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Using predictions to compare groups
in regression models for binary outcomes

1 Introduction

Regression models comparing groups are used in many areas of research to answer two types

of questions. First, do groups differ in the level of the outcome after adjusting for differences

in observed characteristics? For example, do white and nonwhite respondents have different

probabilities of reporting good health, controlling for age, income, education, and other

characteristics? Second, does the effect of a regressor on the outcome differ across groups?

For example, does obesity have the same effect on being diagnosed with diabetes for white

and nonwhite respondents?

To answer these questions, models are fit that allow the regression coefficients to differ

by group. To test if the coefficients are equal across groups, a Wald test is used (Chow,

1960). For example, suppose that we are considering the effect of xk on y for white and

nonwhite respondents, where βW
k and βN

k are the coefficients of interest. If H0: β
W
k = βN

k

is rejected, we conclude that the effects differs across groups. While this approach can be

used with linear regression and some other models (Liao, 2002), Allison (1999) shows that

since the regression coefficients in binary logit or probit are only identified to a scale factor,

standard tests of the equality of coefficients are invalid. He develops tests that address the

identification problem by adding untestable, auxiliary assumptions that the coefficients for

some regressors are equal across groups. While his test addresses the identification problem,

we believe that in most applications it is substantively more useful to understand whether

the marginal effects of xk on the probability of the outcome are the same in both groups

than whether the regression coefficients for xk are equal. Critically, in binary probit and

logit, the equality of regression coefficients across groups does not imply that the marginal

effects of a regressor on the probability are equal. In this paper, we develop methods for

group comparisons groups using tests of the equality of probabilities conditional on the

regressors and tests of the equality of marginal effects on the probability. Since probabilities

are identified, these tests do not require additional identifying assumptions.

Our paper focuses on methods for comparing groups using the logit and probit models

for binary outcomes for several reasons. First, these are the most commonly used models

for binary outcomes. Second, much of the recent work on group comparisons has addressed

the issue of how group comparisons must deal with the scalar identification of the regression

coefficients in binary logit and probit. It is important to understand how our approach is

related to this work. Our methods, however, can be generalized to any regression model
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for which it is possible to make conditional predictions and estimate marginal effects. In

models where the regression coefficients are expressed in the outcome metric of interest,

such as linear regression or the linear probability model, the regression coefficients are often

the effects of interest. In this case our approach is equivalent to testing the equality of

regression coefficients. However, even in linear models our approach is necessary when there

is a nonlinear relationship between a regressor and the outcome. For example, in a linear

regression model that includes age and age-squared as regressors, the marginal effect of

age is computed using the coefficients for both age and age-squared and the conclusions

depend on the values of regressors at which the test is made. Similarly, in any model in

which predictions can be made, our methods for comparing predictions and marginal effects

can be used. This includes models such as negative binomial regression, ordered logistic

regression, and multinomial logit. With some adjustments, our approach can also be used

with non-parametric regression. Generalizations are considered in section 5.

The substantive advantages of tests based on predicted probabilities are not without

costs. Tests comparing regression coefficients are simple to apply since the only hypothesis

of interest is whether the coefficients are equal across groups and the results do not depend

on the values of the regressors in the model. For example, when examining racial differences

in the regression coefficient for obesity on the onset of diabetes, the conclusion is either that

the coefficients are the same or that they are not. With methods based on probabilities,

including marginal effects, the conclusions depend on the values of the regressors where

the comparison is made. For example, there might be no difference in the probability of

diabetes for nonwhites and whites who have low income and a high school education, while

the probabilities might differ for those with high income and a college degree. Similarly, the

size of the marginal effect of a regressor on the outcome probability depends on the value of

the regressor where the effect is computed as well as the values of all other variables in the

model (Long and Freese, 2014). For example, the effect of obesity on diabetes for a 70-year-

old, married man could be the same for both groups (i.e., the null hypothesis is not rejected),

while the effect of obesity for a 50-year-old, single women could be significantly larger if the

woman was white than if she was nonwhite. While conclusions about groups differences in

the effect of obesity on diabetes are more complex than those from testing group difference

in regression coefficients, they also have the potential to provide more useful insights into

the substantive process being studied.

The question of how to assess group differences in logit and other nonlinear models

has attracted considerable attention across many disciplines, both directly in research deal-

ing with statistical methods for comparing groups and indirectly in research about inter-

actions in nonlinear models (e.g., Ai and Norton 2003, Buis 2010, Kendler and Gardner
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2010, Norton et al. 2004). This work shows that conventional techniques are flawed in sev-

eral ways, with research focusing on two approaches to group comparisons. One approach

makes comparisons of regression coefficients that are in the metric of an underlying latent

variable. Allison (1999) shows that group differences in unobserved heterogeneity invali-

date traditional tests for comparing regression coefficients across groups. Allison (1999)

and Williams (2009) developed new tests for comparing regression coefficients that account

for differences in unobserved heterogeneity. Breen et al. (2014) present methods for group

comparisons of correlations between the latent outcome and each regressor. Both the Allison

and Breen approach compare effects that are not in the metric of the outcome probability.

Kuha and Mills (2018) argue that these methods are only relevant when the latent outcome

is of substantive interest. A second approach compares groups in terms the probability or

the odds of the outcome. Long (2005, 2009) used graphs to compare conditional probabilities

and the effects of regressors across groups and provided tests of the equality of probabilities

across groups. Other researchers considered the comparison of odds ratios and marginal

effects. Mood (2010) reviews how unobserved heterogeneity affects the group comparison of

odds ratios and regression coefficients and argues that marginal effects of regressors on the

probability are substantively more informative. Landerman et al. (2011) demonstrate how

regression coefficients for interaction terms in logistic models for panel data can provide mis-

leading results about group differences in rates of change in the outcome. They recommend

comparing group differences average marginal effects of regressors on the probability of the

outcome rather than the comparison of odds ratios. Mustillo et al. (2012) develop tests for

group differences in growth trajectories in longitudinal mixed models for counts and argue

that the interpretation of group-by-time interaction terms are misleading and suggest the

comparison of average marginal effects on the rate.

In this paper, we build on exiting research to develop a general framework for the

comparison of groups in regression models in terms of the probability of the outcome and

marginal effects of regressors on the probability. Our predictive methods yield graphs and

tables that can answer substantively motivated questions about group differences. Our

methods do not involve deriving new tests, but rather the use of standard methods of

specifying models, comparing predictions across groups, and comparing marginal effects in

ways that avoids traps of misinterpretation common in the substantive literature. The next

section explains how the identification of regression coefficients affects group comparisons

in the binary logit and probit models and how this issue is avoided in methods based on

predictions. Section 3 presents methods for comparing conditional predictions and marginal

effects. Each of these methods is illustrated in section 4 where we compare white and non-

white respondents in models predicting being diagnosed with diabetes and reporting having
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good health. Section 5 discusses how our approach can be used with any regression model

in which predictions and marginal effects can be computed and explains why it is especially

useful in models where the outcome has a nonlinear relationship to regressors, including

linear regression when nonlinearities are included on the right hand side of the model.

2 Scalar identification in binary logit and probit

The identification of regression coefficients is critical for understanding group comparisons

in logit and probit models. To explain this we begin by reviewing how coefficients are

compared across groups in linear regression (Chow 1960). To simplify the presentation, we

use two groups with two regressors, but the results can be easily generalized G groups and

K regressors. Let y be a continuous, observed dependent variable regressed on x1 and x2 for

groups defined by g = 0 and g = 1. We begin by fitting separate regressions for each group

which allows the regression coefficients and error variances to differ by group:

Group 0: y = β0
0 + β0

1x1 + β0
2x2 + ε0 where Var(ε0) = σ2

0

Group 1: y = β1
0 + β1

1x1 + β1
2x2 + ε1 where Var(ε1) = σ2

1

To assess whether the effect of xk is the same for both groups, we test the hypothesis

Hβk
: β0

k = β1
k using a Wald or likelihood ratio test. If Hβk

is rejected, we conclude that the

effect of xk differs by group.

