\(\left.\begin{array}{|c}New methods of interpretation using marginal \\

effects for nonlinear models\end{array}\right]\)| Scott Long ${ }^{1}$ |
| :--- |
| 1Departments of Sociology and Statistics
 Indiana University |
| EUSMEX 2016: Mexican Stata Users Group |
| Mayo 18, 2016 |
| Version: 2016-05-14 |

Road map for talk

Goals

1. Present new methods of interpretation using marginal effects
2. Show how to implement these methods with Stata

Outline

1. Statistical background

- Binary logit model
- Standard definitions of marginal effects
- Generalizations to concept of marginal effects

2. Stata commands

- Estimation
- Post-estimation using margins and lincom
- SPost13's m* commands

3. Example modeling the occurrence of diabetes

Definition of discrete change

1. x_{k} changes from start to end
2. Remaining x 's held constant at specific values $\mathbf{x}=\mathbf{x}^{*}$
3. Discrete change $\mathrm{DC}\left(x_{k}\right)$

$$
\frac{\Delta \pi(\mathbf{x})}{\Delta x_{k}(\text { start } \rightarrow \text { end })}=\pi\left(x_{k}=\text { end }, \mathbf{x}=\mathbf{x}^{*}\right)-\pi\left(x_{k}=\operatorname{start}, \mathbf{x}=\mathbf{x}^{*}\right)
$$

4. Interpretation

For a change in x_{k} from start to end, the probability changes by $D C\left(x_{k}\right)$, holding other variables at the specified values.
5. Everything that follows could be done using marginal changes

$$
\frac{\partial \pi(\mathbf{x})}{\partial x_{k}}=\frac{\partial \Lambda\left(\beta_{0}+\beta_{1} x_{1}+\ldots\right)}{\partial x_{k}}
$$

Summarizing the effect of x_{k}
Since $\Delta \pi / \Delta x_{k}$ depends on where it is evaluated, how can it be summarized?

Summary measures

DC at the mean: change at the center of the data

$\operatorname{DCM}\left(x_{k}\right)=\frac{\Delta \pi(\mathbf{x}=\overline{\mathbf{x}})}{\Delta x_{k}(\text { start } \rightarrow \text { end })}$
For someone who is average on all variables, increasing x_{k} from start to end changes the probability by $\operatorname{DCM}\left(x_{k}\right)$.

Average DC: average change in estimation sample
$\operatorname{ADC}\left(x_{k}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{\Delta \pi\left(\mathbf{x}=\mathbf{x}_{i}\right)}{\Delta x_{i k}(\text { start } \rightarrow \text { end })}$
On average, increasing x_{k} from start to end changes the probability by $A D C\left(x_{k}\right)$.

Generalized discrete change

My talk focuses on generalizing these standard measures

Variations in computing discrete change	
Standard effects shown in black; generalized effects in red	
Conditional and average change	
Amount of change Constant change Proportional change Change as function of x 's Change of a component in a multiplicative measure	
Number of variables changed One variable \qquad Two or more related variables	
	7/92

Stata requirements

1. Stata 14.1 (most things can be done with Stata 13)
2. search spost13_ado to install SPost13
3. search eusmex to download example, dataset, and slides

Stata commands

Steps in analysis using official Stata

1. Fit model using factor syntax
logit depvar i.female c.age c.age\#c.age
2. Store estimates using estimates store Model
3. Make predictions from regression using margins, post

- post replaces regression results with margins results

4. Estimate linear functions of predictions using lincom
5. estimates restore Model restores the regression estimates

Using SPost13

1. mchange, mtable, mgen and mlincom are SPost wrappers
2. They simplify things, but everything can be done without them

Two logit model specifications

1. Diabetes
1.1 Given the diseases burden, small effects are substantively important
1.2 With $N=16,071$ small effects are statistically significant
2. Two models that vary in how body mass is included
3. Model Mbmi uses the BMI index
logit diabetes c.bmi ///
i.white c.age\#\#c.age i.female i.hsdegree
estimates store Mbmi
4. Model Mwt uses height and weight
```
logit diabetes c.weight c.height ///
i.white c.age\#\#c.age i.female i.hsdegree
```

estimates store Mwt
5. The estimates are...

Modeling diabetes

Cross-sectional data from Health and Retirement Survey ${ }^{1}$

Variable	Mean	Min	Max	Label
diabetes	. 205	0	1	Respondent has diabetes?
age	69.3	53	101	Age
bmi	27.9	10.6	82.7	Body mass index (weight/height^2)
weight	174.9	73	400	Weight in pounds
height	66.3	48	89	Height in inches
white	. 772	0	1	Is white respondent?
female	. 568	0	1	Is female?
hsdegree	. 762	0	1	Has high school degree?

${ }^{1}$ Steve Heeringa generously provided the data used in Applied Survey Data Analysis (Heeringa et al., 2010). Complex sampling is not used in my analyses.

Odds ratios and p-values: nuisance parameters...

Variable	Mbmi	Mwt
bmi	1.1046*	
weight		1.0165*
height		0.9299*
white White	0.5412*	0.5313*
age	1.3091*	1.3093*
c.age\#c.age	0.9983*	0.9983*
female Women	0.7848*	0.8743\#
hsdegree HS degree	0.7191*	0.7067*
_cons	0.0000*	0.0001*
bic	14991.26	14982.03

Average discrete change

1. After estimation I always run mchange
estimates restore Mbmi
. mchange, amount(sd) // compute average discrete change
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ | Number of obs $=16071$

	Change	p-value
bmi +SD	0.097	0.000
White		
White vs Non-white	-0.099	0.000

(output omitted)
2. Interpretation

Increasing BMI by one standard deviation on average increases the probability of diabetes 097 ($p<.001$)
On average, the probability of diabetes is .099 less for white respondents than non-white respondents ($p<.001$).
3. How were the DCs computed?

