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Abstract

Methods for group comparisons using predicted probabilities and marginal effects

are developed for the binary regression model. Unlike tests that compare regression

coefficients across groups, these methods are unaffected by the identification of the

coefficients and are expressed in the natural metric of the outcome probability. While

we focus on the logit model with two groups, our methods can used with most regression

models with any number of groups.
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Comparing groups in binary regression models using predictions

1 Introduction

Studying how groups differ is fundamental to research in many areas where regression mod-

els are used to answer two types of questions. First, do groups differ in the level of the

outcome adjusting for differences in observed characteristics? For example, do white and

nonwhite respondents with the same characteristics have different probabilities of reporting

good health? Second, does the effect of a regressor on the outcome differ across groups? For

example, does obesity have the same effect on being diagnosed with diabetes for white and

nonwhite respondents?

To answer these questions, regressions are run for each groups where the coefficients are

allowed to differ by group. In linear regression, the standard approach is to use Chow tests

(1960) of the hypothesis that coefficients are equal across groups. For example, suppose that

we are comparing the effect of xk on y for white and nonwhite respondents, where βW
xk

and

βN
xk

are the coefficients of interest. If H0: β
W
xk

=βN
xk

is rejected, we conclude that the effect of

xk differs across groups. While this approach can be used with many types of models (Liao,

2002), Allison (1999) shows that since the regression coefficients in the binary regression

models are only identified to a scale factor, standard tests of the equality of coefficients

are invalid. He develops valid tests that use auxiliary assumptions that the effects of some

regressors are equal across groups. While these tests address the identification problem, there

is a more fundamental issue. In the binary regression model, regression coefficients are not

expressed in the natural metric of the probability of the outcome. Substantively, it is more

useful to understand whether the marginal effects of xk on the probability of the outcome are

the same for both groups than whether the regression coefficients for xk are equal. Critically,

in the binary regression model, the equality of regression coefficients across groups does not

imply that the marginal effects on the probability are equal. In this paper, we develop

methods for comparing groups using tests of the equality of probabilities conditional on the

regressors and tests of the marginal effects of on the probability. Since probabilities are

identified, additional identifying assumptions are not required. While we consider models

with two groups and a binary outcome in order to simplify our presentation, the results can

be generalized to more than two groups and be used with many types of regression models.

The advantages of tests based on predicted probabilities are not without costs. Tests

comparing regression coefficients are simple to apply since there is only a single hypothesis

of interest: are the coefficients equal across groups. The results of these tests do not depend

on where you are looking in the data. For example, when examining race differences in
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the regression coefficient for obesity on the onset of diabetes, the conclusion is either that

the coefficients are the same or they are not. With methods based on probabilities, the

conclusions depend on the specific values of the regressors where the comparison are made.

For example, there might be no difference in the probability of diabetes for nonwhites and

whites who have low income and a high school education, but the probabilities might differ

for those with high income and a college degree. Similarly, the size of the marginal effect of

a regressor on the outcome probability depends on the value of the regressor where the effect

is computed as well as the values of all other variables in the model (Long and Freese, 2014).

For example, the effect of obesity on diabetes for a 70-year-old, married man could be the

same for both groups (i.e., the null hypothesis is not rejected), while the effect of obesity for

a 50-year-old, single women could be significantly larger for if the woman was white than

if she was nonwhite. While the conclusions about groups differences in the effect of obesity

are more complex, they have the potential to be more realistic and informative.

[[TODO: Add brief review of related literature.]]

The next section explains how the identification of regression coefficients affects group

comparisons in the binary regression model (BRM). Section 3 develops methods for com-

paring conditional predictions and marginal effects, including the extension of the Blinder-

Oaxaca decomposition to the BRM. Each of these methods is illustrated in section 4 where

we compare white and nonwhite respondents in models predicting self-rated health and being

diagnosed with diabetes.

2 Identification in the binary regression model

The identification of regression coefficients is critical for understanding group comparisons

in the binary regression model. To explain this, we begin by reviewing how coefficients are

compared across groups in linear regression (Chow 1960). To simplify the presentation, we

use two groups with two regressors, but the results can be easily generalized G groups and

K regressors. Let y be a continuous, observed dependent variable regressed on x1 and x2 for

groups defined by g = 0 and g = 1. Separate regressions are specified for each group which

allows the regression coefficients and error variances to differ by group:

Group 0: y = β0
0 + β0

1x1 + β0
2x2 + ε0 where Var(ε0) = σ2

0

Group 1: y = β1
0 + β1

1x1 + β1
2x2 + ε1 where Var(ε1) = σ2

1

3



To assess whether the effect of xk is the same for both groups, we test the hypothesis

Hβk
: β0

k = β1
k using a Wald or likelihood ratio test. If Hβk

is rejected, we conclude that the

effect of xk differs by group.

If y is binary, the corresponding regression equations are:

Group 0: Pr0(y=1 | x1, x2) = F (β0
0 + β0

1x1 + β0
2x2)

Group 1: Pr1(y=1 | x1, x2) = F (β1
0 + β1

1x1 + β1
2x2)

where F is the normal cumulative density function for the probit model and the logistic

cumulative density function for the logit model. While it seems that we could assess whether

the effect of xk is the same for both groups by testing Hβk
: β0

k =β1
k , such tests are invalid since

regression coefficients in the binary regression model are only identified up to a scale factor

(Amemiya 1981, 1489; Maddala 1983, 23). Following Allison (1999), this can be shown by

deriving the model using a latent dependent variable y∗ that is related to x1 and x2 through

the equation:

y∗ = β0 + β1x1 + β2x2 + ε (1)

where the error ε has mean 0 and variance σ2. When the latent y∗ is greater than 0, y is

observed as 1; otherwise, y is 0. For example, if a person’s propensity y∗ to have diabetes

exceeds 0, she is diagnosed with diabetes and y =1. If her propensity is at or below 0, she

is not diagnosed with diabetes and y = 0.

The probability that y=1 conditional on x1 and x2 is the proportion of the distribution

of y∗ that is greater than 0:

Pr (y=1 | x1, x2) = Pr (y∗ > 0 | x1, x2)

Substituting the right-hand-side of equation 1 for y∗ and rearranging terms, the probability

can be expressed in terms of the error:

Pr (y=1 | x1, x2) = Pr(ε ≤ β0 + β1x1 + β2x2 | x1, x2) (2)

For a model with a single regressor, figure 1 shows that the probability at specific values

of x is the shaded area of the error distribution above y∗ = 0. To compute this area we

must know the mean, variance, and mathematical form of the error distribution. The error

is assumed to be logistic for the logit model and normal for the probit model. As with the

linear regression model, the mean is assumed to be 0. The variance, however, leads to an

identification problem for the βs.
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— Figures 1 and 2 here —

In linear regression the residuals yi − ŷi are used to estimate the variance of the errors.