If y is binary, the corresponding regression equations are

Group 0: Pr0(y=1 | x1, x2) = F (β0
0 + β0

1x1 + β0
2x2)

Group 1: Pr1(y=1 | x1, x2) = F (β1
0 + β1

1x1 + β1
2x2)

where F is the normal cumulative density function for the probit model and the logistic

cumulative density function for the logit model. While it seems that we could assess whether

the effect of xk is the same for both groups by testing Hβk
: β0

k = β1
k , such tests are invalid

since regression coefficients in the binary regression model are only identified up to a scale

factor (Amemiya 1981, 1489; Maddala 1983, 23; McKelvey and Zavoina 1975). Following

Allison (1999), this can be shown by deriving the model using a latent dependent variable

y∗ that is related to x1 and x2 through the equation

y∗ = β0 + β1x1 + β2x2 + ε (1)

where the error ε has mean 0 and variance σ2. When the latent y∗ is greater than 0, y is
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observed as 1; otherwise, y is 0. For example, if a person’s propensity y∗ to have diabetes

exceeds 0, she is diagnosed with diabetes and y =1. If her propensity is at or below 0, she

is not diagnosed with diabetes and y=0.1

The probability that y=1 conditional on x1 and x2 is the proportion of the distribution

of y∗ that is greater than 0:

Pr (y=1 | x1, x2) = Pr (y∗ > 0 | x1, x2)

Substituting the right-hand-side of equation 1 for y∗ and rearranging terms, the probability

can be expressed in terms of the error as

Pr (y=1 | x1, x2) = Pr(ε ≤ β0 + β1x1 + β2x2 | x1, x2) (2)

For a model with a single regressor, figure 1 shows that the probability at specific values of x

is the shaded area of the error distribution above y∗=0. To compute this area we must know

the mean, variance, and mathematical form of the error distribution. The error is assumed

to be logistic for logit and normal for probit. As with the linear regression model, the mean

is assumed to be 0. The variance, however, leads to an identification problem for the βs.

— Figures 1 and 2 here —

In linear regression the residuals yi − ŷi are used to estimate the variance of the errors.

This cannot be done with logit or probit since y∗
i is unobserved. To understand the implica-

tions of this, consider what happens when we multiply equation 1 by an arbitrary, unknown

constant δ:

δy∗ = (δβ0) + (δβ1) x1 + (δβ2) x2 + δε (3)

Using the notation γk ≡ δβk, ỹ∗ ≡ δy∗, and ε̃ ≡ δε, equation 3 can be written as

ỹ∗ = γ0 + γ1x1 + γ2x2 + ε̃ (4)

and equation 2 as

Pr(y=1 | x1, x2) = Pr(ε̃ ≤ γ0 + γ1x1 + γ2x2 | x1, x2) (5)

Since all that we did was multiply both sides of the inequality by δ and change notation, the

probabilities in equation 5 are exactly the same as those in equation 2. However, since δ is

1While the latent variable derivation of the logit and probit models is compelling way to illustrate
difficulties in comparing regression coefficients across groups, the same problem arises when the model
is derived in other ways. (Allison 1999, 190; Breen and Karlson 2013, 170).
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unknown, there is no way to distinguish between the true β coefficients that generate y∗ and

the rescaled γ coefficients. The effects of the change in scaling are shown in figure 2 that

was created by multiplying the equation for y∗ in figure 1 by δ=2. The intercept, slope, and

standard deviation of the error are δ times larger, while the probabilities represented by the

shaded proportion of the error distribution are the same in both figures.

Since the β coefficients are only identified to a scale factor, they cannot be estimated

without assuming a value for the variance of the error. For probit, the usual assumption

is that σ2
Assumed = 1, which implies that δ = σAssumed/σ = 1/σ in equation 3. For logit,

σ2
Assumed =π2/3, which implies that δ=π/

√
3σ. Multiplying y∗ by δ rescales the β coefficients

while Pr(y = 1 | x1, x2) is unaffected. We cannot estimate the βs in equation 1 since σ is

unknown, but we can estimate the re-scaled γs in equation 4 since the value of the variance

is assumed. The effect of the assumed value of the error variance is seen when you compare

results from logit and probit. The estimated coefficients for logit are approximately π/
√

3

times larger than those from probit, while the predicted probabilities are nearly identical.

The probabilities are not exactly the same and the coefficients are not exactly π/
√

3 larger

in logit since the shapes of the logistic and normal distributions are slightly different (see

Long 1997, 47-50).

The scalar identification of the regression coefficients led Allison (1999) to conclude:

“Unless we are willing to assume that the [error] variance is constant across groups, the

standard tests for cross-group differences in the [γ] coefficients tell us nothing about differ-

ences in the [β] coefficients.” To understand why identification affects tests of the equality

of coefficients, consider the equations for y∗:

Group 0: y∗ = β0
0 + β0

1x1 + β0
2x2 + ε0 where Var (ε0)=σ2

0 (6)

Group 1: y∗ = β1
0 + β1

1x1 + β1
2x2 + ε1 where Var (ε1)=σ2

1 (7)

Since we cannot estimate the error variances, we assume σ2
g = 1 for probit or σ2

g = π2/3

for logit. This is done by multiplying equation 6 by δ1 = σAssumed/σ1 and equation 7 by

δ0 =σAssumed/σ0:

Group 0: δ0y
∗ = (δ0β

0
0) + (δ0β

0
1) x1 + (δ0β

0
2) x2 + δ0ε0 where Var (δ0ε0)=σ2

Group 1: δ1y
∗ = (δ1β

1
0) + (δ1β

1
1) x1 + (δ1β

1
2) x2 + δ1ε1 where Var (δ1ε1)=σ2

Since δ0 and δ1 cannot be estimated, we rewrite the equations in terms of the γs which can
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be estimated:

Group 0: ỹ∗
0 = γ0

0 + γ0
1x1 + γ0

2x2 + ε̃0 where Var (ε̃)=σ2 (8)

Group 1: ỹ∗
1 = γ1

0 + γ1
1x1 + γ1

2x2 + ε̃1 where Var (ε̃)=σ2 (9)

After estimation, we can test Hγk
: γ0

k = γ1
k which is equivalent to testing Hγk

: δ0β0
k = δ1β1

k .

However, we want to test Hβk
: β0

k =β1
k which requires knowing the relative size of the error

variances in the two groups. The test proposed by Allison (1999) obtains this information

by assuming that β0
j =β1

j for at least one regressor. For example, if we assume that β0
j =β1

j ,

then
γ0

j

γ1
j

=
δ0β

0
j

δ1β1
j

=
(σAssumed/σ0) β0

j

(σAssumed/σ1) β1
j

=
σ1

σ0

(10)

is the relative magnitudes of the σgs. As illustrated in section 4.3.2, the results of the test for

Hβk
: β0

k =β1
k depend on which βjs are assumed to be equal across groups, sometimes leading

to opposite conclusions.

Tests of the equality of probabilities or marginal effects on the probability do not require

additional assumptions since identical predictions are obtained using the βs from equations

6 and 7:

Group 0: Pr0(y=1 | x1, x2) = Pr0(ε ≤ β0
0 + β0

1x1 + β0
2x2 | x1, x2)

Group 1: Pr1(y=1 | x1, x2) = Pr1(ε ≤ β1
0 + β1

1x1 + β1
2x2 | x1, x2)

or the γs from equations 8 and 9:

Group 0: Pr0(y=1 | x1, x2) = Pr0(ε̃ ≤ γ0
0 + γ0

1x1 + γ0
2x2 | x1, x2)

Group 1: Pr1(y=1 | x1, x2) = Pr1(ε̃ ≤ γ1
0 + γ1

1x1 + γ1
2x2 | x1, x2)

While comparing groups using probabilities and marginal effects on probabilities does not

required the untestable, identification assumptions needed to test regression coefficients, this

is far from the only advantage. Conclusions about the equality of regression coefficients in

logit and probit are generally less useful than conclusions in the natural metric of proba-

bilities, as they do not represent the substantive size of the effect. For example, knowing

whether the effect of obesity on the probability of diabetes is the same for for whites and

nonwhites is more useful than knowing if the regression coefficients, which in logit are in the

metric of the log odds of diabetes, are the same.
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3 Using probabilities to compare groups

Differences in the probability of the outcome and differences in the marginal effects of re-

gressors on the probability emphasize different ways in which groups can differ. Probabilities

show how outcomes differ under specific conditions. For example, is diabetes more prevalent

for obese men who are white than those with similar characteristics who are nonwhite? This

is illustrated across a range of ages by the two probability curves in figure 3 where age and

age-squared are included as regressors (discussed further in section 4). The two-headed ver-

tical arrow compares the probability of diabetes for whites and nonwhites who are 75 years

old. Marginal effects examine whether a regressor has the same effect on the probability

of the outcome for both groups. For example, does obesity have the same health cost for

whites as it does for nonwhites? The arrows show the change in probability as age increases

from 55 to 60 for each group. While group differences in probabilities and group differences

in marginal effects on probabilities are related, you cannot draw conclusions about one from

the other. For example, being obese could lead to a larger increase in the probability of

diabetes for whites than nonwhites even though the probability of diabetes is greater for

nonwhites than whites.

