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Part 1: Introduction to CDA
Read

Long & Freese: Chapters 1 and 2

What is this class about?
1.The most fundamental regression models for categorical outcomes

0 Models for cross-sectional data generalize to panel, hierarchical structures,
and more

2.Telling a story with data in the presence of nonlinearity
O Interpretations that go beyond signs and stars
3.How you interpret models depends on the software used

0 If post-estimation analysis is hard, you are unlikely to do it
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Models for categorical outcomes are nonlinear

1. Nonlinear models are implicitly interactive

0 Nonlinearity is in the form of the model, not product terms (e.g., x1*x2)

2. The effect of a regressors depends on:

0 The value of the regressor
0 The values of all other regressors

3. With the LRM, the work is largely done when you estimate the model
0 Unless you add nonlinearities on the RHS
4. With CDA, the work begins when you estimate the model

0 Why does nonlinearity make things so hard (and realistic)?
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Linear model

y=a+px+yd

E(y [ x,d)

linear frame-nonlinV1.do jsl 2015-02-13
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Inherently nonlinear model

_exp(a+fx+yd)
B L+exp(a+ fx+yd)

— 4

n(x,d)

nonlinear frame-nonlinV1.do jsl 2015-02-13

Part 1: Introduction to CDA Page 4

RHS (right-hand-side) variables are linear combinations
1. Notation
a. xB=a+px
b. x,p=p,+pAge + f,Income,
C. xB=p+Bx; + Xt B X
2. Linear combinations can include
a. Indicator variables (binary indicators of characteristics)
b. Interaction variables (products of variables)
2

c. Transformed regressors such as X, = /W, or X, =W,

3. With CDA, these tricks lead to unexpected subtleties
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Topics considered

Models

1. Continuous outcomes: linear regression

2.Binary outcomes: binary logit and probit

3. Nominal outcomes: multinomial logit

4. Ordinal outcomes: ordinal logit and probit

5. Count outcomes: Poisson regression, negative binomial, ZIP/ZINB
Methods

1. ML estimation and estimation with complex samples
2.Wald and LR tests

3. Measures of internal and external fit

Interpretation
1. Parameters

2. Predictions
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What are your applications?
1.Think of examples you are interested in

0 Translate my example into your example
2.Read published papers using each methods

0 Collect exemplars

Part 1: Introduction to CDA
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Overview of the models we consider

Linear regression model (LRM)

Examples of outcomes

1.Income: income; log of income.

2. Prestige of graduate program: Scale from 100 to 500.

3. Number of friends: How many close friends do you have?

4. Health index: sum of ordinal indicators of health.

Part 1: Introduction to CDA
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Binary regression models (BRM)
1. Logit or logistic regression

2. Probit

3.* Linear probability model

Examples

1.Job status: Did a person quit her job?

2. Voting: Did someone vote? Democrat or Republican?

3.Schooling: Does a high school student decide to go on to college?
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Nominal regression models (NRM)
1. Multinomial logit
2.* Conditional logit

Examples

1. Occupation: manual; craft; white collar; blue collar; pink collar; professional

2. Marital status: single; married; divorced; widowed

3. Preferred job location: West; Midwest; South; Northwest; Northeast
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Ordinal regression models (ORM)
1.Ordinal logit and probit

2.* Generalized ordered logit

3. * Stereotype model; continuation ratio model; adjacent category model

Examples
1. Political party: 1=Strongly Democrat to 5=Strongly Republican

2. Likert scale on attitudes toward working mothers: 1=SA; 2=A; 3=D; 4=SD.

3. Rank attainment: 1=Assistant Prof.; 2=Associate Prof.; 3=Full Prof.

4. Social class: 1=lower; 2=middle; 3=upper.

Part 1: Introduction to CDA
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Count regression model (CRM)

1. Poisson regression

2. Negative binomial

3. Zero-inflated models

4. * Truncated and hurdle regression

Examples

1. Strikes: How many strikes occurred?

2. Articles: How many articles did a scientist publish?

3. Demonstrations: How many political demonstrations occurred?

4. Number of extramarital affairs or number of partners

Part 1: Introduction to CDA
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Measurement of the outcome

1.Models are characterized by the level of measurement of the outcome

2.1f you assume the wrong level of measurement
Bias: on average the wrong answer
Inefficiency: not using the data as well as you could
Inappropriate answers

3.What is the true level of measurement?