ADC for binary x_{k} : ADC(white)

1. ADC (white) is the difference in average probabilities

$$
\mathrm{ADC}=\frac{1}{N} \sum_{i} \pi\left(\text { white }=1, \mathbf{x}=\mathbf{x}_{i}\right)-\frac{1}{N} \sum_{i} \pi\left(\text { white }=0, \mathbf{x}=\mathbf{x}_{i}\right)
$$

2. Compute the two averages

Expression	Pr(diabetes), predict()					
1._at	white	=	0			
2._at	white	=	1			
	Margin	Delta-method Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
_at						
1	. 2797806	. 0073107	38.27	0.000	. 265452	. 2941092
2	. 1805306	. 0034215	52.76	0.000	. 1738245	. 1872367

3. Option post save the predictions to matrix e(b)

Tool: margins, at (...) and atmeans

1. By default, margins
1.1 Makes predictions for every case conditional on observed values
1.2 These conditional predictions are then averaged
2. Options allow counterfactual predictions
3. Average prediction imagining everyone is white
margins, at(white=1)
4. Average predictions under two conditions
margins, at(white=1) at(white=0)
5. Conditional prediction for someone white and average for other variables margins, at(white=1) atmeans

ADC for binary x_{k} : ADC(white)

4. The posted predictions from margins
. matlist e (b)

| | 1. 2.
 at at
 y1 .2797806 .1805306 |
| ---: | ---: | ---: |

5. lincom computes ADC (white) matching prior results
. lincom _b[2._at] - _b[1._at]
(1) - 1bn._at + 2._at $=0$

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
(1)	-.09925	.0082362	-12.05	0.000	-.1153927	-.0831073

On average, being white decreases the probability of diabetes by .099 ($p<.001$).

Tool: margins, at (varnm = generate (exp))

1. at (varnm = generate $(\exp))$ is powerful but poorly documented
2. Trivially, average prediction at observed values of bmi
```
margins, at(bmi = gen(bmi))
```

3. Average prediction at the observed bmi plus 1
margins, at $(b m i=\operatorname{gen}(b m i+1))$
4. Two average predictions
margins, $a t(b m i=\operatorname{gen}(b m i))$ at $(b m i=\operatorname{gen}(b m i+1))$
5. Average at observed plus standard deviation

1] quietly sum bmi // summary statics
2] local sd = r(sd) // retrieve standard deviation
3] margins, at(bmi = gen(bmi + 'sd'))

ADC for continuous $\mathrm{x}_{k}: \operatorname{ADC}(\mathrm{bmi}+\mathrm{sd})$

1. Compute probabilities at observed bmi and observed +sd

2. $\mathrm{ADC}(\mathrm{bmi}+\mathrm{sd})$
. lincom _b[2._at] - _b[1._at]
(1) - 1bn._at + 2._at $=0$

| | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| (1) | .0969891 | .0035648 | 27.21 | 0.000 | .0900023 | .1039759 |

On average, increasing BMI by one standard deviation, about 6 points, increases the probability of diabetes by 097 ($p<.001$).

Tool: mlincom simplifies lincom

1. lincom requires column names from $e(b)$

	Coef.	Std. Err.	z	$\mathrm{p}>\|z\|$	[95\% Conf.	Interval]
(1)	. 0969891	. 0035648	27.21	0.000	. 0900023	. 1039759

2. mlincom uses column numbers in e(b) or rows in margins output
mlincom 2-1, stats(all)

	lincom	se	zvalue	pvalue	11	ul
1	0.097	0.004	27.208	0.000	0.090	0.104

3. Why use mlincom?
lincom (_b[2._at\#1.white] - _b[1._at\#1.white]) ///

- (_b[2._at\#0.white] - _b[1._at\#0.white])
mlincom (4-2) - (3-1)

Tool: mtable wrapper for margins

1. margins output is complete, not compact
2. mtable executes margins and simplifies the output and creates tables
2.1 To list the margins commands used, add option commands
2.2 To list margins and mtable output, add option details

Proportional change in x_{k} : ADC (weight+25)

1. Compute ADC (weight +25)

- estimates restore Mwt
. mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post
Expression: $\operatorname{Pr}($ diabetes), predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.271

. mlincom 2-1, rowname(ADC add)
(output omitted)

Generalized measures of discrete change

1. DCM and ADC can be computed more easily with other commands
2. However, the commands showed are essential tools for computing generalized marginal effects
3. Examples of generalizations
3.1 Proportional change in x_{k}
3.2 Changing linked variables
3.3 Distribution of effects
3.4 Testing effects within a model
3.5 Testing effects across models
3.6 Testing effects across groups
3.7 Changing a component of an interaction

Proportional change in x_{k}

1. Body mass is measured using height and weight

$$
\begin{aligned}
& \text { logit diabetes c.weight c.height /// } \\
& \text { i.white c.age\#\#c.age i.female i.hsdegree } \\
& \text { estimates store Mwt }
\end{aligned}
$$

2. $\mathrm{ADC}($ weight +25) increases weight by 25 pounds, which is
: a 25% increase if you weigh 100 pounds
: an 8% increase if you weigh 300 pounds
3. Does increasing weight proportionally make more substantive sense?
4. We compute $\operatorname{ADC}($ weight+25) first, then $\operatorname{ADC}($ weight*1.14)

Proportional change in $x_{k}:$ ADC(weight*1.14)
2. A simple change computes ADC(weight * 1.14)
. estimates restore Mwt
. mtable, at(weight = gen(weight)) at(weight = gen(weight * 1.14)) post
Expression: $\operatorname{Pr}($ diabetes $)$, predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.273

. mlincom 2-1, rowname (ADC pct) 2 add				
	lincom	pvalue	11	ul
ADC add	0.067	0.000	0.062	0.071
ADC pct	0.068	0.000	0.063	0.073

