height" cor to convert a/	from metric"		 ADC(weight) qui estimate mchange weig logit: Change 	<pre>in MbmiFV changes only weigh es restore MbmiFV ght, amount(sd) delta(25) s in Pr(y) Number of obs = 160 fin Pr(y) Number of obs = 160</pre>	t 71
estimates stor	i.whit i.whit e MbmiFV	<pre>:#c.neightinv# ;e c.age##c.ag</pre>	c.neightinv ///		Expression: P:	r(diabetes), predict(pr) Change p-value	
3. The estimates	s are identic	al	e i.iemaie i.ibuegiee		weight +25	0.065 0.000	
Variable	MbmiFV	Mbmi					
c.S#c.weight# c.heightinv# c.heightinv bmi	1.104553 0.000	1.1045533	- <== odds ratio for BMI <== odds ratio for BMI				
white White	.5411742	0.000 .5411742 0.000		40 / 02			50 / 0

Conclusions	Conclusions
 Conclusions Model interpretation and Stata Too often interpretation ends with estimated coefficients Interpretation using predictions is more informative I think of regression coefficients as "nuisance parameters" Methods of interpretation must be practical margins makes hard things easy, very hard things merely hard 	 Conclusions Which method of interpretation? 1. mchange makes it easy make marginal effects a routine part of analysis; marginal effects are almost always more useful than odds ratios 2. Generalized marginal effects can be tailored to your research 3. But, marginal effects might not be the best method of interpretation 4. Tables and plots might be more useful (Long and Freese, 2014) and are easy with margins and the m* commands 5. The best interpretation is motivated by your substantive question
51 / 92	52/92

Thanks to many people		Bibliography	
Collaborators Parts of this work were developed with Long Doan Jeremy		 Allison, P. D. 1999. Comparing logit and probit coefficients across groups. <i>Sociological Methods & Research</i> 28(2): 186–208. Cameron, A. C., and P. K. Trivedi. 2010. <i>Microeconometrics using Stata</i>. Revised ed. College Station, Tex.: Stata Press. Heeringa, S., B. West, and P. Berglund. 2010. <i>Applied survey data analysis</i>. Boca Raton, FL: Chapman and Hall/CRC. Kohler, U., K. B. Karlson, and A. Holm. 2011. Comparing coefficients of nested nonlinear probability models. <i>Stata Journal</i> 11(3): 420–438. Long, J. S. 2009. Group comparisons in logit and probit using predicted probabilities 	
Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker provided valuable help. Mistakes are my own.		Long, J. S., and J. Freese. 2014. <i>Regression Models for Categorical Dependent Variables Using Stata. Third Edition.</i> College Station, Texas:	
Relevant publications There is a large literature on marginal effects and interpreting models. Long and Freese (2014) include many citations. The references directly related to this presentation are given below.		Stata Press. Mize, T. D., L. Doan, and J. S. Long. 2009. A General Framework for Comparing Marginal Effects Across Models.	
	53 / 92		54 / 92

Additional examples	Comparing ADC(weight) across models
 Comparing ADC(weight) across models Discrete change with polynomials Comparing ADCs across models with suest Comparing groups: outcomes and marginal effects Computing DCMs Comparing DCRs 	 Recall that BMI = 703 × weight_{lb}/height_{ln}² Create components of BMI generate heightinv = 1/height label var heightinv "1/height" generate S = 703 label var S "scale factor to convert from metric" These models are identical logit diabetes c.bmi i.white c.agec.age i.female i.hsdegree logit diabetes c.S#c.weight#c.heightinv#c.heightinv /// i.white c.age##c.age i.female i.hsdegree
55 / 92	56 / 92

Comparing ADC(weight) across models	Comparing ADC(weight) across models
<pre>4. To compare ADC(weight) requires joint estimation . clonevar lhsbmi = diabetes . clonevar lhsvt = diabetes . greem ///</pre>	5. Computing the average predictions for both equations . margins, at(weight=gen(weight)) at(weight=gen(weight+25)) post Predictive margins Number of obs = 16,071 Model VCE : Robust 1predict : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi))) 2predict : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi))) 2predict : weight = weight 2at : weight = weight 2at : weight = weight at : weight = weight 2at : ueight = weight opredict#_at 1 .2047166 .0030419 67.30 0.000 .1987546 .2106786 2 .2047166 .0030419 67.35 0.000 .2614007 .27888 2 .2047166 .0030344 61.58 0.000 .2626705 .2799394
57/92	36/92