This cannot be done with logit or probit since y∗
i is unobserved. To understand the implica-

tions of this, consider what happens when we multiply equation 1 by an arbitrary, unknown

constant δ:

δy∗ = (δβ0) + (δβ1) x1 + (δβ2) x2 + δε (3)

Using the notation γk ≡ δβk, ỹ∗ ≡ δy∗, and ε̃ ≡ δε, equation 3 can be written as:

ỹ∗ = γ0 + γ1x1 + γ2x2 + ε̃ (4)

and equation 2 as:

Pr(y=1 | x1, x2) = Pr(ε̃ ≤ γ0 + γ1x1 + γ2x2 | x1, x2) (5)

Since all that we have done is multiply both sides of the inequality by δ and changed notation,

the probabilities in equation 5 are exactly the same as those in equation 2. However, since δ

is unknown, there is no way to distinguish between the true β coefficients that generate y∗

and the rescaled γ coefficients. The effects of the change in scaling are shown in figure 2 that

was created by multiplying the equation for y∗ in figure 1 by δ=2. The intercept, slope, and

standard deviation of the error are δ times larger, while the probabilities represented by the

shaded proportion of the error distribution are the same in both figures.

Since the β coefficients are only identified to a scale factor, they cannot be estimated

without assuming a value for the variance of the error. For probit, the usual assumption

is that σ2
Assumed = 1, which implies that δ = σAssumed/σ = 1/σ in equation 3. For logit,

σ2
Assumed =π2/3, which implies that δ=π/

√
3σ. Multiplying y∗ by δ rescales the β coefficients

while Pr(y = 1 | x1, x2) is unaffected. Since σ is unknown, we cannot estimate the βs in

equation 1. We can estimate the re-scaled γs in equation 4 since the value of the variance is

assumed. The effects of the assumed variance are seen when you compare results from logit

and probit. The estimated coefficients for logit are approximately π/
√

3 times larger than

those from probit, while the predicted probabilities are nearly identical. The probabilities

are not exactly the same and the coefficients are not exactly π/
√

3 larger in logit since the

shapes of the logistic and normal distributions are slightly different (see Long 1997, 47-50).

The scalar identification of the regression coefficients led Allison (1999) to conclude:

“Unless we are willing to assume that the [error] variance is constant across groups, the

standard tests for cross-group differences in the [γ] coefficients tell us nothing about differ-

ences in the [β] coefficients.” To understand why identification affects tests of the equality
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of coefficients, consider the equations for y∗ for two groups:

Group 0: y∗ = β0
0 + β0

1x1 + β0
2x2 + ε0 where Var (ε0)=σ2

0 (6)

Group 1: y∗ = β1
0 + β1

1x1 + β1
2x2 + ε1 where Var (ε1)=σ2

1 (7)

Since we cannot estimate the error variances, we assume σ2
g = 1 for probit or σ2

g = π2/3

for logit. This is done by multiplying equation 6 by δ1 = σAssumed/σ1 and equation 7 by

δ0 =σAssumed/σ0:

Group 0: δ0y
∗ = (δ0β

0
0) + (δ0β

0
1) x1 + (δ0β

0
2) x2 + δ0ε0 where Var (δ0ε0)=σ2

Group 1: δ1y
∗ = (δ1β

1
0) + (δ1β

1
1) x1 + (δ1β

1
2) x2 + δ1ε1 where Var (δ1ε1)=σ2

Since δ0 and δ1 cannot be estimated, we rewrite the equations in terms of the γs which can

be estimated:

Group 0: ỹ∗
0 = γ0

0 + γ0
1x1 + γ0

2x2 + ε̃0 where Var (ε̃)=σ2 (8)

Group 1: ỹ∗
1 = γ1

0 + γ1
1x1 + γ1

2x2 + ε̃1 where Var (ε̃)=σ2 (9)

After estimation, we can test Hγk
: γ0

k = γ1
k which is equivalent to testing Hγk

: δ0β0
k = δ1β1

k .

Testing Hβk
: β0

k =β1
k requires information about the relative size of the error variances in the

two groups. The test proposed by Allison (1999) obtains this information by assuming that

β0
j =β1

j for at least one regressor. For example, if we assume that β0
j =β1

j , then

γ0
j

γ1
j

=
δ0β

0
j

δ1β1
j

=
(σAssumed/σ0) β0

j

(σAssumed/σ1) β1
j

=
σ1

σ0

provides information on the relative magnitudes of the the σgs. As illustrated in section

4.4.2, the results of the test for Hβk
: β0

k = β1
k depend on which βjs are assumed to be equal

across groups.

Tests of the equality of probabilities or of marginal effects on the probability do not

require additional assumptions since identical predictions are obtained using the βs from

equations 6 and 7:

Group 0: Pr0(y=1 | x1, x2) = Pr0(ε ≤ β0
0 + β0

1x1 + β0
2x2 | x1, x2)

Group 1: Pr1(y=1 | x1, x2) = Pr1(ε ≤ β1
0 + β1

1x1 + β1
2x2 | x1, x2)
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or the γs from equations 8 and 9:

Group 0: Pr0(y=1 | x1, x2) = Pr0(ε̃ ≤ γ0
0 + γ0

1x1 + γ0
2x2 | x1, x2)

Group 1: Pr1(y=1 | x1, x2) = Pr1(ε̃ ≤ γ1
0 + γ1

1x1 + γ1
2x2 | x1, x2)

The advantage of comparing groups marginal effects using probabilities is not simply avoiding

the identification assumptions required to test regression coefficients. Conclusions about the

equality of regression coefficients in the BRM are generally less useful than conclusions in the

natural metric of probabilities. For example, knowing whether the effect of obesity on the

probability of diabetes is the same for for whites and nonwhites is more useful than knowing

if the effects on the propensity or log odds of diabetes are the same.

3 Using probabilities to compare groups

Differences in the probability of the outcome and differences in the marginal effects of re-

gressors on the probability emphasize different ways in which groups can differ. Probabilities

show how outcomes differ under specific conditions. For example, is diabetes more prevalent

for obese men who are white than those with similar characteristics who are nonwhite? This

is illustrated by the vertical arrow in figure 3 which compares the probability of diabetes for

whites and nonwhites who are 75 years old. Marginal effects examine whether a regressor has

the same effect on the outcome for both groups. For example, does obesity have the same

health cost for whites as it does for nonwhites? This is illustrated by the arrows showing the

change in probability as age increases from 55 to 60 for each group. While marginal effects

and probabilities are related, you cannot draw conclusions about differences in the probabil-

ities from differences in marginal effects. Being obese could lead to a larger increase in the

probability of diabetes for whites than nonwhites even though the probability of diabetes is

greater for nonwhites than whites.

— Figure 3 here —

The next three sections present methods for testing group differences in probabilities

and marginal effects. The following notation is used. The vector x contains K regressors

with the regression coefficients for group g in the vector γg. We use γs rather than βs since

predictions are made from the parameters that are estimated after identification assumptions

have been made. We replace Prg(y=1 |x) with the more compact notation π(x, g). Fitting

the equations for both groups simultaneously makes post-estimation computations simpler

and is necessary for obtaining the correct standard errors when using a complex sampling
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design. [[groups-covbetas-2016-09-26.do]]. To do this, we specify a single equation using

interactions:

π (x, g) = F
([

g × x′γ1
]
+
[
(1−g) × x′γ0

])
(10)

Then π(x, g=1)=F (x′γ1 + 0) and π(x, g=0)=F (0 + x′γ0). While the same regressors are

typically included for both groups, a regressor can be eliminated for one group by constraining

γg
k = 0. Standard errors for predicted probabilities and marginal effects are computed with

the delta method (Agresti 2013, 72-77; Bishop et al. 1975, 486-497).