3. The effects are deceptively similar as shown below

Discrete change with linked variables

Mathematically linked variables

1. With polynomials multiple variables must change together

$$
\frac{\Delta \pi(\mathbf{x})}{\Delta \operatorname{age}(50 \rightarrow 60)}=\pi\left(\text { age }=60, \text { agesq }=60^{2}\right)-\pi\left(\text { age }=50, \text { agesq }=50^{2}\right)
$$

2. With factor syntax margins handles this automatically

Substantively linked variables

1. Sometimes it makes sense to change multiple variables that are not mathematically linked
2. If two people have the same body mass, is the larger person more likely to have diabetes (the person who it taller and proportionally heavier)?
3. I compute an effect where height and weight change proportionally
4. Use height to predict weight
5. Use at (...=gen()) to change height and weight together

Linked variables: ADC(height, weight)

1. Regress weight on height and height squared
. regress weight c.height\#\#c.height, noci (output omitted)
R -squared $=0.2575$

weight	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$
height	-6.338708	1.61073	-3.94	0.000
c.height\#c.height	.0855799	.0120867	7.08	0.000
_cons	217.5991	53.5548	4.06	0.000

2. Save the estimates
. scalar b0 = _b[_cons]
. scalar b1 = _b[height]
. scalar b2 = _b[c.height\#c.height]
3. Weight can be predicted
weighthat = b0 + b1*height + b2*height\#height

Linked variables: ADC(height, weight)
4. at (gen(...)) predicts weight for a 6 inch change in height

1] . mtable, post ///

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.208

. mlincom 2-1

	lincom	pvalue	11	ul
1	0.004	0.601	-0.010	0.017

5. Interpretation

There is no evidence that being physically larger without greater body mass contributes to the incidence of diabetes.

Distribution of effects: ADC and DCM
Hypothetical data

Distribution of effects: limitations of summaries

1. ADC and DCM use averages
2. Average discrete change

$$
\operatorname{ADC}\left(x_{1}\right)=\frac{1}{N} \sum_{i}\left[\frac{\Delta \pi}{\Delta\left(x_{1} \mid \mathbf{x}=\mathbf{x}_{i}\right)}\right]
$$

3. Discrete change at the mean

$$
\operatorname{DCM}\left(x_{1}\right)=\frac{\Delta \pi}{\Delta\left(x_{1} \mid \mathbf{x}=\overline{\mathbf{x}}\right)} \text { where } \bar{x}_{k}=\frac{1}{N} \sum_{i} x_{i k}
$$

4. Sometimes the averages distort the effect of a variables
5. Age has a large impact on diabetes, but ADC and DCM are small. Why?

	Change	p -value
ADC (age +10)	0.018	0.000
DCM (age +10)	0.018	0.000

Undocumented Tool: margins, generate()

1. margins, generate (stub) creates variables containing predictions for each observation

Predictive margins				Number of obs		$=$	16,071
Expression	$\operatorname{Pr}($ diabetes), predict()						
	Margin	lta-metho Std. Err.	z	$p>\|z\|$	[95\%	Conf	Interval]
_cons	. 2047166	. 0030316	67.53	0.000	. 198	747	. 2106584

. sum Prob1 Variable	Obs	Mean	Std. Dev.	Min	Max
Prob1	16,071	.2047166	.1229016	.0123593	.9067207

2. For details, help margins generate

Distribution of effects: ADC(age)

1. To evaluate $\mathrm{ADC}($ age $)$ look at the distribution of $\mathrm{DC}\left(\mathrm{age}_{i}\right)$
2. Create a variable with the DC for each observation
```
1a] margins, generate(PRage) ///
1b] at(age = gen(age)) at(age = gen(age+10))
```

2a] gen DCage10 = PRage2 - PRage1
2b] lab var DCage10 "DC for 10 year increase in age"
3. Since age-squared was specified using factor syntax, when age is changed age\#age is automatically changed
4. A histogram shows why $\operatorname{ADC}($ age $)$ is small

Distribution of effects: ADC(age)

1. The average effect of age is small
2. The effect is large and negative for some people
3. The effect is large and positive for others

Distribution of effects: limitations of summaries

1. $A D C$ and DCM can be useful summaries, but in nonlinear models any summary measures can be misleading
2. The distribution of effects is valuable for assessing effects
3. This is simple with margins, generate()
4. Long and Freese (2014) show how do this in earlier versions of Stata

Comparing ADCs for two variables

1. Consider $\mathrm{ADC}($ race $)$ and ADC (bmi+sd)

- est restore Mbmi
(results Mbmi are active now)
. mchange bmi white, amount (sd)
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ | Number of obs $=16071$
Expression: Pr(diabetes), predict(pr)

	Change	p-value
bmi +SD	0.097	0.000
White White vs Non-white	-0.099	0.000

2. Do the effects have the same size?
3. To answer this, the effects must be estimated simultaneously

Comparing ADC(white) and ADC(bmi)

4. Merge the commands for ADC (white) and ADC (bmi)

Comparing ADC(white) and ADC(bmi)

5. Compute ADCs and test equality
. qui mlincom (2-1), rowname(ADC white)
. qui mlincom (4-3), rowname(ADC bmi) add mlincom $(2-1)+(4-3)$, rowname (Sum of ADCs) add

	lincom	pvalue	11	ul
ADC white	-0.099	0.000	-0.115	-0.083
ADC bmi	0.097	0.000	0.090	0.104
Sum of ADCs	-0.002	0.809	-0.021	0.016

6. Conclusion

The health cost of being non-white is equivalent to a standard deviation increase in body mass ($p>80$).