— Figure 3 here —

The next three subsections present methods for testing group differences in probabilities

and marginal effects. The following notation is used. The vector x contains K regressors

with the regression coefficients for group g in the vector γg. We use γs rather than βs since

predictions are made from the parameters that are estimated after identification assumptions

have been made. We replace Prg(y=1 |x) with the more compact notation π(x, g):

Group 0: π(x, g = 0) = F (x′γ0) (11)

Group 1: π(x, g = 1) = F (x′γ1) (12)

where F is the normal cumulative density function for the probit model and the logistic

cumulative density function for the logit model. Although estimating models separately by

group is conceptually appealing, we estimate the equations for both groups simultaneously

which makes post-estimation computations simpler and is necessary for obtaining the cor-

rect standard errors when using a complex sampling design (West et al., 2008): [[xPROVE-

NANCE groups-covbetas-2017-05-05.do 2017-05-05]]

π (x, g) = F
([

g × x′γ1
]
+
[
(1−g) × x′γ0

])
(13)
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In this model, π(x, g = 0) = F (0 + x′γ0) and π(x, g = 1) = F (x′γ1 + 0). While the same

regressors are typically included for both groups, a regressor can be eliminated for one group

by constraining γg
k = 0. Standard errors for predicted probabilities and marginal effects on

probabilities are computed with the delta method (Agresti 2013, 72-77; Bishop et al. 1975,

486-497).

3.1 Group comparisons of probabilities

The most basic way to compare groups is to estimate probabilities at the same values of the

regressors and test if the predictions are equal. Let x∗ contain specific values of the xs. The

difference between groups 0 and 1 in the probability at x = x∗ is the group difference in π:

Δπ(x = x∗)

Δ g
= π(x = x∗, g=1) − π(x = x∗, g=0) (14)

To test H0: π(x=x∗, g=0) = π(x=x∗, g=1), we can test if the group differences is 0. Note

that the group difference is simply the discrete change with respect to group.

Group differences in probabilities can be used in a variety of ways. At the most basic

level, we can test whether whites and nonwhites differ in the probability of diabetes. Adding

a layer of complexity, we can test, for example, whether forty-year-old white men have

the same probability of diabetes as forty-year-old nonwhite men. Comparisons at multiple

values of one or more regressors can be presented in tables. For example, racial differences in

diabetes could be shown for men and women at different levels of education. For continuous

regressors, plots are more effective. For example, do nonwhites and whites differ in the

probability of diabetes as they age? These methods are illustrated in sections 4.1 and 4.2.

While we find group differences in conditional probabilities to be the most useful way

to compare groups, differences could be measured in other ways. For example, in medicine

and epidemiology, the relative risk ratio (also called the adjusted risk ratio) is often used

(Greenland 198X; Bender and Kuss 2010; Bender and Kuss 2013). Rather computing a

difference in conditional probabilities across groups using equation 14, the adjusted risk

ratio takes the ratio of probabilities, where the the conditional probability is referred to as

the risk of the event:

RRR =
π(x = x∗, g=1)

π(x = x∗, g=0)

If the two groups have the same risk of an outcome, then the RRR equals 1 which corresponds

to a group difference of 0. While we use group differences in the remainder of the paper,

our approach can be modified to use the adjusted risk ratio or any other measure of group

differences in the probability of the outcome.
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3.2 Group comparisons of marginal effects

The marginal effect of xk is the change in the probability of the outcome for a change in

xk, holding other variables at specific values. There are two varieties of marginal effects.

A marginal change, sometimes called a partial change, is the change in the probability for

an infinitely small change in xk. A discrete change or first difference is the change in the

probability for a discrete or finite change in xk. In the following discussion, we focus on

discrete changes since we find them to be more useful substantively, but our methods can

also be used with marginal changes. The critical idea is that one variable is changing while

other variables are not.

For group g, the discrete change with respect to xk is the change in the probability as

xk changes from start to end while holding other variables at specific values:

Δπ(x=x∗, g)

Δxk(start → end )
= π(xk =end,x=x∗, g) − π(xk =start,x=x∗, g) (15)

Vector x∗ contains values for all regressors except xk whose value is determined by start and

end. If the regressors includes polynomials or interactions, these variables change in tandem.

For example, if xagesq =xage×xage, then xagesq must change from 100 to 121 when xage changes

from 10 to 11.

To compare effects across groups, the discrete change of xk is estimated for each group

and we test if the effects are equal:

H0:
Δπ(x=x∗, g=1)

Δxk(start → end )
=

Δπ(x=x∗, g=0)

Δxk(start → end )
(16)

Equivalently, we can estimate the group difference in discrete changes with respect to xk,

which is the second difference

Δ2π(x=x∗)

Δxk(start → end ) Δ g
=

Δπ(x=x∗, g=1)

Δxk(start → end )
−

Δπ(x=x∗, g=0)

Δxk(start → end )
(17)

The hypothesis that the effect of xk is the same for both groups is

H0:
Δ2π(x=x∗)

Δxk(start → end ) Δ g
= 0 (18)

Since the value of the discrete change of xk depends on the values of the regressors

where the change is estimated (Long and Freese, 2006, 244-246), a critical decision is how

to summarize the effect. Two approaches are commonly used. First, the discrete change is

estimated at representative values of the xs, referred to as a discrete change at representative
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values (DCR). When means are used as the representative values, the effect is called the

discrete change at the mean (DCM). Second, the average discrete change (ADC) is the

average of the discrete changes computed conditionally on the observed values of the xs

for each observation. DCRs and ADCs highlight different ways in which groups can differ

and the choice of which measure to use depends on your substantive question. This issue is

discussed in section 3.5 after we formally define these measures of discrete change.

3.3 Discrete change at representative values (DCR)

A DCR is computed at values of the regressors that represent some aspect of the sample

that is of substantive interest. For group g the discrete change of xk evaluated at x=x∗ is

Δπ(x=x∗, g)

Δxk(start → end )
= π(xk =end,x=x∗, g) − π(xk =start,x=x∗, g)

For a continuous variable we can compute the effect of changing xk from any starting value

to any ending value. For example, we could increase xk from its mean to the mean plus one

standard deviation holding other variables at their means, which is the discrete change at

the mean (DCM). To compare effects across groups we estimate group differences in DCMs

using equation 17:

Δ2π(x=x)

Δxk(xk → xk+sk) Δ g
=

Δπ(x=x, g=1)

Δxk(xk → xk+sk)
−

Δπ(x=x, g=0)

Δxk(xk → xk+sk)

Or if xk is binary, the group difference in the effect of xk when x=x∗ is:

Δ2π(x=x∗)

Δxk(0 → 1) Δ g
=

Δπ(x=x∗, g=1)

Δxk(0 → 1)
−

Δπ(x=x∗, g=0)

Δxk(0 → 1)

To test if the effects are the same in both groups, we test if the group difference in effects

is 0. Since DCRs compare the effect of a variable at the same values of the regressors for

both groups, they do not reflect group differences in the distribution of the regressors. This

important point is discussed in detail after we consider the ADC.

3.4 Average discrete change (ADC)

The average discrete change of xk is the average of the discrete change of xk computed for each

observation in a given group using the observed values of the covariates. Let π(xik,xi, g) be

the probability at the observed values for the ith observation in group g, noting in particular
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the value of xk. For observation i in group g, the discrete change of xk is

Δπ(x=xi, g)

Δxk(starti → endi)
= π(xk =endi,x=xi, g) − π(xk =starti,x=xi, g)

The start and end values can be defined in a variety of ways. For a continuous variable we

might compute the effect when xk increases by δ from its observed value xik:

Δπ(x=xi, g)

Δxk(xik → xik+δ)
= π(xk =xik+δ,x=xi, g) − π(xk =xik,x=xi, g)

While δ is often 1 or a standard deviation, other values can be used. It is also possible to

change xk between the same two values for every observation, such as increasing age from

60 to 65 or changing a binary variable from 0 to 1. For group g,

Δπ(x = xi, g)

Δxk(start → end )
= π(xk =end,x=xi, g) − π(xk =start,x=xi, g)

The values start and end do not need the subscript i since they have the same values for

all observations. When xk is binary, the simpler notation Δπ(x=xi, g)/Δxk is used. For

example, the effect of being female is written as Δπ(x=xi, g)/Δfemale. The ADC for xk in

group g is the average of the discrete changes for each observation in group g:

ADCg
xk

=
1

Ng

∑

i∈g

Δπ(x=xi, g)

Δxk(starti → endi)

Equations 16-18 are used to test if group differences in the ADC are significant.