3.1 Group comparisons of probabilities

The most basic way to compare groups is to estimate probabilities at the same values of the

regressors and test if the predictions are equal. Let x∗ contains specific values of the xs.

The difference between groups 0 and 1 in the probability at x = x∗ is the discrete change

for group:
Δπ(x = x∗)

Δ g
= π(x = x∗, g=1) − π(x = x∗, g=0) (11)

To test H0: π(x=x∗, g=0) = π(x=x∗, g=1), we can test if the discrete change for group in

equation 11 is 0.

Group differences in probabilities can be used in a variety of ways. Individuals with

specific characteristics can be compared. For example, do forty-year-old white men have

the same probability of diabetes as forty-year-old nonwhite men? Comparisons at multiple

values of one or more regressors can by presented in tables. For example, race differences in

diabetes could be shown for men and women at different levels of education. For continuous

regressors, plots can be used. For example, do nonwhites and whites differ in the occurrence

of diabetes as they age? These methods are illustrated in sections 4.2 and 4.3.

3.2 Group comparisons of marginal effects

The marginal effect of xk is the change in the probability of the outcome for a change in

xk, holding other variables at specific values. There are two varieties of marginal effects.

A marginal change, sometimes called a partial change, is the change in the probability for

an infinitely small change in xk. A discrete change or first difference is the change in the

probability for a discrete or finite change in xk. While we focus on discrete changes, since

we find them to be more useful substantively, our methods can also be used with marginal

changes. The critical idea is that one variable is changing while other variables are not.

For group g, the discrete change with respect to xk is the change in the probability as
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xk changes from start to end while holding other variables at specific values:

Δπ(x=x∗, g)

Δxk(start → end )
= π(xk =end,x=x∗, g) − π(xk =start,x=x∗, g) (12)

Vector x∗ contains values for all regressors except xk whose value is determined by start and

end. If the regressors includes polynomials or interactions, these variables change in tandem.

For example, if xagesq =xage×xage, when xage changes from 10 to 11, then xagesq changes from

100 to 121.

To compare effects across groups, the discrete change for xk is estimated for each group

and we test if the effects are equal:

H0:
Δπ(x=x∗, g=1)

Δxk(start → end )
=

Δπ(x=x∗, g=0)

Δxk(start → end )
(13)

Equivalently, we can estimate a second difference, which is the change with respect to group

in the discrete change for xk:

Δ2π(x=x∗)

Δxk(start → end ) Δ g
=

Δπ(x=x∗, g=1)

Δxk(start → end )
−

Δπ(x=x∗, g=0)

Δxk(start → end )
(14)

The hypothesis that the effect of xk is the same for both groups is:

H0:
Δ2π(x=x∗)

Δxk(start → end ) Δ g
= 0 (15)

Since the value of the discrete change of xk depends on the values of the regressors

where it is estimated, a critical decision is how to summarize the effect (Long and Freese,

2006, 244-246). Two approaches are commonly used. First, the discrete change is estimated

at representative values of the xs. Such effects are called discrete change at representative

values (DCR). When means are used as the representative values, the effect is called the

discrete change at the mean (DCM). Second, the average discrete change (ADC) is the

average of the discrete changes computed conditionally on the observed values of the xs for

each observation. DCRs and ADCs highlight different ways in which groups can differ as

discussed in section 3.5.

3.3 Discrete change at representative values (DCR)

A DCR is computed at values of the regressors that represent some aspect of the sample

that is of substantive interest. For group g the discrete change for xk evaluated at x = x∗

9



equals:
Δπ(x=x∗, g)

Δxk(start → end )
= π(xk =end,x=x∗, g) − π(xk =start,x=x∗, g)

For a continuous variable we can compute the effect of changing xk from any starting value

to any ending value. For example, we could increase xk from its mean to the mean plus

one standard deviation holding other variables at their means. This is referred to as the

discrete change at the mean (DCM). To compare effects across groups we estimate the

second difference using equation 14:

Δ2π(x=x)

Δxk(xk → xk+sk) Δ g
=

Δπ(x=x, g=1)

Δxk(xk → xk+sk)
−

Δπ(x=x, g=0)

Δxk(xk → xk+sk)

When xk is binary, the second difference when x=x∗ is

Δ2π(x=x∗)

Δxk(0 → 1) Δ g
=

Δπ(x=x∗, g=1)

Δxk(0 → 1)
−

Δπ(x=x∗, g=0)

Δxk(0 → 1)

To test if the effects are the same in both groups, we can test if the second difference is

0. DCRs let us compare the effect of a variable at the same values of the regressors for

both groups. Group differences in DCRs do not reflect differences in the distribution of the

regressors since the same values are used for both groups. This important point is discussed

in detail after we consider the ADC.

3.4 Average discrete change (ADC)

The average discrete change for xk is the average of the discrete changes for xk computed

for each observation. Let π(xik,xi, g) be the probability at the observed values for the ith

observation in group g, noting in particular the value of xk. For observation i in group g,

the discrete change for xk is

Δπ(x=xi, g)

Δxk(starti → endi)
= π(xk =endi,x=xik, g) − π(xk =starti,x=xi, g)

The start and end values can be defined in a variety of ways. For a continuous variable, we

might can compute the effect when xk increases by δ from its observed value xik:

Δπ(x=xi, g)

Δxk(xik → xik+δ)
= π(xk =xik+δ,x=xi, g) − π(xk =xik,x=xi, g)

where δ is often 1 or a standard deviation, but other values can be used. It is also possible to

change xk between the same two values for every observations, such as increasing age from
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60 to 65 or changing a binary variable from 0 to 1. For group g:

Δπ(x = xi, g)

Δxk(start → end)
= π(xk =end,x=xi, g) − π(xk =start,x=xi, g)

When xk is binary, the simpler notation Δπ(x = xi, g)/Δxk is used. The ADC for xk in

group g is the average of the discrete changes for each observation in that group g:

ADCg
xk

=
1

Ng

∑

i∈g

Δπ(x=xi, g)

Δxk(starti → endi)

Equations 13-15 are used to test if group differences in the ADC are significant.

3.5 Should you compare ADCs or DCRs?

— Figure 4 here —

The choice of whether to compare ADCs or DCRs depends on the question being asked.

To illustrate what each type of effect tells you, figure 4 plots the probability of diabetes

by age for whites and nonwhites from a model with age and age-squared. The circles are

observations for the younger sample of nonwhites; the squares are observations for older

sample of whites. For nonwhites, ADCN
age = .04 which is the average change in the probability

for each observations as age is increases by 5 from its observed values. For whites, ADCW
age is

close to 0 since the positive effects of age for those younger than 72 are offset by the negative

effects for those older than 72. The differences in the ADCs is due primarily to differences

in the distribution of ages and masks the similar shapes of the probability curves. DCRs

at specific ages reflect the similar shapes of the curves. At the mean age for nonwhites,

DCRW
age = .027 and DCRN

age = .045; at the overall mean, DCRW
age = .011 and DCRN

age = .018;

and at the mean for whites, DCRW
age = −.007 and DCRN

age = −.011. DCRs compare the

shape of the probability curves at the same values of the regressors, whiles ADCs reflect

both differences in the curves and the distribution of regressors. Indeed, two groups can

have exactly the same regression coefficients with significantly different ADCs. Neither the

ADC or the ADC is always better—they simply reflect different ways in which effects differ

across groups as shown in section 4.