Comparing ADCs across models

1. Is $\operatorname{ADC}($ female) the same across model specifications?
2. Tool: margins, dydx(female) computes $D C$ (female) since i.female
3. Compute ADC(female) for two models separately
. qui logit diabetes c.bmi i.female i.white i.female c.age\#\#c.age i.hsdegree

- qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear
. qui logit diabetes c.weight c.height i.female i.white c.age\#\#c.age i.hsdegree
. mtable, dydx(female) rowname(ADC(female) with Mwt) below
Expression: Pr(diabetes), predict()

	$\mathrm{d} \operatorname{Pr}(\mathrm{y})$
ADC(female) with Mbmi	-0.036
ADC (female) with Mwt	-0.020

4. To test if effects are equal, they must be estimated simultaneously

Tool: simultaneous model estimation with gsem

1. gsem simultaneously fits multiple generalized linear models
2. The obvious approach does not work since
```
gsem ///
    (diabetes <- c.bmi i.female, logit) ///
    (diabetes <- c.weight c.height i.female, logit)
```

is interpreted as

```
        gsem ///
```

(diabetes <- c.bmi i.female c.weight c.height, logit)
3. The solution is a cloned outcome for each model
clonevar lhsbmi = diabetes // outcome for Mbmi
clonevar lhswt = diabetes // outcome for Mwt

Comparing ADC(female) across models

1. Fit two models simultaneously with robust standard errors

Comparing ADC(female) across models

2. Simultaneously estimate ADC (female) for both models

Note: dy/dx for factor levels is the discrete change from the base level.
3. The estimates are identical to those estimate earlier

Comparing ADC(female) across models

4. Testing if the effects are equal

. mlincom 1-2, stats(all)						
	lincom	se	zvalue	pvalue	ll	ul
1	-0.016	0.006	-2.526	0.012	-0.029	-0.004

5. Interpretation

The effect of being female is significantly larger when body mass is measured with the BMI index then when height and weight are used to measure body mass ($p<.02$).

Comparing effects across models: summary

1. Jointly fitting models and estimating effects with margins is a general approach for comparing effects across models (Mize et al., 2009)
2. The gsem command
2.1 Fits GLM models only
2.2 margins is slow (grumble, grumble), but easy to use
3. Alternatively, the suest command
3.1 Fits a much wider class of models
3.2 margins is fast, but hard to use (grumble, grumble)
4. suest and gsem produce identical results
5. Specialized commands like khb (Kohler et al., 2011) are available

Comparing ADC across subsamples

1. An ADC is typically averaged over the entire sample
2. By averaging within groups, we can examine effects for different groups

- Is the average effect of BMI the same for whites and non-whites?

3. To test if effects are equal across groups, we estimate the two effects simultaneously margins, over ()

Tool: margins, over()

1. By default, margins averages all observations
2. Average for the non-white subsample
```
margins if white==0, ///
    at (bmi = gen(bmi)) at (bmi = gen(bmi+'sd'))
```

3. Average for the white subsample
```
margins if white==1, ///
    at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```

4. Average for both subsamples simultaneously
```
margins, over(white) ///
    at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```


Comparing ADC(bmi) by race

2. Computing $\mathrm{ADC}(\mathrm{bmi})$ by group

3. A second difference compares effects for the groups

. mlincom (4-2)	$-(3-1)$, rowname(Difference: ADC bmi)			
	lincom	pvalue	11	ul
Difference ADC bmi	-0.030	0.000	-0.034	-0.027

4. Interpretation

The average effect of BMI is significantly larger for non-whites than whites $(p<.001)$.

Comparing ADC(bmi) by race

1. To compute components for group specific ADC(bmi)

Decomposing an effect

1. The BMI index measures relative weight

$$
\begin{aligned}
\mathrm{BMI} & =703 \times \frac{\text { weight }_{l b}}{\text { height }_{i n}^{2}} \\
& =703 \times \text { weight } \times \text { height }^{-1} \times \text { height }^{-1}
\end{aligned}
$$

2. With BMI in the model, can we compute the effect of weight change?

- Why do this? DC(weight) is clearer to patients than DC(bmi)

Decomposing BMI: BMI is an interaction

1. Create components of BMI
generate heightinv = 1/height label var heightinv "1/height"
generate $S=703$
label var S "scale factor to convert from metric"
2. These models are identical
logit diabetes c.S\#c.weight\#c.heightinv\#c.heightinv ///
```
                                    i.white c.age##c.age i.female i.hsdegree
```

estimates store MbmiFV
logit diabetes c.bmi i.white c.age\#\#c.age i.female i.hsdegree estimates store Mbmi
3. The estimates are identical

Variable	MbmiFV	Mbmi	
c.S\#c.weight\# c.heightinv\#			
c.heightinv	1.104553		<== odds ratio for BMI
bmi	0.000		1.1045533
		0.000	
white		<= odds ratio for BMI	
White	.5411742	.5411742	
	0.000	0.000	

Decomposing BMI: ADC(weight)

4. margins with factor syntax makes the rest easy
5. ADC (weight) in MbmiFV changes only weight
. qui estimates restore MbmiFV
. mchange weight, amount(sd) delta(25)
logit: Changes in $\operatorname{Pr}(\mathrm{y})$ | Number of obs $=16071$
Expression: Pr(diabetes), predict(pr)

	Change	p-value
${ }^{\text {weight }}+25$	0.065	0.000

Conclusions

Model interpretation and Stata

1. Too often interpretation ends with estimated coefficients

- Interpretation using predictions is more informative
- I think of regression coefficients as "nuisance parameters"

2. Methods of interpretation must be practical

- margins makes hard things easy, very hard things merely hard

Thanks to many people

Thank you for listening

Collaborators Parts of this work were developed with Long Doan, Jeremy Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker provided valuable help. Mistakes are my own.
Relevant publications There is a large literature on marginal effects and interpreting models. Long and Freese (2014) include many citations. The references directly related to this presentation are given below.

Conclusions

Which method of interpretation?