3.5 Should you compare ADCs or DCRs?

— Figure 4 here —

The choice of whether to make group comparisons of ADCs or DCRs depends on the

substantive question being asked. To illustrate what each measure of change tells you, figure

4 plots the probability of diabetes by age for whites and nonwhites from a model with age

and age-squared. The squares are observations for the younger sample of whites, while the

cirlces are observations for the older sample of nonwhites. For whites, ADCW
age = .03 which is

the average change in the probability for each observations as age is increases by 5 from its

observed values. For nonwhites, ADCN
age is close to 0 since the positive effects of age for those

younger than 72 are offset by the negative effects for those older than 72. The difference in

the ADCs across groups is due primarily to group differences in the distribution of age and
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mask the similar shapes of the probability curves. In contrast, the DCRs computed at specific

ages reflect the similar shapes of the curves. At the mean age of 60 for whites, DCRW
age = .03

and DCRN
age = .04; at the overall mean age of 67.5, DCRW

age = .01 and DCRN
age = .02; and

at the mean age of 75 for nonwhites, DCRW
age = −.01 and DCRN

age = −.02. DCRs compare

the shape of the probability curves at the same values of the regressors, whiles ADCs reflect

both group differences in the curves and in the distribution of regressors. In this example,

the ADCs suggest that the effect of age is larger for whites, yet the curves show that the

rate of change in the probability of diabetes is larger for nonwhites. Indeed, two groups can

have exactly the same regression coefficients with significantly different ADCs. Neither the

ADC or the DCR is always better—they simply reflect different ways in which effects differ

across groups as illustrated in section 4.

4 Example: Racial differences in health

The analyses we use to illustrate these techniques are based on research related to racial and

ethnic differences, hereafter referred to as racial differences, in diabetes risk and self-rated

health. The literatures on diabetes and self-reported health find strong, incontrovertible

racial differences in both outcomes with some evidence that these differences decline with

age (Hummer et al. 2004, Markides et al. 1997). Further, it is well known that obesity and

physical activity are related to the risk for diabetes, but it is less clear if these variables affect

racial differences. There is some evidence that racial disparities in diabetes are higher for

normal and overweight individuals and lower among the obese, but few studies have tested

whether physical activity benefits one group more than another (Zhang et al., 2009). Thus,

we use differences in probabilities to examine racial differences in diabetes and health by

age. Then we compute differences in DCRs and ADCs to examine racial disparities in the

effects of aging on diabetes, differences in the impact of physical activity on the probability

of diabetes, and whether racial differences in the effect of physical activity vary over the

middle-to-late life course.

Our example uses data from the Health and Retirement Study (HRS), a representative

sample of older adults in the US (Health and Retirement Study, 2006).2 Approximately

22,000 individuals and their spouses were interviewed about every other year since 1992 us-

ing a multistage, clustered probability sampling design that represents non-institutionalized

individuals age 50 or over in the 48 contiguous states, with an over-sampling of black

2The Health and Retirement Study is sponsored by the National Institute on Aging (grant number NIA
U01AG009740) and is conducted by the University of Michigan. To access these data you must register with
HRS. Our dataset was constructed from the 2006 Fat file and version N of the RAND HRS file. The versions
of these files that are currently available for download could differ from those we used.
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and hispanic Americans. Data from the 2006 wave of the HRS were extracted from the

RAND HRS data files (RAND, 2014). From the 16,955 respondents who had non- zero

sampling weights, we excluded 10 respondents who were too young to be in the sample,

380 who did not identify as white, black, or hispanic, 7 with incomes greater than two

million, 246 who did not report body mass, and 86 with missing data for other variables

in our analyses. The resulting sample includes 16,226 observations. [[xPROVENANCE

groups-hrs-supportV9.do #6.1 2018-01-29]] Analyses were conducted with Stata 14.2 using

adjustments for complex sampling (StataCorp, 2015a). Two-tailed tests are used in all anal-

yses. Analyses used Stata’s (StataCorp, 2015b) margin command along with the SPost13

package (Long and Freese, 2014). Similar features are being developed in R (Leeper, 2016).

The do-files construct our analysis dataset and can reproduce our analyses can be obtained

by running the command search groupsbrm in Stata and following the instructions for

downloading files. Then, type help groupsbrm for details on creating the dataset.

— Table 1 here —

Table 1 contains descriptive statistics for the variables in our models. Our group variable

is the race of the respondent, comparing whites to nonwhites who include blacks and those

of Hispanic ethnicity. Other racial and ethnic groups were excluded due to inadequate

representation in the HRS sample. Two outcome variables are used. Self-rated health

recoded responses to “Would you say your health is excellent, very good, good, fair, or poor?”

to equal 1 if health was good, very good, or excellent, else 0. Diabetes is a respondent’s self-

report of whether diabetes was diagnosed by a physician. Independent variables include

age, gender, education, income, marital status, obesity, and physical activity. Education is

measured as having a high school degree or higher compared to not completing high school.

Income is in thousands of dollars and an inverse hyperbolic sine transformation is used to

reduce the skew (Burbidge et al., 1988). Physical activity is measured as exercising more

than three times a month compared to exercising less often. Following guidelines by the

US Centers for Disease Control and Prevention (Pi-Sunyer et al. 1998), obesity is defined as

having a body mass index of 30 or more.

— Tables 2 and 3 here —

Tables 2 and 3 contain estimates of the regression coefficients from two models. We

chose these two outcomes and specifications to illustrates how our methods can be used

to both when the relationship between a regressor and the outcome is nearly linear and

when a more complex nonlinear relationships exists. The model for good health is simple

to interpret since it does not include squared terms or interactions among regressors. Since
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predicted probabilities are between .65 and .85, the effect of age is almost linear which makes

interpretation simple. [[xPROVENANCE groups-goodhlthV9.do #2.1.1 2018-01-29]]

The model for diabetes includes age-squared and an interaction between the age vari-

ables and level of activity which makes the interpretation more challenging, but is a more

realistic modeling scenario. Recall one of our research questions is whether there are racial

differences in the probability of diabetes at different ages (e.g., are racial difference larger at

younger ages than older ages), whether there are racial differences in the effects of growing

older on the probability of diabetes, and whether racial differences in the effects of growing

older on the probability of diabetes vary by level of physical activity.

Our analyses begin with graphs to explore group differences in the outcomes by age.

The discrete change with respect to race, referred to simply as the racial difference, is used

to test if differences in the outcomes are statistically significant. Next, the discrete change

with respect to age is used to test if the effects of age differ by race. Then we use graphs to

examine the more complex example of the effects of age on diabetes for those with different

levels of activity. Tables are used to examine racial differences in the effects of gender and

obesity, where discrete changes for gender and obesity are compared across race using second

differences (i.e., racial differences in the discrete changes for these regressors). Finally, racial

differences in scalar measures of the effect of a regressor are considered using discrete changes

and regression coefficients.

4.1 Graphs of probabilities and group differences in probabilities

Graphs show both group differences in predictions across values of a regressor and differences

in how the effects of a regressor vary by group. To explain this method of interpretation,

we begin with a simple example showing how whites and nonwhites differ in reporting good

health at different ages. We then extend this approach to a more complicated model for

diabetes that includes age and age-squared along with interactions between age and a re-

spondent’s level of physical activity.

We know from table 1 that on average whites report better health than nonwhites and

now want to consider whether racial disparities in health change with age. For each group

probabilities are computed at ages from 50 to 90 with other variables held at their means.

Figure 5 shows that while whites have a higher probability of reporting good health at all

ages, differences steadily decrease from .10 at age 50 to less than .04 at 90. [[xPROVENANCE

groups-goodhlthV9.do #2.1.1 2018-01-30]] Racial differences at each age are used to test if
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these differences in probabilities are significant (see equation 14):

Δπ(age=p,x=x)

Δ white

Figure 6 plots these differences in the probability of good health along with the 95% confi-

dence interval. When the confidence interval crosses 0, as it does around 85, the difference

between whites and nonwhites in the probability of good health is not significant.

— Figures 5 and 6 here —

Since the probabilities curves in figure 5 are nearly linear, the effects of age can be

summarized by computing the discrete change in the probability of good health as age

increase from 50 to 90 for each group g (see equation 15):

Δπ(white=g,x=x)

Δage(50 → 90)
= π(age=90,x=x, white=g) − π(age=50,x=x, white=g)

Group differences in the effect of age are computed as a second difference (see equation 17):

Δπ(x=x)

Δage(50 → 90) Δwhite
=

Δπ(x=x, white=1)

Δage(50 → 90)
−

Δπ(x=x, white=0)

Δage(50 → 90)
(19)

Using these measures, we find that as age increases from 50 to 90 the probability of good

health decreases more rapidly for whites (.13) than than nonwhites (.07), but the difference

is not significant (p=.17). [[xPROVENANCE groups-goodhlthV9.do #2.2.2 2018-01-30]]

While figure 6 shows tests of racial difference in the probability of good health at each age,

the discrete changes examine racial difference in the effect of age on the probability of good

health.