3.6 Blinder-Oaxaca decompositions of probabilities

A useful way to begin analyses is to determine how much of the group difference in the

outcome can be attributed to differences in the distribution of the regressors. This is done
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with a decomposition developed by Blinder (1973) and Oaxaca (1973) for the linear regression

model that was extended to binary models by Fairlie (1999, 2005). More general methods

for any nonlinear model were proposed by Yun (2004) and Bauer et al. (2007). Here we

consider Fairlie’s decomposition.

The decomposition begins with the overall difference in the probability of the outcome

computed using equation 10:

π(x, g=1) − π(x, g=0) =
∑

if g=1

π(xi, g=1)

N1

−
∑

if g=0

π(xi, g=0)

N0

(16)

where “if g=” indicates summing over the Ng observations in group g. In many applications,

a difference in the outcome can be attributed to differences in characteristics. For example,

the poorer health of nonwhites can be explained by their having lower values of regressors that

positively affect health and higher values of those that negatively affect health. Accordingly,

if the groups had more similar characteristics, the overall difference would be reduced. It is

also possible that the overall difference is small, but would be larger or even change direction

if the groups had the same characteristics.

The decomposition is constructed by estimating probabilities in two ways. Standard

predictions are made using equation 10:

π(xg
i ; γ

g) = F (x′
iγ

g) if g

where the new notation π(xg
i ; γ

g) makes explicit that probabilities are computed using pa-

rameters from the model for group g with the xs observed for that group. The average

probabilities in equation 16 are:

π(xg; γg) =
∑

if g

π(xg
i ; γ

g)

Ng

Counterfactual predictions are made using parameters from one groups with the xs observed

for the other group. For example, using the parameters for group 1 with observed data for

group 0:

π(x0
i ; γ

1) = F (x′
iγ

1) if g=0

The average probability if group 1 with coefficients γ1 had the characteristics of those in
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group 0 is:

π(x0; γ1) =
∑

if g=0

π(x0
i ; γ

1)

N0

Similarly, π(x1; γ0) is the average probability if group 0 had the characteristics of group 1.

The average counterfactual predictions estimates what would happen if one group had the

characteristics of the other group.

The decomposition is created by adding π(x0; γ1)−π(x0; γ1) = 0 to equation 16 and

rearranging terms:

π(x1; γ1) − π(x0; γ0) =
[
π(x1; γ1) − π(x0; γ1)

]
+
[
π(x0; γ1) − π(x0; γ0)

]
(17)

The difference in the first set of brackets compares the probabilities for group 1 computed

using the observed characteristics of group 1 with the counterfactual probabilities obtained

if group 1 with coefficients γ1 had the same characteristics as group 0. It is the amount of

the overall group difference accounted for by group differences in observed characteristics.

The difference in the second set of brackets is the portion of the overall difference that

cannot be attributed to differences in characteristics, reflecting both differences in regression

parameters and unobserved characteristics (see Jann 2008 for an excellent discussion). An

equally valid decompositions uses predictions for group 0 using characteristics for group 1:

π(x1; γ1) − π(x0; γ0) =
[
π(x1; γ0) − π(x0; γ0)

]
+
[
π(x1; γ1) − π(x1; γ0)

]
(18)

When the decomposition is used to assess discrimination, equation 17 is used when dis-

crimination is assumed to affect group 1 and equation 18 when discrimination affects group

0. For our purposes, both forms of the decomposition are used to assess how much of the

difference in outcomes can be explained by group differences in the regressors. The delta

method or bootstrapping can be used to compute standard errors for each difference in the

decomposition. Section 4.1 contains an example of the decomposition.

4 Example: Health and Retirement Study

Our example uses data from the Health and Retirement Study (HRS), a nationally-representative

sample of older adults in the US (Health and Retirement Study, 2006).1 Approximately

1The Health and Retirement Study is sponsored by the National Institute on Aging (grant number NIA
U01AG009740) and is conducted by the University of Michigan. Our analysis file can be downloaded from
[[TODO details to be added]] after registering for use of the HRS.

13



22,000 individuals and their spouses were interviewed about every other year since 1992 us-

ing a multistage, clustered probability sampling design that represents non-institutionalized

individuals age 50 or over in the 48 contiguous states, with an over-sampling of black and

hispanic Americans. Data from the 2006 wave of the HRS were extracted from the RAND

HRS data files (RAND, 2014). From the 16,955 respondents who had non-zero sampling

weights, we excluded 10 respondents who were too young to be in the sample, 380 who did

not identify as white, black, or hispanic, 7 with incomes greater than two million, 246 who

did not report body mass, and 86 with missing data for other variables in our analyses.

The resulting sample includes 16,226 observations. [[groups-hrs-supportV5.do #6]] Analyses

were conducted with Stata 14.2 using adjustments for complex sampling (StataCorp, 2015a).

Two-tailed tests are used in all analyses.

— Table 1 here —

Table 1 contains descriptive statistics for the variables in our models. Our group variable

is the race of the respondent, comparing whites to nonwhites who include blacks and those

of Hispanic ethnicity. Other racial and ethnic groups were excluded due to inadequate

representation in the HRS sample. Two outcome variables are used. Self-rated health

recoded responses to “Would you say your health is excellent, very good, good, fair, or poor?”

to equal 1 if health was good, very good, or excellent, else 0. Diabetes is a respondent’s self-

report of whether diabetes was diagnosed by a physician. Independent variables include

age, gender, education, income, marital status, obesity, and physical activity. Education is

measured as having a high school degree or higher compared to not completing high school.

Income is in thousands of dollars and an inverse hyperbolic sine transformation is used to

reduce the skew (Burbidge et al., 1988). Physical activity is measured as exercising more

than three times a month compared to exercising less often. Following guidelines by the US

Centers for Disease Control and Prevention [[TODO add citation]], obesity is defined as

having a body mass index of 30 or more.

— Tables 2 and 3 here —

Tables 2 and 3 contain estimates of the regression coefficients from two models. The

model for good health is simpler to interpret since it does not include squared terms or inter-

actions among regressors. The model for diabetes includes age-squared and an interaction

between age and level of activity which makes the interpretation more challenging. We begin

interpretation with a Blinder-Oaxaca decomposition to determine how much of the overall

group differences in health outcomes can be explained by differences in the regressors. Next,

graphs are used to explore group differences in the outcomes by age. The discrete change
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with respect to race is used to test if differences in the outcomes are statistically significant.

Next, the discrete change with respect to age is used to test if the effects of age differs by

race. A more complex example of using graphs looks at the effects of age on diabetes for

those with different levels of activity. Tables are then used to examine race differences in

the effects of gender and obesity. In these tables, discrete changes for gender and obesity are

compared across race using second differences. Finally, race differences in scalar measures

of the effect of a regressor are considered using discrete changes and regression coefficients.