1. mchange makes it easy make marginal effects a routine part of analysis; marginal effects are almost always more useful than odds ratios
2. Generalized marginal effects can be tailored to your research
3. But, marginal effects might not be the best method of interpretation
4. Tables and plots might be more useful (Long and Freese, 2014) and are easy with margins and the $m *$ commands
5. The best interpretation is motivated by your substantive question

Bibliography

Allison, P. D. 1999. Comparing logit and probit coefficients across groups. Sociological Methods \& Research 28(2): 186-208.
Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics using Stata. Revised ed. College Station, Tex.: Stata Press.
Heeringa, S., B. West, and P. Berglund. 2010. Applied survey data analysis. Boca Raton, FL: Chapman and Hall/CRC.
Kohler, U., K. B. Karlson, and A. Holm. 2011. Comparing coefficients of nested nonlinear probability models. Stata Journal 11(3): 420-438.
Long, J. S. 2009. Group comparisons in logit and probit using predicted probabilities.
Long, J. S., and J. Freese. 2014. Regression Models for Categorical Dependent Variables Using Stata. Third Edition. College Station, Texas: Stata Press.
Mize, T. D., L. Doan, and J. S. Long. 2009. A General Framework for Comparing Marginal Effects Across Models.

Additional examples

1. Comparing ADC (weight) across models
2. Discrete change with polynomials
3. Comparing ADCs across models with suest
4. Comparing groups: outcomes and marginal effects
5. Computing DCMs
6. Comparing DCRs

Comparing ADC(weight) across models

4. To compare ADC(weight) requires joint estimation

. clonevar lhsbmi = diabetes . clonevar lhswt = diabetes			
. gsem ///			
(lhsbmi <- c.s\#c.weight\#c.heightinv\#c.heightinv ///			
i.white c.age\#\#c.age i.female i.hsdegree, logit) ///			
> (lhswt <- c.weight c.height ///			
> i.white c.age\#\#c.age i.female i.hsdegree, logit) ///			
> , vce(robust)			
Generalized structural equation model	Number of obs	=	16,071
Response : lhsbmi			
Family : Bernoulli			
Link : logit			
Response : Ihswt			
Family : Bernoulli			
Link : logit			
Log pseudolikelihood $=-14914.007$			
(output omitted)			

Comparing ADC(weight) in two models

6. ADC(weight) for each model and their difference
. qui mlincom 2-1, rowname(Mbmi ADC) clear
. qui mlincom 4-3, rowname(Mwt ADC) add
. mlincom (4-3) - (2-1), rowname(Difference) add

	lincom	pvalue	11	ul
Mbmi ADC	0.065	0.000	0.061	0.070
Mwt ADC	0.067	0.000	0.062	0.071
Difference	0.001	0.029	0.000	0.002

7. Conclusion

The effect of weight on diabetes are nearly identical whether body mass is measured with BMI or with height and weight $(p=.03)$.

Comparing ADC(weight) across models

1. Recall that

$$
\mathrm{BMI}=703 \times \frac{\text { weight }_{l b}}{\text { height }_{\text {in }}^{2}}
$$

2. Create components of BMI
generate heightinv $=1 /$ height
label var heightinv " $1 /$ height"
generate S $=703$
label var S "scale factor to convert from metric"
3. These models are identical
logit diabetes c.bmi i.white c.agec.age i.female i.hsdegree
logit diabetes c.S\#c.weight\#c.heightinv\#c.heightinv ///
i.white c.age\#\#c.age i.female i.hsdegree

Comparing ADC(weight) across models

5. Computing the average predictions for both equations

Predictive margins				Number of obs		16,071
1._predict : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi))						
1._at : weight = weight						
2._at	ight	= weig				
	Delta-method					
	Margin	Std. Err	z	$p>\|z\|$	[95\% Conf	Interval]
_predict\#_at						
11	. 2047166	. 0030419	67.30	0.000	. 1987546	. 2106786
12	. 2701404	. 0044591	60.58	0.000	. 2614007	. 27888
21	. 2047166	. 0030394	67.35	0.000	. 1987595	. 2106737
22	. 271305	. 0044054	61.58	0.000	. 2626705	. 2799394

Discrete change with polynomials

1. With polynomials multiple variables must change together
2. For example,

$$
\frac{\Delta \pi(\mathbf{x})}{\Delta \operatorname{age}(50 \rightarrow 60)}=\pi\left(\text { age }=60, \text { agesq }=60^{2}\right)-\pi\left(\text { age }=50, \text { agesq }=50^{2}\right)
$$

3. This can be computed two ways
3.1 Automatically with factor syntax
3.2 Explicitly with at (... = gen(...))

Discrete change with polynomials

1. With x and x^{2} only values on the blue curve are mathematically possible

Tool: factor notation for polynomials
Without factor notation

1. Create the squared term generate agesq $=$ age $*$ age
2. Then fit logit diabetes c.age c.agesq ...
With factor notation
3. Fit the model
logit diabetes c.age\#\#c.age ...
4. c.age\#\#c.age automatically
2.1 Adds c.age to the model
2.2 Creates c.age\#c.age \equiv age*age \equiv agesq
2.3 Adds c.age\#c. age to the model
5. When c.age changes, margins automatically changes c.age\#c.age

Discrete change with age \& age ${ }^{2}$

Same results without factor notation

1] . logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or (output omitted)
2] . mtable, post ///
$\begin{array}{ll}3 \mathrm{a}] \\ 3 \mathrm{~b}] & > \\ > & \text { at }\left(\begin{array}{ll}\text { age } & =\operatorname{gen}(\text { age }) \\ \text { agesq } & =\operatorname{gen}(\text { agesq })\end{array}\right) \quad / / /\end{array}$
3b] > agesq $=\operatorname{gen}($ agesq)) ///

(output omitted)
5] . mlincom 2-1 (output omitted)

Why use at(gen()) instead of factor syntax

1. at (gen()) does many things that factor syntax cannot do (gripe)

Discrete change with polynomials

2. Changes in the probability reflect linked changes in x and x^{2}

Discrete change with age \& age ${ }^{2}$

Correct ADC(age) with factor notation

1. age and age\#age automatically change together
. logit diabetes c.age\#\#c.age c.bmi i.white i.female i.hsdegree, or (output omitted)
. mtable, at (age = gen(age)) at (age = gen (age+10)) post
Expression: $\operatorname{Pr}($ diabetes $)$, predict()

	$\operatorname{Pr}(\mathrm{y})$
1	0.205
2	0.223

. mlincom 2-1

	lincom	pvalue	11	ul
1	0.018	0.000	0.011	0.024

2. Interpretation

On average, a ten-year increase in age increases the probability of diabetes by $02(p<.001)$.