1. With polynomials multiple variables \underline{must} change together

$$\frac{\Delta \pi(\mathbf{x})}{\Delta \text{age}(50 \to 60)} = \pi(\text{age}\!=\!60, \text{agesq}\!=\!60^2) - \pi(\text{age}\!=\!50, \text{agesq}\!=\!50^2)$$

Discrete change with age & age ²	Comparing ADCs across models with suest		
<pre>Same results without factor notation 1] . logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or (output omitted) 2] . mtable, post /// 3a] > at(age = gen(age) /// 4a] > at(age = gen(agesq)) /// 4b] > agesq = gen((age+10) /// 4b] > agesq = gen((age+10)^2)) (output omitted) 5] . mlincom 2 - 1 (output omitted) 5] . mlincom 2 - 1 (output omitted) 1. at(gen()) instead of factor syntax 1. at(gen()) does many things that factor syntax cannot do (gripe)</pre>	 Does the effect of a variable change with model specification? Computing ADC(female) for two models qui logit diabetes c.bmi i.female i.white i.female c.age##c.age i.hsdegree estimate store Mbmi qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear qui logit diabetes c.weight c.height i.female i.white c.age##c.age i.hsdegree estimate store Mwt mtable, dydx(female) rowname(ADC(female) with Mwt) below Expression: Pr(diabetes), predict() <u>d Pr(y)</u> ADC(female) with Mbmi -0.036 ADC(female) with Mwt -0.020 To test if they are equal, the effects must be estimated simultaneously 		

Comparing effects across models: ADC(female)	Tool : equation, predict, and expression
4. The stored estimates are combined and stored . suest Mbmi Mwt, noci Simultaneous results for Mbmi, Mwt Number of obs = 16,071	 The two stored models are <u>equations</u> in the suest model Mbmi becomes equation(diabetes_Mbmi) Mwt becomes equation(diabetes_Mwt) With logit, margins by default computes the "expression" for predicted probabilities Expression : Pr(diabetes), predict() With suest, margins only computes x'β Expression : Linear prediction, predict()
Mwt_diabetes .0163568 .0005901 27.72 0.000 height 0726272 .0078904 -9.20 0.000 white 6324228 .0481997 -13.12 0.000 :::	 4. Sadly, margins, predict(pr) does not work with suest 5. The solution is the expression() option

5. Usin	g the loca	ls defined	l earlier			
. mt >	able, expre at(female	ession(`El e=1) at(fe	(PR_Mbmi) emale=0) pos	EXPR_Mwt [*]) st brief	///	
Expr	ession: ,] -]	logistic(] logistic(]	predict(equ predict(equ	ation(Mbmi_ ation(Mwt_d	diabetes))) iabetes)))	
		female	Margin			
	1 2	1 0	-0.007 0.009			
6. The	2nd differ	ence is				
. ml	incom 1 - 2	2, title()	Ho: ADC fem	ale equal f	or Mwt & Mbm	i)
Ho:	ADC female	equal for	r m_wt & m_	bmi		
		lincom	pvalue	11	ul	
	1	-0.016	0.012	-0.029	-0.004	

1. Compute DC	(white) at	t different a	ages		
. mtable, dyo	lx(white) a	t(age=(55(1	0)85)) atı	neans stats(est	p)
Expression: H	r(diabetes), predict()		
	age	d Pr(y)	р		
1	55	-0.078	0.000	<== DCR(white	age=55)
2	65	-0.124	0.000	<== DCR(white	age=65)
3	75	-0.129	0.000	<== DCR(white	age=75)
4	85	-0.092	0.000	<== DCR(white	age=85)
Specified val	ues of cov	ariates			
1	0.	1.	1.	1.	
	white	white	female	hsdegree	bmi
Current	.228	.772	.568	.762	27.9

3. Graphically we can show effects at multiple ages

77 / 92

Comparing groups: model estimation

- 1. Factor syntax allows coefficients to differ by white
 - logit diabetes ibn.white /// ibn.white#(i.female i.hsdegree c.age##c.age c.bmi), nocon
- 2. This is equivalent to simultaneously estimating

logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==1 logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==0