4.1 Decomposing group differences

The probability of good health is .205 greater for whites than nonwhites, while the proba-

bility of diabetes is .120 greater for nonwhites than whites. Table 1 shows significant race

differences in the regressors, where in general nonwhites have higher levels of regressors asso-

ciated with poorer health or lower levels of those associated with better health. For example,

nonwhites are more likely to be obese and less likely to be active, both of which increase the

probability of diabetes. The Blinder-Oaxaca decomposition (section 3.6) determines how

much of the overall differences in health outcomes can be attributed to these differences in

characteristics.

— Table 4 here —

Table 4 decomposes the overall differences in outcomes by computing race differences

under two assumptions: (1) nonwhite respondents have the same characteristics as white

respondents; and (2) whites have the same characteristics as nonwhites. If nonwhites had

the characteristics of whites, the overall difference of .205 in the probability of good health

would be reduced by 41 percent to .120, with a reduction of 33 percent to .137 if we assume

that whites had the characteristics of nonwhites. For diabetes an even larger proportion of

the .120 advantage for whites can be explained by differences in characteristics, reducing the

overall difference by 67 percent if nonwhites had the characteristics of whites and by 71 if

whites had the characteristics of nonwhites, with a difference of less that .04 that cannot be

explained by differences in characteristics. Group differences in characteristics that affect

health account for a substantial portion of the overall differences in health outcomes. Still,

non-trivial and significant differences remain.

The Blinder-Oaxaca decomposition uses averages in probabilities over the sample rather

than differences in probabilities at specific values of the regressors. Accordingly, the decom-

position cannot answer questions such as whether the incidence of diabetes differs by race

for married women who are 85 with median income. Nor, can a decomposition examine

15



whether the effect of a variable, say the effect of obesity on diabetes, is the same for both

groups. These dimensions of groups differences are examined in the next three sections. 2

4.2 Comparing groups using graphs

Graphs show both group differences in predictions across values of a regressor and differences

in how the effects of a regressor differ across groups. To illustrate this approach, we begin

with a simple example showing how whites and nonwhites differ in reporting good health

at different ages. We extend this approach to a more complicated model for diabetes that

includes age and age-squared along with interactions between age and a respondent’s level

of physical activity.

We know from table 1 that on average whites report better health than nonwhites and

now want to consider whether race disparities in health change with age. For each group

probabilities are computed at ages from 50 to 90 with other variables held at their means.

Figure 5 shows that while whites have a higher probability of reporting good health at all

ages, differences steadily decrease from .10 at age 50 to less than .04 at 90. [[groups-goodhlth-

paperV8.do #3.1 ]] The discrete change for race conditional on age is used to test if these

differences are significant (see equation 11):

Δπ(age=p,x=x)

Δ white

Figure 6 plots these race differences in the probability of good health along with the 95% con-

fidence interval. When the confidence interval crosses 0, as it does around 85, the difference

between whites and nonwhites in the probability of good health is not significant.

— Figures 5 and 6 here —

Since the probabilities curves in figure 5 are nearly linear, the effects of age can be

summarized by computing the discrete change in the probability of good health as age

increase from 50 to 90 for each group g (see equation 12):

Δπ(white=g,x=x)

Δage(50 → 90)
= π(age=90,x=x, white=g) − π(age=50,x=x, white=g)

Group differences in the effect of age are computed as a second difference (see equation 14):

Δπ(x=x)

Δage(50 → 90) Δwhite
=

Δπ(x=x, white=1)

Δage(50 → 90)
−

Δπ(x=x, white=0)

Δage(50 → 90)

2Blinder-Oaxaca decompositions can examine how differences in a single characteristics affect differences
in the outcome (Fairlie 1999, 2005, Sinning et al. 2008).
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Using these measures, we find that as age increases from 50 to 90 the probability of good

health decreases more rapidly for whites (.13) than than nonwhites (.07), but the difference

is not significant (p=.17). [[groups-goodhlth-paperV8.do #3.2a ]]

To illustrate how graphs can be used to examine more complex differences between

groups, figure 7 plots the probability of diabetes by age, where the curves reflect the in-

clusion of age and age-squared in the model. For both groups the probability of diabetes

increases from age 50 to 75 after which the probability decreases. While whites have a

smaller probability of diabetes at all ages, the difference is smallest at 50 where it is about

.04, increases to a maximum of .12 at 75, and then decreases to .08 at 90. [[groups-diabetes-

paperV8.do #3.1 ]] This informal summary of the differences between the probability curves

is formalizing by plotting the discrete change for race by age in figure 8. Race differences in-

crease from age 50 to 75 followed by a gradual decrease. Differences in diabetes are significant

at all ages except 90 where the confidence interval includes 0.

— Figures 7 and 8 here —

The changing size of the effect of race at different ages occurs because the rate of increase

in diabetes with age is larger for nonwhites than whites from 50 to 75 at which point the

rate of decrease is more rapid for nonwhites. To test this formally, we compute the discrete

change for age for each group and test if they are equal (see equation 14). [[groups-diabetes-

paperV8.do #3.2 ]] From 50 to 60 diabetes increases by .11 for nonwhites compared to .06

for whites, a significant difference of .05 (p=.01). From 80 to 90 the probability decreased

by .05 for whites and .09 for nonwhites, a difference that is not significant (p=.27).

— Figure 9 here —

Using graphs to examine group differences over the range of a continuous regressor can

be extended to show the effects of other variables. For example, suppose that we want to

determine if the race differences in diabetes that we found in figure 7 vary by the level of

physical activity. Or, to put it another way, are the benefits of activity different for nonwhites

and whites over the life course? The first step is to graph the probability of diabetes for

whites and nonwhites by level of activity. This is done in figure 9 where open circles represent

nonwhites who are inactive with solid circles for those who are active. Similarly, inactive

and active whites are represented by open and solid squares. While the graph contains all of

the information that we need for our research question, the trends are difficult to see due to

the complexity of graph. A more effective approach is to create plots that show differences

between the probability curves. There are two ways that we can proceed that emphasize

different aspects of our research question. First, we can examine race differences in diabetes
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over age conditional on level of activity. This involves plotting the difference between the

probability curves for those who are active (solid symbols) and the curves for those who are

inactive (hollow symbols). Second, we can examine the effects of activity by plotting the

discrete change of activity by race: this is the difference between the curves for whites (solid

and open squares) and the curves for nonwhites (solid and open circles).

— Figure 10 here —

Figure 10 plots race differences in the probability of diabetes by level of activity over age:

Δπ(age=p, active=q,x=x)/Δwhite (see equation 11). Since adding confidence intervals to

the figure leads to overlapping lines that are confusing, a dashed line is used to indicate

when a race difference is not significant. The graph shows that while the benefits of being

white occur both for those who have an active lifestyle and those who do not, the strength

and timing of the benefits differ by the level of activity. For those who are not active, the

advantages for whites increase from age 50 to 70 before decreasing thereafter. Differences are

significant at all ages except 90. For those who are active, shown with solid diamonds, the

same pattern occurs, but the effects are weaker at younger ages than they are for those who

are inactive. The differences increase from age 50 to 80, becoming statistically significant at

age 57. At age 80 the differences begin to decrease and are no longer significant.