Comparing ADCs across models with suest

1. Does the effect of a variable change with model specification?
2. Computing $\mathrm{ADC}($ female) for two models
. qui logit diabetes c.bmi i.female i.white i.female c.age\#\#c.age i.hsdegree
. estimate store Mbmi

- qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear
. qui logit diabetes c.weight c.height i.female i.white c.age\#\#c.age i.hsdegree
- estimate store Mwt
. mtable, dydx(female) rowname(ADC(female) with Mwt) below
Expression: $\operatorname{Pr}($ diabetes), predict()

	$\mathrm{d} \operatorname{Pr}(\mathrm{y})$
ADC (female) with Mbmi	-0.036
ADC(female) with Mwt	-0.020

3. To test if they are equal, the effects must be estimated simultaneously

Comparing effects across models: ADC(female)
Joint estimation with suest
4. The stored estimates are combined and stored
. suest Mbmi Mwt, noci
Simultaneous results for Mbmi, Mwt

	Number of obs		=	16,071
	Coef.	Robust Std. Err.	z	$p>\|z\|$
Mbmi_diabetes				
bmi	. 099441	. 003747	26.54	0.000
white				
White	-. 614014	. 0480926	-12.77	0.000
: : :				
Mwt_diabetes				
weight	. 0163568	. 0005901	27.72	0.000
height	-. 0726272	. 0078904	-9.20	0.000
white				
White	-. 6324228	. 0481997	-13.12	0.000
White : : -.6324228 .0481997 -13.12 0.000				

. qui estimates store Msuest

Tool: equation, predict, and expression

6. With suest, margins computes $\mathbf{x}^{\prime} \widehat{\boldsymbol{\beta}}$, but we need $\widehat{\boldsymbol{\pi}}(\mathbf{x})=\Lambda\left(\mathbf{x}^{\prime} \widehat{\boldsymbol{\beta}}\right)$
7. Option predict (equation(Mbmi_diabetes) computes $\mathbf{x}^{\prime} \widehat{\boldsymbol{\beta}}$ for Mbmi
8. The logistic CDF function logistic () transforms $\mathbf{x}^{\prime} \widehat{\boldsymbol{\beta}}$ to $\widehat{\pi}(\mathbf{x})$
9. The expression for $\widehat{\pi}(\mathbf{x})$ is expression(logistic(predict(equation(Mbmi_diabetes))
10. To make code easier, save expressions for Mbmi and Mwt in locals local EXPR_Mbmi logistic(predict(equation(Mbmi_diabetes))) local EXPR_Mwt logistic(predict(equation(Mwt_diabetes)))
11. The rest is "easy"

Tool: equation, predict, and expression

1. The two stored models are equations in the suest model
Mbmi becomes equation(diabetes_Mbmi)
Mwt becomes equation(diabetes_Mwt)
2. With logit, margins by default computes the "expression" for predicted probabilities

Expression : $\operatorname{Pr}($ diabetes), predict()
3. With suest, margins only computes $\mathbf{x}^{\prime} \boldsymbol{\beta}$

Expression : Linear prediction, predict()
4. Sadly, margins, predict(pr) does not work with suest
5. The solution is the expression() option

Comparing ADCs across models: ADC(female)

ADC with suest

1. For model Mbmi, ADC (female) is
. mtable, expression(`EXPR_Mbmi`) at(female=1) at(female=0) post
Expression: , logistic(predict(equation(Mbmi_diabetes)))

	female	Margin
1	1	0.189
2	0	0.225

qui mlincom 1 - 2, rowname(ADC Mbmi) clear
2. For model Mwt
. qui mtable, expression(`EXPR_Mwt`) at(female=1) at (female=0) post
. mlincom 1 - 2, rowname(ADC Mwt) add

	lincom	pvalue	11	ul
ADC Mbmi	-0.036	0.000	-0.048	-0.024
ADC Mwt	-0.020	0.026	-0.037	-0.002

3. The estimates match those from margins after the individual models; standard errors are robust

Comparing ADCs across models: ADC(female)

Second differences with suest

1. The ADCs from the two models are

$$
\begin{aligned}
A D C_{\text {Mbmi }} & =\widehat{\pi}_{\text {Mbmi }}(\text { female }=1, \mathbf{x})-\widehat{\pi}_{\text {Mbmi }}(\text { female }=0, \mathbf{x}) \\
A D C_{\text {Mwt }} & =\widehat{\pi}_{\text {Mwt }}(\text { female }=1, \mathbf{x})-\widehat{\pi}_{\text {Mwt }}(\text { female }=0, \mathbf{x})
\end{aligned}
$$

2. Since margins can't compute these in one step, we compute the parts

$$
\begin{aligned}
& \widehat{\pi}_{\text {Mbmi }}(\text { female }=0, \mathbf{x})-\widehat{\pi}_{\text {Mwt }}(\text { female }=0, \mathbf{x}) \\
& \widehat{\pi}_{\text {Mbmi }}(\text { female }=1, \mathbf{x})-\widehat{\pi}_{\text {Mwt }}(\text { female }=1, \mathbf{x})
\end{aligned}
$$

3. Subtracting these is the second difference we want to test

$$
\begin{aligned}
A D C_{\text {Mbmi }}-A D C_{\text {Mwt }} & =\left[\widehat{\pi}_{\text {Mbmi }}(\text { female }=1, \mathbf{x})-\widehat{\pi}_{\text {Mbmi }}(\text { female }=0, \mathbf{x})\right] \\
- & {\left[\widehat{\pi}_{\text {Mwt }}(\text { female }=1, \mathbf{x})-\widehat{\pi}_{\text {Mwt }}(\text { female }=0, \mathbf{x})\right] }
\end{aligned}
$$