To illustrate how graphs can be used to examine more complex differences between

groups, figure 7 plots the probability of diabetes by age, where the curves reflect the in-

clusion of age and age-squared in the model. For both groups the probability of diabetes

increases from age 50 to 75 after which the probability decreases. While whites have a

smaller probability of diabetes at all ages, the difference is smallest at 50 where it is about

.04, increases to a maximum of .12 at 75, and then decreases to .08 at 90. [[xPROVENANCE

groups-diabetesV7.do #2.1.1 2018-01-30]] This pattern of the racial differences is plotted in

figure 8 which shows how differences increase from age 50 to 75 followed by a gradual de-

crease. Racial differences are significant at all ages except 90 where the confidence interval

includes 0.

— Figures 7 and 8 here —

17



The change in the size of the effect of race over age occurs because the rate of in-

crease in diabetes is larger for nonwhites than whites from ages 50 to 75 at which point

the rate of decrease with age is more rapid for nonwhites. To test this formally, we com-

pute the discrete change for age for each group and test if they are equal (see equation 17).

[[xPROVENANCE groups-diabetesV7.do #2.2 2018-01-30]] From 50 to 60 diabetes increases

by .11 for nonwhites compared to .06 for whites, a significant difference of .05 (p=.01). From

80 to 90 the probability decreased by .05 for whites and .09 for nonwhites, a difference that

is not significant (p=.27).

— Figure 9 here —

Using graphs to examine group differences over the range of a continuous regressor can

be extended to show the effects of other variables. Returning to our research questions,

suppose we want to determine whether the racial differences in diabetes that we found in

figure 7 vary by a person’s level of physical activity. Or, to put it another way, are the

benefits of physical activity different for nonwhites and whites over the life course? This is

an example of both the complexity and the advantages of our approach to interpretation.

It is not straightforward to find the most effective way to visualize how group differences

in an outcome over age vary by the levels of another variable, yet doing so allows us to

test more complex hypotheses than traditional methods. The first step is to graph the

probability of diabetes for whites and nonwhites by level of activity. This is done in figure

9 where open circles represent nonwhites who are inactive with solid circles for those who

are active. Similarly, inactive and active whites are represented by open and solid squares.

While the graph contains all of the information that we need for our research question, the

trends are difficult to see due to the complexity of the graph. A more effective approach is

to create plots that show differences between the probability curves. There are two ways

that we can proceed that emphasize different aspects of our research question. First, we can

examine racial differences in diabetes over age conditional on level of activity by plotting

the difference between the probability curves for whites and nonwhites for those who are

active (solid circles and squares) and for those who are inactive (hollow circles and squares).

Second, we can examine the effects of activity by plotting the discrete change of activity by

race, which is the difference between the curves for whites (solid and open squares) and the

curves for nonwhites (solid and open circles).

— Figure 10 here —

Figure 10 plots Δπ(age=p, active=q,x=x)/Δwhite (see equation 14), which is the

racial difference in the probability of diabetes by level of activity over age. Since adding
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confidence intervals to the figure leads to overlapping lines that are confusing, a dashed

line is used to indicate when a difference is not significant. The graph shows that while

the benefits of being white occur both for those who have an active lifestyle and those who

do not, the strength and timing of the benefits differ by the level of activity. For those

who are not active (open diamonds), the advantages for whites increase from age 50 to 70

before decreasing thereafter. Differences are significant at all ages except 90. For those who

are active (solid diamonds), the same pattern occurs, but the effects are weaker at younger

ages than they are for those who are inactive. The differences increase from age 50 to 80,

becoming statistically significant at age 57. At age 80 the differences begin to decrease and

are no longer significant.

— Figure 11 here —

Figure 11 re-expresses the information from figure 9 to focus on the effects of activity

for each group. While being active benefits members of both groups, the benefits occur

differently for whites and nonwhites. For whites (open triangles) the protective effect of

activity is smaller (i.e., less negative) at younger ages and increases in magnitude until age

90. For nonwhites (solid triangles), the effect gets stronger from age 50 to 60 before decreasing

till age 90; after age 76 the effects are not significant. Tests of racial differences in the effect

of activity are significant at the .10 level between ages 55 and 61, reach significance at the

.05 level at age 58 where the difference reaches its maximum of .044, and are not significant

at other ages. [[xPROVENANCE groups-diabetesV7.do #2.3sup 2018-01-30]]

Finally, another way to think of the effects of race and activity is to note that the health

deficit for being nonwhite is roughly equal to the benefits of being active. This is seen in

figure 9 by comparing the line for inactive whites (hollow squares) and active nonwhites (solid

circles). The probabilities differ by -.01 at age 50 with a maximum of .05 at age 75, but

none of the differences are significant. [[xPROVENANCE groups-diabetesV7.do #2.4sup

2017-05-10 - supplemental results]]

4.2 Tables of probabilities and group differences in probabilities

— Table 4 here —

Tables are an effective way to show how probabilities vary over categories of a few

regressors. Suppose that we are interested in whether racial differences in diabetes vary by

gender and obesity, with a focus on the adverse effects of obesity. One way to approach this

is to compute the probability of diabetes conditional on all combinations of race, gender,
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and obesity, holding other variables at their means. These probabilities are presented in

rows 1 and 2 of columns 1 through 4 in table 4. The last row shows racial differences in the

probabilities of diabetes (see equation 14):

Δπ(female = p, obese = q,x=x)

Δ white

In the rest of this section, we exclude x=x from π() to simplify the notation. While we are

holding other variables at the mean, these variables could be held at other values.

The probabilities of whites being diagnosed with diabetes are smaller than those for

nonwhites for all combinations of obesity and gender. The largest racial differences, shown

in row 3, is −.126 for women who are not obese and the smallest, nonsignificant difference

is −.044 for obese men. We can test whether the racial differences for men and women are

of equal size for a given level of obesity by estimating a second differences (see equation 17):

Δπ(obese = q)

Δfemale Δwhite
=

Δπ(female = 1, obese = q)

Δ white
−

Δπ(female = 0, obese = q)

Δ white

Computing these differences, which are not included in the table, we find that the effect of

race for obese men and women differ by −.068 = (−.112 −−.044) which is significant at the

.02 level. For those who are not obese, the gender difference is smaller and not significant

(p= .13). [[xPROVENANCE groups-diabetesV7.do #3.2a 2018-01-30]]

Next, we consider the effects of obesity on diabetes. The probabilities in rows 1 and

2 of the first four columns show that being obese is associated with a higher incidence of

diabetes. To formalize these findings, we estimate the discrete change of obesity conditional

on gender and race holding other variables at their means (see equation 15):

Δπ(female = p, white = r)

Δ obese

These effects, presented in rows 1 and 2 of columns 5 and 6, show that obesity significantly

increases the probability of diabetes by about .16 for all groups except white men where the

effect is .21. To test if there are racial differences in the effects of obesity, we estimate second

differences (see equation 17):

Δπ(female = p)

Δ obese Δ white
=

Δπ(female = p, white = 1)

Δ obese
−

Δπ(female = p, white = 0)

Δ obese

The results, shown in the last row of columns 5 and 6, indicate that racial differences in

the effects of obesity are small and not significant for women, but larger and marginally

significant for men (p= .09). To test whether the effect of obesity is the same for men and
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women, we estimate the second differences with respect to gender, which are shown in rows

1 and 2 of column 7:

Δπ(white = r)

Δ obese Δ female
=

Δπ(female = 1, white = r)

Δ obese
−

Δπ(female = 0, white = r)

Δ obese

The effect of obesity for whites is .04 larger (p<.001) for men than women, but the gender

difference is small and nonsignificant for nonwhite respondents.

The idea of a second difference can be extended to compare any two effects, such as

whether the effect of obesity is the same for white men and nonwhite women:

Δπ(female = 0, white = 1)

Δ obese
−

Δπ(female = 0, white = 0)

Δ obese

or to test the hypothesis that the effects for all combinations of gender and race are equal:

H0:
Δπ(female = 0, white = 0)

Δ obese
=

Δπ(female = 0, white = 1)

Δ obese

=
Δπ(female = 1, white = 0)

Δ obese
=

Δπ(female = 1, white = 1)

Δ obese

which is rejected at the .001 level. [[xPROVENANCE groups-diabetesV7.do #3.3a 2018-01-

30]]

In table 4 the effects of obesity were computed for each combination of race and gender

holding other variables at their means. While this allows us to make comparisons where

only race and gender change, is it reasonable to estimate effects for each group at the overall

means when table 1 shows significant racial differences in the distribution of the regressors?