— Figure 11 here —

Figure 11 re-expresses the information from figure 9 to focus on the effects of activity

for each group. While being active benefits members of both groups, the benefits of activity

occur differently. For whites (open triangles) the protective effect of activity, is smaller (i.e.,

less negative) at younger ages and increases in magnitude until age 90. For nonwhites (solid

triangles), the effect gets stronger from age 50 to 60 before decreasing till age 90; after age

75 the effects are not significant. Tests of second differences show that race differences in

the effect of activity are significant at the .05 level at age 57 where the difference reaches

its maximum of .043, are significant at the .10 level between ages 55 and 60, and are not

significant at other ages. [[groups-diabetes-paperV8.do #3.3c]]

Finally, another way to think of the effects of race and activity is to note that the health

deficit for being nonwhite is roughly equal to the benefits of being active. This is seen in

figure 9 by comparing the line for inactive whites (hollow squares) and active nonwhites

(solid circles). The probabilities differ by -.01 at age 50 with a maximum of .05 at age 75;

none of the differences are significant. [[groups-diabetes-paperV8.do #3.4 ]]
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4.3 Comparing groups using tables

— Table 5 here —

Tables are an effective way to show how probabilities vary over the categories of a few

regressors. Suppose that we are interested in whether race differences in diabetes vary by

gender and obesity, with a focus on the adverse effects of obesity. One way to approach this

is to compute the probability of diabetes conditional on all combinations of race, gender, and

obesity, holding other variables at their means. These probabilities are presented in columns

1 through 4 of table 5, where the last row shows race differences in these probabilities (see

equation 11):
Δπ(female = p, obese = q,x=x)

Δ white

In the rest of this section, we exclude x=x from π() to simplify the notation.

The table shows that whites are less likely to be diagnosed with diabetes for all combi-

nations of obesity and gender, with the largest race differences for women who are not obese

and the smallest, non-significant difference for obese men. Second differences are used to

test whether race differences for men and women are of equal size (see equation 14):

Δπ(obese = q)

Δfemale Δwhite
=

Δπ(female = 1, obese = q)

Δ white
−

Δπ(female = 0, obese = q)

Δ white

We find that the effect of race for obese men and women differ by -0.068 which is significant

at the .02 level. For those who are not obese, the difference is smaller and not significant

(p= .13). [[groups-diabetes-paperV8.do #4.2 ]]

Next, we consider the effects of obesity on diabetes. The probabilities in the first four

columns show that being obese is associated with a higher incidence of diabetes. To formalize

these findings, we compute the discrete change for obesity conditional on gender and race

holding other variables at their means (see equation 12):

Δπ(female = p, white = r)

Δ obese

These effects, presented in columns 5 and 6, show that obesity significantly increases the

probability of diabetes by about .16 for all groups except white men where the effect is

.21. To test if the effects of obesity are equal for whites and nonwhites, we estimate second

differences (see equation 14):

Δπ(female = p)

Δ obese Δ white
=

Δπ(female = p, white = 1)

Δ obese
−

Δπ(female = p, white = 0)

Δ obese
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The results, shown in the last row of columns 5 and 6, indicate that race differences in

the effects of obesity are small and not significant for women, but larger and marginally

significant for men (p= .09). We can test whether the effect of obesity is the same for men

and women by computing the second difference with respect to gender:

Δπ(white = r)

Δ obese Δ female
=

Δπ(female = 1, white = r)

Δ obese
−

Δπ(female = 0, white = r)

Δ obese

which are shown in column 7. Obesity has a significantly larger effect for white men than

white women, but the gender differences are small and nonsignificant nonwhite respondents.

The idea of a second difference can be extended to compare any two effects, such as whether

the effect of obesity is the same for white men and nonwhite women:

Δπ(female = 0, white = 1)

Δ obese
−

Δπ(female = 0, white = 0)

Δ obese

or to test the hypothesis if effects for all four groups are equal:

H0:
Δπ(female = 0, white = 0)

Δ obese
=

Δπ(female = 0, white = 1)

Δ obese

=
Δπ(female = 1, white = 0)

Δ obese
=

Δπ(female = 1, white = 1)

Δ obese

which is rejected at the .001 level. [[groups-diabetes-paperV8.do #4.3a ]]

In table 5 the effects of obesity were computed for each combination of race and gender

holding other variables at their means. While this allows us to make comparisons where

only race and gender change, is it reasonable compute effects for each group at the overall

means when table 1 showed significant race differences in the distribution of the regressors?

An alternative approaches that take these differences into account compute the ADC for

obesity for each group defined by race and gender. These ADCs reflect group differences in

the regressors, but do not show whether the effects of obesity were similar across groups for

individuals with similar characteristics (see section 3.5). Another approach is to compare

the effects for each group holding other variables at the means specific for each group (see

Long and Freese 2014 for a discussion of local means). The most effective approach depends

on the specific question motivating the research.

4.4 Comparing summary measures of effect

The methods in the last two sections showed how to use predictions and marginal effects to

address specific questions motivating one’s researcher. In this section we consider methods
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for summarizing the effect of each variable across groups. These measures are the counterpart

to regression coefficients that a routinely used in linear regression to summarize the effect

of each variable. In the binary regression model there are several measures that should

be considered and some that should be avoided. We begin by considering by comparing

marginal effects across groups, which we believe is the most generally useful approach. Next

we examine methods based on the comparison of the regression coefficients and illustrate

their limitations.

4.4.1 Comparing marginal effects

— Table 6 here —

The discrete change at the mean (see equation 3.3) and the average discrete change (see

equation 3.4) are two standard ways to measure the effect of a variable.3 Table 6 contains

estimates for both measures along with race differences in the effects (see equation 14) and

p-values from testing whether the effects are equal. Consider the ADC for being female

from panel 1 of the table. On average being female significantly decreases the probability of

diabetes by .051 (p< .001) for white respondents, with a nonsignificant decrease of .015 for

nonwhites. These effects differ by .038, which is significant at the .10 level but not the .05

level. The results using the discrete change at the mean from panel B are nearly identical.

The ADC and DCM do not always lead to the same conclusions as illustrated by the effect

of a five-year increase in age. Using the ADC, we conclude that the average effect of age is

significantly larger for nonwhites than whites (p=.002). Using the DCM, we conclude that

for an average respondent the effect of age does not differ for whites and nonwhites (p=.169).

As discussed in section 3.5, conclusions based on ADCs and DCRs can be quite different

depending on the model specification and group differences in the distribution of regressors.

The “best” measure is the one that characterizes that aspect of groups differences that are

of greatest interest. In our experience, it is useful to compute both the DCM and the ADC.

If your conclusions differ depending which measure you use, determine why the measures

differ before using either.

4.4.2 Comparing regression coefficients

Given the complexities of summarizing the effects of regressors using marginal effects on

the probability, tests of the equality of the regression coefficients are appealing in their

simplicity. While such tests are often used, there are several issues to consider. First,

3While marginal change (i.e., the instantaneous rate of change) can also be used, we prefer the discrete
change because of its simpler interpretation.
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regression coefficients are in a metric that is not as substantively useful as probabilities.