4. The results from margins follow

Comparing ADCs across models: ADC(female)

Second differences with suest
5. Using the locals defined earlier
. mtable, expression(`EXPR_Mbmi --`EXPR_Mwt`) ///
> at (female=1) at (female=0) post brief
Expression: , logistic(predict(equation(Mbmi_diabetes)))
-logistic(predict(equation(Mwt_diabetes)))

	female	Margin
1	1	-0.007
2	0	0.009

6. The 2nd difference is
. mlincom 1-2, title(Ho: ADC female equal for Mwt \& Mbmi)
Ho: ADC female equal for $m_{-} w t$ \& $m_{-} b m i$

	lincom	pvalue	11	ul
1	-0.016	0.012	-0.029	-0.004

7. Interpretation

The effect of being female is significantly larger when body mass is measured with BMI than with weight and height ($p<.02$).

Comparing effects across models: summary

1. Jointly fitting models and computing effects with margins is a general approach for comparing effects across models (Mize et al., 2009)
2. gsem
2.1 Fits generalized linear models only
2.2 margins is slow (grumble, grumble), but easy to use
3. suest
3.1 Fits a much wider class of models
3.2 margins is fast, but hard to use (grumble, grumble)
4. suest and gsem produce identical results

Comparing groups: outcomes and effects

Group differences can be examined two ways

1. Differences in probabilities

$$
H_{0}: \pi_{W}\left(\mathbf{x}=\mathbf{x}^{*}\right)=\pi_{N}\left(\mathbf{x}=\mathbf{x}^{*}\right)
$$

Is the probability of diabetes the same for white and non-white respondents who have the same characteristics?
2. Differences in marginal effects

$$
H_{0}: \frac{\Delta \pi_{W}}{\Delta x_{k}}=\frac{\Delta \pi_{N}}{\Delta x_{k}}
$$

Is the effect of x_{k} the same for whites and non-whites?
3. These dimensions of difference are shown in the next graph

Comparing groups: model estimation

1. Factor syntax allows coefficients to differ by white
logit diabetes ibn.white ///
ibn. white\#(i.female i.hsdegree c.age\#\#c.age c.bmi), nocon
2. This is equivalent to simultaneously estimating
logit diabetes i.female i.hsdegree c.age\#\#c.age c.bmi if white==1 logit diabetes i.female i.hsdegree c.age\#\#c.age c.bmi if white==0
3. Resulting in these estimates

Variable	Whites	NonWhites	
female			
Women	0.713	1.024	<== odds ratios
	0.000	0.755	<== p-values
hsdegree			
HS degree	0.706	0.743	
	0.000	0.000	
age	1.278	1.369	
	0.000	0.000	
: :	: : : :	: : : :	

Comparing groups

Linear regression

1. Coefficients differ by group such as $\beta_{\text {female }}^{W}$ and $\beta_{\text {female }}^{N}$
2. Chow tests are used to test $H_{0}: \beta_{\text {female }}^{N}=\beta_{\text {female }}^{W}$

Logit and probit

1. Coefficients differ by group such as $\beta_{\text {female }}^{W}$ and $\beta_{\text {female }}^{N}$
2. The estimates combines
2.1 The effect of x_{k} which can differ by group
2.2 The variance of the error which can differ by group
3. Regression coefficients are identified to a scale factor, so standard tests of $H_{0}: \beta_{k}^{N}=\beta_{k}^{W}$ are invalid (Allison, 1999)
4. Probabilities and marginal effects are identified (Long, 2009)

Comparing groups: outcomes and effects
Hypothetical data

Group differences in probabilities by age

1. Compute DC (white) at different ages
. mtable, dydx(white) at(age=(55(10)85)) atmeans stats (est p) Expression: $\operatorname{Pr}($ diabetes), predict()

	age	d $\operatorname{Pr}(\mathrm{y})$	p		
1	55	-0.078	0.000	<== DCR(wh	\| age=
2	65	-0.124	0.000	<== DCR(wh	age=
3	75	-0.129	0.000	<== DCR(wh	\| age=
4	85	-0.092	0.000	<= DCR(wh	age=
Specified values of covariates					
		$\begin{gathered} 1 . \\ \text { white } \end{gathered}$	${ }^{1 .}$	hsdegree	bmi
Current	. 228	. 772	. 568	. 762	27.9

2. Example of interpretation

For average respondents who are 55, the probability of diabetes is significantly larger for non-whites than whites ($p<.01$).
3. Graphically we can show effects at multiple ages

Group differences in probabilities by age

Note: these plots can be computed with mgen or marginsplot

Group differences in effects: summary

Comparing ADCs

1. Group differences in ADCs are determined by two things
1.1 Group differences in the probability curves
1.2 Group differences in distribution of variables

Comparing DCRs

1. Group differences in DCRs are determined by two things
1.1 Group differences in the probability curves
1.2 The specific location where they are evaluated
2. They do not depend on group differences in the distribution of variables

Which to use?

1. The answer depends on what you want to know?

Group differences in effects

Hypothetical data

1. ADC reflects coefficients and the distribution of predictors
2. DCR is the effect at specific values

Group differences in ADC(bmi +5)

1. To compute $\mathrm{ADC}(\mathrm{bmi}+5)$ by race
. mtable, over(white) at (bmi $=$ gen $(b m i))$ at $(b m i=\operatorname{gen}(b m i+5))$ post Expression: $\operatorname{Pr}($ diabetes), predict()

The average effects of BMI are not significantly different for whites and non-whites ($p=.83$).