An alternative approach that reflects group differences in the distribution of regressors is to

compare the ADC of obesity for each group defined by race and gender. ADCs reflect group

differences in the regressors, but do not show whether the effects of obesity are similar across

groups for individuals with the same characteristics (see section 3.5). Another approach is to

compare the effects for each group holding other variables at the means specific to each group

(see Long and Freese 2014 for a discussion of local means). The most effective approach for

comparing effects depends on the specific questions motivating the research.

4.3 Comparing summary measures of effect

The methods in the last two sections showed how to use predictions and marginal effects to

address specific questions motivating one’s researcher. In this section we consider methods for

summarizing the effect of each regressor across groups. These measures are the counterpart
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to regression coefficients that are routinely used in linear regression to summarize the effect

of each variable, assuming there are no polynomial terms. In logit and probit there are

several measures that should be considered and some that should be avoided. We begin

by comparing marginal effects across groups using discrete changes, which we believe is the

most generally useful approach. Next we examine methods based on the comparison of the

regression coefficients and illustrate their limitations.

4.3.1 Comparing marginal effects

— Table 5 here —

The discrete change at the mean (see equation 3.3) and the average discrete change (see

equation 3.4) are standard measures of the effect of a variable.3 Table 5 contains estimates

for both measures along with racial differences in the effects (see equation 17) and p-values

from testing whether the effects are equal. Consider the ADC of being female from panel 1

of the table. On average being female significantly decreases the probability of diabetes

by .051 (p < .001) for white respondents, with a decrease to .015 (p < .001) for nonwhites.

As shown in columns 5 and 6, these effects differ by .036, which is significant at the .10

level but not the .05 level. The results using the discrete change at the mean from panel

B are nearly identical. The ADC and DCM do not always lead to the same conclusions as

illustrated by the effect of a five-year increase in age. Using the ADC, we conclude that

the average effect of age is significantly larger for nonwhites than whites (p=.002). Using

the DCM, we conclude that for an average respondent the effect of age does not differ for

whites and nonwhites (p=.169). As discussed in section 3.5, conclusions based on ADCs and

DCRs can be quite different depending on the model specification and group differences in

the distribution of regressors. The “best” measure is the one that characterizes that aspect

of groups differences that are of greatest substantive interest. In our experience, it is useful

to compute both the DCM and the ADC. If your conclusions differ depending which measure

you use, determine why the measures differ before using either and then decide which best

answers your research question.

4.3.2 Comparing regression coefficients

Given the complexities of summarizing the effects of regressors using marginal effects on

the probability, tests of the equality of the regression coefficients are appealing in their

3While marginal change showing the instantaneous rate of change in the probability can also be used, we
prefer the discrete change because of its simpler interpretation. If the probability curve is being evaluated in
a region that is approximately linear for a unit change in the regressor, the marginal change will approximate
a discrete change of one.
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simplicity. While such tests are often used, there are several issues to consider. First,

regression coefficients are in a metric that is not as substantively useful as probabilities.

Comparing the effects of xk on y∗ or on the log-odds is rarely as useful as comparing how

a regressor affects the probability. Second, while odds ratios are in a more natural metric

than the log-odds or y∗, odds ratios can be especially misleading in group comparisons. If

the odds ratio for xk is identical for both groups, the effect of xk on the probability can be

very different in the two groups. For example, consider probabilities of the outcome for two

groups at two values of regressor x1:

π(x1 = 0, g = 1) = .2 π(x1 = 0, g = 0) = .010

π(x1 = 1, g = 1) = .4 π(x1 = 1, g = 0) = .026

For group 1, the discrete change of x1 is .2 = .4 − .2 with an odds ratio for x1 of 2.67 =

(.4/.6)/(.2/.8). For group 0, the discrete change is .016 = .026 − .010 with an odds ratio of

2.64 = (.026/.974)/(.01/.99). Even though x1 has a far bigger impact on the probability of

y for group 1 than group 0 (.2 versus .016), the odds ratios are nearly identical for both

groups. Third, if the models includes interactions or polynomials, there is no simple way

to express the total effect of those variables in using regression coefficients or odds ratios,

while marginal effects on the probability can be computed that simultaneously to take into

account all of the coefficients that include the variable. For example, the marginal effect

of age simultaneously accounts for changes in age and age-squared. Finally, even if these

issues are not a concern in your application, you must deal with the scalar identification of

regression coefficients, which we referred to earlier . To illustrate this important issue, we

consider alternative tests of the hypothesis that the regression coefficients for gender and

obesity are equal for whites and nonwhites.

Columns 9 and 10 of table 3 contain results from standard Wald tests of H0: β
W
k =βN

k .

If these tests were appropriate, which they are not due to the scalar identification of the

coefficients, we would conclude that the protective effects of being female are significantly

larger for whites than nonwhites (p<.01) and that the health costs of obesity are significantly

greater for whites than nonwhites (p<.01). This contradicts our conclusions using discrete

changes in table 5. The ADC for obesity is .022 larger for whites than nonwhites, but the

difference is not significant (p = .41); similarly the DCM is .032 larger for whites (p = .26).

The ADC and DCM for being female are about .04 less negative for nonwhites than whites,

but the differences are not significant (p= .09; p= .07).

Allison (1999) showed that standard tests comparing regression coefficients across groups

confound groups differences in the coefficients with groups differences in residual variation

(see section 2). He proposed a test of the equality of coefficients across groups that is unaf-

fected by group differences in unobserved heterogeneity. This is accomplished by assuming
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that the regression coefficients for one or more regressors are equal across groups (see equa-

tion 10). While assuming the equality of regression coefficients across groups deals with the

problem caused by the scalar identification of the coefficients, the results of the test depend

on which variables are assumed to have equal effects. To illustrate this, we test the racial

equality of regression coefficients for gender and obesity using three models that differ by

which coefficients are assumed to be equal across groups.

— Table 6 here —

In model M1 the coefficients for ihsincome are constrained to be equal; in M2 all coeffi-

cients that include age or active are constrained (both age and active are constrained due to

the age by active interaction); and in M3 the coefficients for obese are constrained. Models

in which the regression coefficients for being female, graduating from high school, or being

married were constrained did not converge. The results are shown in table 6. Racial differ-

ences in the regression coefficients for female are significant (p = .013) when constraints are

imposed on coefficients involving either age or active, but not when constraints are imposed

on the coefficients for ihsincome (p= .164) or obese (p= .120). The regression coefficients for

obese are similar in magnitude and not significantly different (p= .810) when the coefficients

for ihsincome are constrained in M1, but the difference is larger and marginally significant

(p= .064) in M2 when the coefficients for age and active are constrained.

Even though conclusions from the tests vary depending on which coefficients are assumed

to be equal across groups, when a single pair of coefficients are constrained to be equal, such

as M1 and M3, the predicted probabilities and marginal effects are exactly equal to those

from the full model. That is, the models are empirically indistinguishable. Williams (2009)

showed that Allison’s test can be computed using the heterogeneous choice model, also know

as the location scale model. A heterogeneous choice model predicting the variance of the

error for each group using a single equality constraint on the coefficients for the regressors

is simply a reparameterization of the model without constraints in coefficients that assumes

unobserved heterogeneity is equal for both groups. When multiple constraints are imposed

as in M2, the predictions have a correlation of .999 with the full model. Williams (2009)

showed that Allison’s approach to allow group differences in unobserved heterogeneity can

be extended by allowing regressors beyond group membership to predict the variance of the

errors. When we attempted Williams’ procedure using different sets of covariates, many

models did not converge and the interpretation of the coefficients of those that did converge

changed based upon the identifying assumptions made.

Allison’s approach deals with the residual variation issue by allowing error variances

to differ by group but requires assuming that the effects of at least one regressor are the
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same across groups. While decisions about which coefficients to constrain can affect the

substantive conclusions, past research or substantive theory is unlikely to provide insights

into which constraints should be used and there is no statistical test to help you decide which

coefficients should be assumed to be equal. Making an ad hoc decision that some regression

coefficients are equal can lead to incorrect conclusions. In our applications, we did not have

substantive reasons to constrain particular coefficients and tried multiple specifications that

lead to substantively quite different conclusions. The risk of specifying the inappropriate

identifying assumptions does not exist at the level of the probabilities. More importantly

from our perspective, tests of the equality of effects across groups are most useful when those

effects are measured in the metric of the probability of the outcome.

5 Generalizations to other regression models

While our paper focuses comparing groups using the binary logit and probit models, our

methods can be used with any regression model where predictions and marginal effects can

be estimated along with standard errors. For example, in models for categorical outcomes

with more than two categories, our methods can be used for the probability of each outcome.