Comparing the effects of xk on y∗ or on the log-odds is rarely as useful as comparing how

a variable affects the probability. Second, while odds ratios are in a more natural metric,

odds ratios can be misleading. If the odds ratio for xk is identical for both groups, the

effect of xk on the probability can be very different in the two groups. Third, if the models

includes interactions or polynomials, there is no simple way to express the total effect of

those variables in using regression coefficient or odds ratios, while marginal effects on the

probability take into account the all coefficients that include the variable (e.g., the marginal

effect of age accounts for changes in age and age-squared). Finally, even if these issues are

not a concern in your application, you must deal with the scalar identification of regression

coefficients. To illustrate this important issue, we consider alternative tests of the hypothesis

the regression coefficients for gender and obesity are equal for whites and nonwhites.

Columns 9 and 10 of table 3 contain results form standard Wald tests of H0: β
W
k =βN

k .

If these tests were appropriate, which they are not, we would conclude that the protective

effects of being female are significantly larger for whites than nonwhites (p < .01) and that

the health costs of obesity are significantly greater for whites than nonwhites (p<.01). This

contradicts the conclusions using discrete changes in table 6. The ADC for obesity is .022

larger for whites than nonwhites, but the difference is not significant (p= .41); similarly the

DCM is .032 larger for whites (p = .26). The ADC and DCM for being female are about

.04 less negative for nonwhites than whites, but the differences are not significant (p = .09;

p= .07).

Allison (1999) showed that standard tests comparing regression coefficients across groups

confound groups differences in the coefficients with groups differences in residual variation

(see section 2). He proposed a test of the equality of coefficients across groups that is unaf-

fected by group differences in unobserved heterogeneity. This is accomplished by assuming

that the regression coefficients for one or more regressors are equal across groups (see equa-

tion 2). While this assumption deals with the problem caused by the scalar identification of

the coefficients, the results of the test depend on which variables are assumed to have equal

effects. To illustrate this, we test the regression coefficients for gender and obesity using

different assumptions about which coefficients are equal across groups.

— Table 7 here —

In model M1, the coefficients for ihsincome are constrained to be equal; in M2 all coef-

ficients that include age or active are constrained; and in M3 the coefficients for obese are

constrained. Models which constrained the effects of being female, graduating from high

school, or being married did not converge. The results are shown in table 7. Race differ-
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ences in the regression coefficients for female are significant (p = .013) when constraints are

imposed on coefficients involving either age or active, but not when constraints are imposed

on the coefficients for ihsincome (p= .163) or obese (p= .122). The regression coefficients for

obese are similar in magnitude and not significantly different (p= .810) when the coefficients

for ihsincome are constrained in M1, but the difference is larger and marginally significant

(p= .063) in M2 when the coefficients for age and active are constrained.

Even though conclusions from the tests vary depending on which coefficients are assumed

to be equal across groups, when a single pair of coefficients are constrained to be equal the

predicted probabilities and marginal effects are exactly equal to those from the full model.

Williams (2009) showed that Allison’s test can be computed using the heterogeneous choice

model, also know as the location scale model. A heterogeneous choice model predicting the

variance of the error for each group using a single equality constraint on the coefficients for

the regressors is simply a reparameterization of the model without constraints in coefficients

that assumes unobserved heterogeneity is equal for both groups. When multiple constraints

are imposed as in M2, the predictions had a correlation of .999 with the full model. Williams

(2009) showed that Allison’s approach to allow group differences in unobserved heterogeneity

can be extended by allowing regressors beyond group membership to predict the variance of

the errors. When we attempted Williams’ procedure using different sets of covariates, many

models did not converge and the the substantive results of those that did converge changed

based upon the identifying assumptions made.

Allison’s approach deals with the residual variation issue by allowing error variances

to differ by group but requires assuming that the effects of at least one regressor are the

same across groups. While decisions about which coefficients to constrain to be equal can

affect the substantive conclusions, it may be difficult to know whether one has the “correct”

model. Making an ad hoc decision that some regression coefficients are equal can lead to

incorrect conclusions. In our applications, we did not have strong reasons to constrain par-

ticular coefficients and tried multiple specifications that lead to substantively quite different

conclusions. The risk of specifying the inappropriate identifying assumptions does not exist

at the level of the probabilities.

5 Conclusions

TODO: add methods apply for interpreting interactions more generally.

In this paper we have developed methods for comparing groups using predicted proba-

bilities and marginal effects on probabilities for the binary regression model. Since the model

is nonlinear, conclusions on whether groups differ in the probability of the outcome or in
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the effect of a regressor on the where in the data the groups are compared. Deciding how

to make comparisons requires careful consideration based on a substantive understanding of

the process being modeled and the questions being asked. While this is much harder than

simple tests of the equality of regression coefficients, the more complex task of comparing

predictions and marginal effects provides greater substantive insights. The world is too com-

plex the effects of regressors or levels of the outcome to always be the same or always be

different across groups.

While our examples are relatively simple, the same methods can be used with any

number of groups and in models with many regressors including higher order interactions.

Further, the methods we use can be used more generally to interpret interactions, such

as whether the effect of a variable depends on the level of another variable. Moreover,

these methods can be used in any model where your software can make predictions and

estimate marginal effects. We used Stata 14’s (StataCorp, 2015b) margin command along

with the SPost13 package (Long and Freese, 2014).4 Similar features are being developed in

R (Leeper, 2016).

6 Figures

Figure 1: The link between y∗ = β0 + β1x + ε and Pr(y = 1 | x) with Var(ε) = σ2.
[[groups-brm-probV4.do]]

y=1 ↑
y=0 ↓

-1
5
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0
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0

5
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y*

0 1 2 3 4 5 6 7 8 9 10

x
sd10 groups-brm-probV4.do 2016-09-23

4Sample command files are available at [[to be added]]. To obtain the HRS data you must [[to be added]].
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Figure 2: The link between δy∗ = (δβ0)+(δβ1)x+δε and Pr(y=1 | x) with Var(δε) = δ2σ2.
[[groups-brm-probV4.do]]

y=1 ↑
y=0 ↓
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δy
*
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x
sd20 groups-brm-probV4.do 2016-09-23

Figure 3: Group comparisons of probabilities and marginal effects. [[groups-didactic-
AMEvMEMV11.do]]
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Figure 4: Group differences in the discrete change for age. [[groups-didactic-
AMEvMEMV11.do]]
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Figure 5: Probability of good health for whites and nonwhites by age. [[groups-goodhlth-
paperV8.do #3.1 ]]
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Figure 6: Race differences in good health by age. [[groups-goodhlth-paperV8.do #3.1 ]]
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Figure 7: Probability of diabetes for whites and nonwhites by age. [[groups-diabetes-
paperV8.do #3.1 ]]
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Figure 8: Race differences in diabetes for whites and nonwhites by age. [[ [groups-diabetes-
paperV8.do #3.1 ]]
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Figure 9: Probability of diabetes for blacks and whites by age and physical activity. [[groups-
diabetes-paperV8.do #3.3 ]]
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Figure 10: Race differences in diabetes by age and physical activity. Dashed lines indi-
cate that the difference in probabilities is not significant at the .05 level. [[groups-diabetes-
paperV8.do #3.3a ]]
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Figure 11: Effects of activity by race and age. Dashed lines indicate that the difference in
probabilities is not significant at the .05 level. [[groups-diabetes-paperV8.do #3.3b]]
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7 Tables

Table 1: Descriptive statistics (N=16,226) [[groups-descriptive-paperV8.do #5 ]]

White Nonwhite Difference†

Standard Standard
Variable Mean Deviation Mean Deviation Amount p

goodhlth 0.769 —— 0.565 —— 0.205 <.001
diabetes 0.162 —— 0.281 —— -0.120 <.001

female 0.532 —— 0.575 —— -0.043 <.001
highschool 0.853 —— 0.563 —— 0.289 <.001

married 0.692 —— 0.541 —— 0.150 <.001
income 74.280 99.389 41.013 58.376 33.268 <.001

ihsincome 4.523 1.001 3.809 1.164 0.714 <.001
age 66.514 10.421 64.099 9.677 2.415 <.001

active 0.303 —— 0.223 —— 0.080 <.001
obese 0.286 —— 0.390 —— -0.104 <.001

N 12,427 3,799

Note: † Amount is the group difference in the means; p is the significance level
from testing if means are equal.