Group differences in $\operatorname{DCR}(\mathrm{age}+10)$

1. $\mathrm{ADC}($ age $)$ might not be useful due to nonlinearity
2. We compare $\operatorname{DCR}(a g e+10)$ at different ages
2.1 Other variables are held at sample means
2.2 Group specific means could be used (Long and Freese, 2014)
3. For example, $\operatorname{DCR}($ age +10$)$ at 55
mtable, atmeans post ///
at(age=55 white=0) at(age=55 white=1) ///
at (age=65 white=0) at (age=65 white=1)
mlincom 3-1, rowname(DC nonwhite) stats (est p) clear
mlincom 4-2, rowname(DC white) stats(est p) add mlincom (4-2) - (3-1), rowname(Dif at 55) stats(est p) add
4. And so on, with the following results

Group differences in DCR(age +10)

5. DCRs show group differences in effect of age at different ages

	lincom	pvalue		
55: DC non	0.110	0.000		------ Non-white -- White
DC white	0.064	0.000	-	
Difference	-0.046	0.001		-
70: DC non	0.001	0.940		-
DC white	0.018	0.001		-
Difference	0.017	0.180		\square
85: DC non	-0.109	0.000	$\because \text { 甲 }$	
DC white	-0.049	0.000		
Difference	0.060	0.003		
				$\begin{array}{lllllll}60 & 65 & 70 & 75 & 80 & 85 & 90 \\ \text { Age } & & & & & & \end{array}$

6. The differences in DCRs do not depend on group differences in the distribution of age or other variables

DCM for continuous $\mathrm{x}_{k}: \operatorname{DCM}(\mathrm{bmi}+\mathrm{sd})$
Discrete change at the mean

1. Let bmi increase from mean(bmi) to mean(bmi) $+\mathrm{sd}(\mathrm{bmi})$
```
. qui sum bmi
. local mn =r(mean)
. local mnplus =r(mean) +r(sd)
```

2. Option atmeans holds other variables at their means
. margins, atmeans at(bmi $\left.={ }^{`} \mathrm{mn}^{-}\right)$at(bmi $={ }^{`}$ mnplus $\left.{ }^{-}\right)$post
Expression : Pr(diabetes), predict()
1._at : bmi $=27.89787$
3. white $\quad=\quad .2284239$ (mean) 1.white $=\quad .7715761$ (mean)
age $=69.29276$ (mean)
0.female $=.4315226$ (mean)
1.female $=.5684774$ (mean)
0.hsdegree $=.2375086$ (mean)
1.hsdegree $=.7624914$ (mean)
<continued>

DCM for continuous $x_{k}: \operatorname{DCM}(\mathrm{bmi}+\mathrm{sd})$

2._at	bmi 0. white 1.white age o.female 1.female 0 . hsdegree 1.hsdegree		$\begin{array}{r} 33.6687 \\ .2284239 \\ .7715761 \\ 69.29276 \\ .4315226 \\ .5684774 \\ .2375086 \\ .7624914 \end{array}$	(mean) (mean) (mean) (mean) (mean) (mean) (mean)		
	Margin	Delta-metho Std. Err.	z	P> \mid z \mid	[95\% Conf.	Interval]
-at ${ }_{1}$. 2097641	. 0045531	46.07	0.000	. 2008401	. 2186881
2	. 3202789	. 0066246	48.35	0.000	. 307295	. 3332628

3. For complex models the output gets very long, so mtable was written.

Tool: mtable wrapper for margins

1. margins output is complete, not compact
2. mtable executes margins and simplifies the output (and more)
2.1 To see the margins commands being used, add option commands
2.2 To see margins and mtable output, add option details

DCM for continuous x_{k} : $\operatorname{DCM}(\mathrm{bmi}+\mathrm{sd})$
2. mtable obtains identical results as margins
. mtable, atmeans at (bmi $\left.={ }^{-} \mathrm{mn}^{-}\right)$at $\left(\mathrm{bmi}={ }^{\prime} \mathrm{mnplus}{ }^{\circ}\right)$ post
Expression: $\operatorname{Pr}($ diabetes $)$, predict()

	bmi	$\operatorname{Pr}(\mathrm{y})$
1	27.9	0.210
2	33.7	0.320

Specified values of covariates

	1. white	age	1. female	1. hsdegree
Current	.772	69.3	.568	.762

3. Computing $\mathrm{DCM}(\mathrm{bmi}+\mathrm{sd})$
. mlincom 2-1

	lincom	pvalue	11	ul
1	0.111	0.000	0.102	0.119

For someone who is average, increasing BMI by one standard deviation increases the probability of diabetes by 111 ($p<.001$).

Comparing DCRs

1. Is the effect of age significantly different at different ages?

Comparing $\operatorname{DCR}($ age $)$ at different ages

2. Compute probabilities at four ages with other variables at means
. mtable, at (age $=(60(10) 90))$ post atmeans
Expression: Pr(diabetes), predict()

	age	$\operatorname{Pr}(\mathrm{y})$
1	60	0.150
2	70	0.213
3	80	0.227
4	90	0.183

Specified values of covariates

3. DCRs at different ages
. mlincom 2-1, clear rowname(DCR60)
. mlincom 3-2, add rowname(DCR70)
. mlincom $4-3$, add rowname(DCR80)

Comparing $\operatorname{DCR}($ age $)$ at different ages
4. Test differences in DCRs
. mlincom (2-1) - (3-2), add rowname(DCR60 - DCR70)
. mlincom (2-1) - (4-3), add rowname(DCR60 - DCR80)
. mlincom (3-2) - (4-3), add rowname(DCR70 - DCR80)
5. Summarizing
. mlincom, twidth(14)

	lincom	pvalue	ll	ul
DCR60	0.063	0.000	0.054	0.073
DCR70	0.014	0.004	0.004	0.023
DCR80	-0.043	0.000	-0.061	-0.026
DCR60 - DCR70	0.049	0.000	0.037	0.062
DCR60 - DCR80	0.107	0.000	0.083	0.130
DCR70 - DCR80	0.057	0.000	0.046	0.069

6. Interpretation

The effects of a ten-year increase in age are significantly different at ages 60, 70, and $80(p<.001)$.

The end

No more examples!