3. Resulting in these estimates

Variable	Whites	NonWhites	-
female			_
Women	0.713	1.024	<== odds ratios
	0.000	0.755	<== p-values
hsdegree			
HS degree	0.706	0.743	
÷	0.000	0.000	
age	1.278	1.369	
, i i i i i i i i i i i i i i i i i i i	0.000	0.000	
:::	:::::	:::::	

Group differences in probabilities by age

Group differences in effects Hypothetical data

1. ADC reflects coefficients and the distribution of predictors

2. DCR is the effect at specific values

Group differences in effects: summary	Group differences in ADC(bmi + 5)
 Comparing ADCs 1. Group differences in ADCs are determined by two things 1.1 Group differences in the probability curves 1.2 Group differences in distribution of variables Comparing DCRs Group differences in DCRs are determined by two things Group differences in DCRs are determined by two things Group differences in the probability curves Group differences in the probability curves The specific location where they are evaluated Which to use? The answer depends on what you want to know? 	1. To compute ADC(bmi + 5) by race . mtable, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi+5)) post Expression: Pr(diabetes), predict()
81/92	82/92

Group differences in $DCR(age + 10)$	Group differences in $DCR(age + 10)$
 ADC(age) might not be useful due to nonlinearity We compare DCR(age+10) at different ages Other variables are held at sample means Group specific means could be used (Long and Freese, 2014) For example, DCR(age+10) at 55 <pre>mtable, atmeans post /// at(age=55 white=0) at(age=55 white=1) /// at(age=65 white=0) at(age=65 white=1) mlincom 3-1, rowname(DC nonwhite) stats(est p) clear mlincom 4-2, rowname(DC white) stats(est p) add mlincom (4-2) - (3-1), rowname(Dif at 55) stats(est p) add</pre> And so on, with the following results	
03/32	04/

screte change at the mean				itinuous	λ_k . DC		n _i suj		
 Let bmi increase from mear qui sum bmi local mn = r(mean) local mnplus = r(mean) + r 	(bmi) to mean(bmi) + sd(bmi)		2at	: bmi O.white 1.white age O.female 1.female O.hsdegree 1.hsdegree	= = = = = =	33.6687 .2284239 (.7715761 (69.29276 (.4315226 (.5684774 (.2375086 (.7624914 (mean) mean) mean) mean) mean) mean)		
2. Option atmeans holds othe	r variables at their means			Margin	Delta-meth Std. Err	od . z	P> z	[95% Conf.	Interval
. margins, atmeans at(bmi =	<pre>`mn`) at(bmi = `mnplus`) post</pre>		_at						
Expression : Pr(diabetes),	predict()		1	.2097641	.0045531	46.07	0.000	.2008401	.2186881
<pre>1at : bmi</pre>	<pre>= 27.89787 = .2284239 (mean) = .715761 (mean) = 69.29276 (mean) = .4315226 (mean) = .5684774 (mean) = .2375086 (mean) = .7624914 (mean)</pre>	3.	2	models the	output ge	48.35	ong, so m	table was	written.

Con	nparing DCR(age) at	differen	it ages			The end		
4.	Test differences in	DCRs							
	. mlincom (2-1) - . mlincom (2-1) - . mlincom (3-2) -	(3-2), add (4-3), add (4-3), add	rowname(DC rowname(DC rowname(DC	R60 - DCR7 R60 - DCR8 R70 - DCR8	(0) (0) (0)				
5.	Summarizing							No more examples!	
	. mlincom. twidth(14)							
		lincom	pvalue	11	ul				
	DCR60	0.063	0.000	0.054	0.073				
	DCR70	0.014	0.004	0.004	0.023				
	DCR80	-0.043	0.000	-0.061	-0.026				
	DCR60 - DCR70	0.049	0.000	0.037	0.062				
	DCR60 - DCR80	0.107	0.000	0.083	0.130				
	DCR70 - DCR80	0.057	0.000	0.046	0.069				
6.	Interpretation								
	The offects of a ter	n voor incre	aco in aro	ara cignifi	icantly diff	orant at agos			
	60 70 and 80 (m		ase ill age	are signin	canny uni	ciciil al ages			
	00, 70, and 60 (p <	< .001 <i>)</i> .							
						91 / 92			92 / 92