Table 2: Logit model for reporting good health (N=16,226). [[groups-goodhlth-
paperV8.do #1.1 ]]

White Nonwhite H0: βW =βN

Variable 1: βW 2:ORW 3: t 4: p 5: βN 6:ORN 7: t 8: p 9: F 10: p

Constant -0.488 —— -1.75 0.086 -1.541 —— -4.00 <.001 4.71 0.034
female 0.144 1.155 2.89 0.006 -0.118 0.888 -1.37 0.176 6.96 0.011

highschool 0.800 2.225 13.45 <.001 0.816 2.262 9.19 <.001 0.02 0.891
married -0.056 0.945 -0.96 0.341 -0.169 0.844 -1.56 0.124 0.70 0.406

ihsincome 0.556 1.744 15.67 <.001 0.583 1.792 10.06 <.001 0.16 0.695
age -0.018 0.982 -6.17 <.001 -0.008 0.992 -1.83 0.072 3.47 0.068

obese -0.573 0.564 -11.16 <.001 -0.361 0.697 -3.25 0.002 3.10 0.084

Note: OR is the odds ratio. Tests of H0: βW =βN are shown for didactic purposes.
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Table 3: Logit model for diabetes (N=16,226). [[groups-diabetes-paperV8.do #1.1 ]]

White Nonwhite H0: βW =βN

Variable 1: βW 2:ORW 3: t 4: p 5: βN 6:ORN 7: t 8: p 9: F 10: p

Constant -9.627 —— -6.66 <.001 -11.169 —— -5.79 <.001 0.40 0.529
female -0.400 0.670 -6.53 <.001 -0.079 0.924 -0.80 0.427 7.27 0.009

highschool -0.253 0.776 -3.60 0.001 -0.142 0.867 -1.42 0.160 0.92 0.342
married 0.070 1.073 0.98 0.333 0.064 1.066 0.60 0.548 0.00 0.960

ihsincome -0.189 0.828 -5.50 <.001 -0.131 0.877 -3.93 <.001 1.61 0.210
age 0.243 1.274 6.18 <.001 0.299 1.348 5.36 <.001 0.65 0.422

agesq -0.002 0.998 -5.97 <.001 -0.002 0.998 -5.15 <.001 0.70 0.500
active -4.048 0.017 -1.04 0.302 -2.557 0.078 -0.42 0.678 0.04 0.849

activeXage 0.115 1.122 0.98 0.331 0.052 1.053 0.28 0.783 0.07 0.791
activeXagesq -.0009 0.999 -1.02 0.310 -.0003 1.000 -0.21 0.835 0.11 0.737

obese 1.163 3.199 17.01 <.001 0.740 2.095 6.59 <.001 9.35 0.003

Note: OR is the odds ratio. Tests of H0: βW =βN are shown for didactic purposes.

Table 4: Decomposition of raw differences in outcomes (N=16,226). [[groups-diabetes-
paperV8.do #2.2 groups-goodhlth-paperV8.do #2.2 ]]

Good health Diabetes

W - N Percent W - N Percent
Difference Reduction p Difference Reduction p

Overall 0.205 <.001 -0.120 <.001
If N had W characteristics 0.120 41% <.001 -0.039 67% <.001
If W had N characteristics 0.137 33% <.001 -0.034 71% <.001

Note: N=nonwhite; W=white.

Table 5: The effects of obesity on diabetes by gender and race. [[groups-diabetes-paperV8.do
#4.5 ]]

Probability of diabetes

Women Men Effect of obesity

1:Obese 2:Not 3:Obese 4:Not 5:Women 6:Men 7: Difference

White 0.278 0.107 0.365 0.152 0.170∗ 0.212∗ -0.042∗

Nonwhite 0.389 0.233 0.408 0.248 0.156∗ 0.161∗ -0.005

Race difference -0.112∗ -0.126∗ -0.044 -0.096∗ -0.014 -0.052† -0.038∗

Note: Other variables held at their means. ∗ = p<.01; † = p<.10 for two-tailed test.
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Table 6: Average discrete change and discrete change at the means for logit model for
diabetes (N=16,226). [[groups-diabetes-paperV8.do #5.1, 5.2 ]]

Panel 1: Average discrete change

White Nonwhite Difference

Variable 1:ADCW 2: p 3:ADCN 4: p 5:ADC 6: p

female -0.051 <0.001 -0.015 0.431 -0.036 0.089
highschool -0.033 0.001 -0.027 0.160 -0.006 0.763

married 0.009 0.330 0.012 0.546 -0.003 0.875
ihsincome -0.022 <0.001 -0.024 <0.001 0.002 0.779

age 0.011 <0.001 0.027 <0.001 -0.016 0.002
active -0.053 <0.001 -0.084 <0.001 0.031 0.110
obese 0.169 <0.001 0.146 <0.001 0.022 0.408

Panel B: Discrete change at the mean

White Nonwhite Difference

Variable 1:DCMW 2: p 3:DCMN 4: p 5:DCM 6: p

female -0.057 <0.001 -0.016 0.431 -0.041 0.070
highschool -0.038 0.001 -0.029 0.162 -0.008 0.716

married 0.010 0.328 0.013 0.545 -0.003 0.895
ihsincome -0.025 <0.001 -0.026 <0.001 0.001 0.916

age 0.014 <0.001 0.023 <0.001 -0.009 0.169
active -0.049 <0.001 -0.083 0.006 0.034 0.319
obese 0.190 <0.001 0.158 <0.001 0.032 0.264

Note: The effect of age is for a five-year change.

Table 7: Testing equality of regression coefficients in model for diabetes (N=16,226).
[[groups-diabetes-paperV8b.do #6.2 6.3 ]]

Coefficients constrained to be equal

Full model M1: ihsincome M2: age, active† M3: obese

Variable Δβ p Δβ p Δβ p Δβ p

female -0.321 0.009 -0.199 0.164 -0.363 0.013 -0.176 0.120
obese 0.423 0.003 0.069 0.810 0.530 0.064 0.000‡ 1.000‡

Note: Results for the full model are from table 3. Tests from models with coefficients
constrained to be equal were estimated with a location scale model. † All coefficients
involving age and/or active are constrained to be equal. ‡ Coefficient for obese are
constrained to be equal.
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