In models where the regression coefficients are the effects of interests, such as the linear

probability model where the coefficients equal discrete changes for a unit increase in the

regressor, our methods are equivalent to those obtained by testing the equality of regression

coefficients. In linear models where nonlinearities are introduced by transformations of

the dependent variable (e.g., lny) or by polynomials or interactions among the regressors,

our approach provides insights that go beyond those provided by tests of the regression

coefficients. For example, if we used a linear probability model for diabetes, we would

include age and age-squared as regressors due to the quadratic relationship between age and

diabetes. For example, suppose that we have the linear probability model

Group 0: y = β0
0 + β0

xx + β0
x2x2 + β0

zz + ε0 (20)

Group 1: y = β1
0 + β1

xx + β1
x2x2 + β1

zz + ε1 (21)

Since x and x2 are on the right hand side of the equation, the marginal effect of x depends

on βg
x and βg

x2 as well as the values of x and z. In this case, testing the group equality of

marginal effects is more useful than testing the equality of regression coefficients. If x2 is

not in the model, our approach is equivalent to testing if β0
x = β1

x.
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6 Conclusions

In this paper we have developed methods for comparing groups using predicted probabilities

and marginal effects on probabilities for the binary regression model. Since the model is

nonlinear, conclusions on whether groups differ in the probability of the outcome or in the

effect of a regressor depend on where in the data the groups are compared and how the effects

of regressors are summarized. Deciding how to make comparisons requires careful consider-

ation based on a substantive understanding of the process being modeled and the questions

being asked. While this is much harder than routine tests of the equality of regression coeffi-

cients, the more complex task of comparing predictions and marginal effects provides greater

substantive insights that reflect the complexity of the substantive application.

While our examples are relatively simple, the same methods can be used with any

number of groups and in models with many regressors including higher order interactions.

In models such as binary logit or ordinal probit, an advantage of our approach is that it

deals with issues of identification without additional, untestable assumptions. But, even in

models where the regression coefficients are identified, comparing groups using predictions

and marginal effects have advantages in any model in which the outcome has a nonlinear

relationship with regressors, including linear regression. Further, our methods can be extended

beyond testing for group differences to interpreting interactions more generally, such as

dichotomous by dichotomous interactions, continuous by continuous interactions, and three-way

interactions. In general, the methods we have developed can effectively used in any model

where your software can make predictions and estimate marginal effects.

References

Agresti, A. 2013. Categorical Data Analysis. 3rd Edition. Third edition ed. New York: Wiley.

Ai, C., and E. C. Norton. 2003. Interaction terms in logit and probit models. Economics

letters 80(1): 123–129.

Allison, P. D. 1999. Comparing logit and probit coefficients across groups. Sociological

Methods & Research 28(2): 186–208.

Amemiya, T. 1981. Qualitative response models: a survey. Journal of Economic Literature

19: 1483–1536.

Bender, R., and O. Kuss. 2010. Methods to calculate relative risks, risk differences, and

26



numbers needed to treat from logistic regression. Journal of clinical epidemiology 63(1):

7.

Bishop, Y., S. Fienberg, and P. Holland. 1975. Discrete Multivariate Analysis: Theory and

Practice. Cambridge, MA: MIT Press.

Breen, R., A. Holm, and K. B. Karlson. 2014. Correlations and nonlinear probability models.

Sociological Methods & Research 43(4): 571–605.

Breen, R., and K. B. Karlson. 2013. Counterfactual Causal Analysis and Nonlinear Proba-

bility Models, 167–187. Dordrecht, Netherlands: Springer.

Buis, M. L. 2010. Stata tip 87: Interpretation of interactions in non-linear models. The stata

journal 10(2): 305–308.

Burbidge, J. B., L. Magee, and A. L. Robb. 1988. Alternative transformations to handle

extreme values of the dependent variable. Journal of the American Statistical Association

83(401): 123–127.

Chow, G. 1960. Tests of equality between sets of coefficients in two linear regressions.

Econometrica 28: 591–605.

Health and Retirement Study. 2006. Public use dataset. Ann Arbor, MI.: Produced and

distributed by the University of Michigan with funding from the National Institute on

Aging (grant number NIA U01AG009740).

Hummer, R. A., M. R. Benjamins, and R. G. Rogers. 2004. Critical Perspectives on Racial

and Ethnic Differences in Health in Late Life, chap. Racial and Ethnic Disparities in

Health and Mortality Among the U.S. Elderly Population. Washington, DC: National

Academies Press.

Kendler, K. S., and C. O. Gardner. 2010. Interpretation of interactions: guide for the

perplexed. The British Journal of Psychiatry 197(3): 170–171.

Kuha, J., and C. Mills. 2018. On group comparisons with logistic regression models. Socio-

logical Methods & Research 1–28.

Landerman, L. R., S. A. Mustillo, and K. C. Land. 2011. Modeling repeated measures of

dichotomous data: testing whether the within-person trajectory of change varies across

levels of between-person factors. Social science research 40(5): 1456–1464.

27



Leeper, T. J. 2016. margins: An R port of Statas margins command. R package version

0.2.0.

Liao, T. F. 2002. Statistical Group Comparison, vol. 29. New York: Wiley.

Long, J. S. 1997. Regression Models for Categorical and Limited Dependent Variables, vol. 7

of Advanced Quantitative Techniques in the Social Sciences. Thousand Oaks, CA: Sage.

. 2005. Group comparisons in nonlinear models using predicted outcomes.

. 2009. Group comparisons in logit and probit using predicted probabilities.

Long, J. S., and J. Freese. 2006. Regression Models for Categorical Dependent Variables

Using Stata. Second Edition. College Station, Texas: Stata Press.

. 2014. Regression Models for Categorical Dependent Variables Using Stata. Third

Edition. College Station, Texas: Stata Press.

Maddala, G. 1983. Limited-dependent and Qualitative Variables in Econometrics. Cam-

bridge: Cambridge University Press.

Markides, K. S., L. Rudkin, R. J. Angel, and D. V. Espino. 1997. Health status of Hispanic

elderly. Racial and ethnic differences in the health of older Americans 285–300.

McKelvey, R. D., and W. Zavoina. 1975. A statistical model for the analysis of ordinal level

dependent variables. Journal of Mathematical Sociology 4: 103–120.

Mood, C. 2010. Logistic Regression: Why We Cannot Do What We Think We Can Do, and

What We Can Do About It. European Sociological Review 1–16.

Mustillo, S., L. R. Landerman, and K. C. Land. 2012. Modeling longitudinal count data:

Testing for group differences in growth trajectories using average marginal effects. Socio-

logical Methods & Research 41(3): 467–487.

Norton, E. C., M. M. Miller, L. C. Kleinman, et al. 2013. Computing adjusted risk ratios

and risk differences in Stata. Stata J 13(3): 492–509.

Norton, E. C., H. Wang, and C. Ai. 2004. Computing interaction effects and standard errors

in logit and probit. The Stata Journal 4(2): 154–167.

Pi-Sunyer, F. X., D. M. Becker, C. Bouchard, R. Carleton, G. Colditz, W. Dietz, J. Foreyt,

R. Garrison, S. Grundy, B. Hansen, et al. 1998. Clinical guidelines on the identifica-

tion, evaluation, and treatment of overweight and obesity in adults. American Journal of

Clinical Nutrition 68(4): 899–917.

28



RAND. 2014. RAND HRS Data, Version N. Santa Monica, CA: Produced by the RAND

Center for the Study of Aging, with funding from the National Institute on Aging and the

Social Security Administration.

StataCorp. 2015a. Stata 14 Survey Data Reference Manual. College Station, TX: Stata

Press.

. 2015b. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.

West, B. T., P. Berglund, S. G. Heeringa, et al. 2008. A closer examination of subpopulation

analysis of complex-sample survey data. Stata J 8(4): 520–531.

Williams, R. 2009. Using Heterogeneous Choice Models to Compare Logit and Probit Coef-

ficients Across Groups. Sociological Methods & Research 37(4): 531–559.

Zhang, Q., Y. Wang, and E. S. Huang. 2009. Changes in racial/ethnic disparities in the

prevalence of Type 2 diabetes by obesity level among US adults. Ethnicity & health 14(5):

439–457.

29



7 Figures

Figure 1: The link between y∗ = β0 + β1x + ε and Pr(y = 1 | x) with Var(ε) = σ2.
[[PROVENANCE groups-didactic-probV1.do 2018-01-30]]
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Figure 2: The link between δy∗ = (δβ0)+(δβ1)x+δε and Pr(y=1 | x) with Var(δε) = δ2σ2.
[[PROVENANCE groups-didactic-probV1.do 2018-01-30]]
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Figure 3: Group comparisons of probabilities and marginal effects. [[PROVENANCE groups-
didactic-AMEvMEMV12.do 2017-11-29]]
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Figure 4: Group differences in the discrete change of age. [[PROVENANCE groups-didactic-
AMEvMEMV12.do 2017-11-29]]
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Figure 5: Probability of good health for whites and nonwhites by age. [[PROVENANCE
groups-goodhlthV7.do #2.1 2018-01-30]]
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Figure 6: Racial differences in good health by age. [[PROVENANCE groups-goodhlthV7.do
#2.1 2018-01-30]]
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Figure 7: Probability of diabetes for whites and nonwhites by age. [[PROVENANCE
groups-diabetesV7.do #2.1 2018-01-30]]
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Figure 8: Racial differences in diabetes by age. [[PROVENANCE groups-diabetesV7.do
#2.1 2018-01-30]]
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Figure 9: Probability of diabetes for blacks and whites by age and physical activity.
[[PROVENANCE groups-diabetesV7.do #2.3 2018-01-30]]
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Figure 10: Racial differences in diabetes by age and physical activity. Dashed lines indicate
that the difference in probabilities is not significant at the .05 level. [[PROVENANCE
groups-diabetesV7.do #2.3a 2018-01-30]]

0
.1

.2

P
r(

D
ia

be
te

s 
| N

on
w

hi
te

)
- 

P
r(

D
ia

be
te

s 
| W

hi
te

)

50 60 70 80 90

Age

Active Inactive

34



Figure 11: Effects of activity by race and age. Dashed lines indicate that the difference
in probabilities is not significant at the .05 level. [[PROVENANCE groups-diabetesV7.do
#2.3b 2018-01-30]]
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8 Tables

Table 1: Descriptive statistics (N=16,226) [[PROVENANCE groups-descriptiveV7.do #2,
3, 4 2018-01-29]]

White Nonwhite Difference†

Standard Standard
Variable Mean Deviation Mean Deviation ΔMean p

goodhlth 0.769 —— 0.565 —— 0.205 <.001
diabetes 0.162 —— 0.281 —— -0.120 <.001

female 0.532 —— 0.575 —— -0.043 <.001
highschool 0.853 —— 0.563 —— 0.289 <.001

married 0.692 —— 0.541 —— 0.150 <.001
income 74.280 99.389 41.013 58.376 33.268 <.001

ihsincome 4.523 1.001 3.809 1.164 0.714 <.001
age 66.514 10.421 64.099 9.677 2.415 <.001

active 0.303 —— 0.223 —— 0.080 <.001
obese 0.286 —— 0.390 —— -0.104 <.001

N 12,427 3,799

Note: † ΔMean is the group difference in the means; p is the significance level
from testing if means are equal.
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Table 2: Logit model for good health (N=16,226). [[PROVENANCE groups-goodhlthV7.do
#1.1, 1.2 2018-01-29]]

White Nonwhite H0: βW =βN

Variable 1: βW 2:ORW 3: t 4: p 5: βN 6:ORN 7: t 8: p 9: F 10: p

Constant -0.488 —— -1.75 0.086 -1.541 —— -4.00 <.001 4.71 0.034
female 0.144 1.155 2.89 0.006 -0.118 0.888 -1.37 0.176 6.96 0.011

highschool 0.800 2.225 13.45 <.001 0.816 2.262 9.19 <.001 0.02 0.891
married -0.056 0.945 -0.96 0.341 -0.169 0.844 -1.56 0.124 0.70 0.406

ihsincome 0.556 1.744 15.67 <.001 0.583 1.792 10.06 <.001 0.16 0.695
age -0.018 0.982 -6.17 <.001 -0.008 0.992 -1.83 0.072 3.47 0.068

obese -0.573 0.564 -11.16 <.001 -0.361 0.697 -3.25 0.002 3.10 0.084

Note: OR is the odds ratio. Tests of H0: βW =βN are shown for didactic purposes.

Table 3: Logit model for diabetes (N=16,226). [[PROVENANCE groups-diabetesV7.do
#1.1, 1.2 2018-01-30]]

White Nonwhite H0: βW =βN

Variable 1: βW 2:ORW 3: t 4: p 5: βN 6:ORN 7: t 8: p 9: F 10: p

Constant -9.627 —— -6.66 <.001 -11.169 —— -5.79 <.001 0.40 0.529
female -0.400 0.670 -6.53 <.001 -0.079 0.924 -0.80 0.427 7.27 0.009

highschool -0.253 0.776 -3.60 0.001 -0.142 0.867 -1.42 0.160 0.92 0.342
married 0.070 1.073 0.98 0.333 0.064 1.066 0.60 0.548 0.00 0.960

ihsincome -0.189 0.828 -5.50 <.001 -0.131 0.877 -3.93 <.001 1.61 0.210
age 0.243 1.274 6.18 <.001 0.299 1.348 5.36 <.001 0.65 0.422

agesq -0.002 0.998 -5.97 <.001 -0.002 0.998 -5.15 <.001 0.78 0.382
active -4.048 0.017 -1.04 0.302 -2.557 0.078 -0.42 0.678 0.04 0.849

activeXage 0.115 1.122 0.98 0.331 0.052 1.053 0.28 0.783 0.07 0.791
activeXagesq -.0009 0.999 -1.02 0.310 -.0003 1.000 -0.21 0.835 0.11 0.737

obese 1.163 3.199 17.01 <.001 0.740 2.095 6.59 <.001 9.35 0.003

Note: OR is the odds ratio. Tests of H0: βW =βN are shown for didactic purposes.

Table 4: The effects of obesity on diabetes by race and gender. [[PROVENANCE groups-
diabetesV7.do #3.1-3.4 2018-01-30]]

Probability of diabetes

Women Men Effect of obesity

1:Obese 2:Not 3:Obese 4:Not 5:Women 6:Men 7: Difference

1:White 0.278 0.107 0.365 0.152 0.170∗ 0.212∗ -0.042∗

2:Nonwhite 0.389 0.233 0.408 0.248 0.156∗ 0.161∗ -0.005

3:Racial difference -0.112∗ -0.126∗ -0.044 -0.096∗ -0.014 -0.052† -0.038∗

Note: Other variables held at their means. ∗ = p<.01; † = p<.10 for two-tailed test.
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Table 5: Average discrete change and discrete change at the means for logit model for
diabetes (N=16,226). [[PROVENANCE groups-diabetesV7.do #4.1, 4.2 2018-01-30]]

Panel 1: Average discrete change

White Nonwhite Difference

Variable 1:ADCW 2: p 3:ADCN 4: p 5:ADC 6: p

female -0.051 <0.001 -0.015 0.431 -0.036 0.089
highschool -0.033 0.001 -0.027 0.160 -0.006 0.763

married 0.009 0.330 0.012 0.546 -0.003 0.875
ihsincome -0.022 <0.001 -0.024 <0.001 0.002 0.779

age 0.011 <0.001 0.027 <0.001 -0.016 0.002
active -0.053 <0.001 -0.084 <0.001 0.031 0.110
obese 0.169 <0.001 0.146 <0.001 0.022 0.408

Panel B: Discrete change at the mean

White Nonwhite Difference

Variable 1:DCMW 2: p 3:DCMN 4: p 5:DCM 6: p

female -0.057 <0.001 -0.016 0.431 -0.041 0.070
highschool -0.038 0.001 -0.029 0.162 -0.008 0.716

married 0.010 0.328 0.013 0.545 -0.003 0.895
ihsincome -0.025 <0.001 -0.026 <0.001 0.001 0.916

age 0.014 <0.001 0.023 <0.001 -0.009 0.169
active -0.049 <0.001 -0.083 0.006 0.034 0.319
obese 0.190 <0.001 0.158 <0.001 0.032 0.264

Note: The effect of age is for a five-year change.

Table 6: Testing the equality of regression coefficients in models for diabetes (N=16,226).
[[PROVENANCE groups-diabetesV7.do #5.1 5.2a,b,c 2018-01-30]]

Coefficients constrained to be equal

Full model M1: ihsincome M2: age, active† M3: obese

Variable Δβ p Δβ p Δβ p Δβ p

female -0.321 0.009 -0.199 0.164 -0.363 0.013 -0.176 0.120
obese 0.423 0.003 0.069 0.810 0.530 0.064 0.000‡ 1.000‡

Note: Results for the full model are from table 3. Tests from models with coefficients
constrained to be equal were estimated with a location scale model. † All coefficients
involving age and/or active are constrained to be equal. ‡ Coefficient for obese are
constrained to be equal.
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