“Assumptions that a variable is somehow ‘intrinsically’ interval
(ordinal, nominal) are analytically misleading.” - Lew Carter, Social
Forces 1971

4.\What makes a variable ordinal? Nominal?

0 What level of measurement does the concept education have?
0 Is scientific productivity continuous?

Part 1: Introduction to CDA
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Examples in lectures

1. The do-files for the results in lectures are available, but are often more

complex than you need

2.Shorter versions are provided that you must run these before you start your

assignments
o cdalec*-<topic>—<dataset>.do
0 Ildeally, use these as templates for your analysis

3.The output in the lectures is sometimes edited

Part 1: Introduction to CDA
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Math and CDA

Read and run
cdaiu math review 2007.pdf

Objectives

1. Getting comfortable with notation is critical.

2. 0vercoming math anxiety: How do you "learn" math?
a. Lewis Carol
b.Sir Isaac Newton
c. John Von Neumann had some advice...

3. How would you graph your understanding over time?

Part 2: Linear regression
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John von Neumann (1903-1957)

The world's smartest man. --Time Magazine

.

In mathematics you don't understand things.
You just get used to them. --John Von Neumann

Part 2: Linear regression
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From simple to complex
1.The same rules apply
0 A simple equation
X=Yy
0 A complex equation
y=b, +bXx +bXx, +---+u

2.Don't confuse messy with hard!

Part 2: Linear regression
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Basic Rules
Distributive law
Simple
ax(b+c)=(axb)+(axc)
4x(2+3)=(4x2)+(4x3)
Complex

(¢71 _¢2)(ﬁ0+ﬂlxl +ﬂzxz):(¢1 _¢72)A
= A-p,A

=@ (ﬂ0+ﬂlxl +:32X2)_§02 (ﬂo + 8% +:32X2)

=[@.B, + 08X + 0. .% |~ [0.8, + 0. BX, + 0, 5%, |

Part 2: Linear regression
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Multiplying by 1

a a k a ka
— =l X—=—X—=—
b b k b kb

21,242 4x2 8 2
3 3 4 3 4x3 12 3
Adding 0

y=0+y

Yi =By + BXi + Py, + &
=0+ 4, + L)X, + P, + &
=(6=8)+ Sy + X + BoXiy +
=(B) +0)+ by + BXy + o X, + (&= 0)

= IBJ +:leil +:82Xi2 +gi*
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Part 2: Linear regression

Read and run
Long & Freese  Chapters3and 4

cdalec*.do Irm-anscombe.do, Irm-regjob.do, Irm-science.do,
Irm-slid-ontario-.do

Objectives

1. Establish notation and terminology

2.Reinforce the ideas of linearity and nonlinearity
3. Explain the concept of identification

4. Introduce maximum likelihood estimation

5. Introduce m* commands for post-estimation
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Notation

Outcome = linear combination + error
1Ly, =a+pX+¢

2. Occupation = g, + g,Education + g,ParentEd + g,ParentOcc + ¢

3. Yi=xB+g
B
:[1 Xi1 ...XiK] :ﬁl +e :ﬂo+ﬁlxil+.”+ﬂKXiK+gi
P

€ is unexplained variation
1.Randomness

2.Unobserved heterogeneity.
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Assumptions

1. Linearity 2. Not perfect collinearity
3. E(e]x)=0 4. Homoscedasticity
5. Uncorrelated errors 6. Normality

0 1 2 3 4 5 6 7 8 9 10

Irm-betas brmirm-3xsV3.do jsl 2015-01-23
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Conditional mean error and identification
An important concept for understanding the BLM
1. We assume the average error is 0:
E(é‘i | xi) =0
2.This implies
E(y Ix;)=E(xB+¢|x;)
=xB+E(g1x)=xp=7Y,

3.How do you know the error is on average 0?
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Identification: a pre-requisite to estimation

You can estimate B but not a.

— E(yK)=a+px .
—== Fitted regression

-

—

Actual grades

GPA

Hours studied per week
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General principles of identification

1. An unidentified parameter cannot be estimated with more data.

0Doubling the data does not help.
2.Parameters are identified by:

a.Adding assumptions.

b.New kinds of data.

3. Identification is not all or nothing: Some parameters can be identified while
others are not.

4. Combinations of unidentified parameters can be identified, while the individual
parameters are not.

a+6 is identified, but a or § are not individually identified.
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Interpretation with marginal effects
1. Marginal effects measure

0 How much the outcome changes
o for a change in one regressor
0 holding other regressors constant.

2.Two types of marginal effects
a. Discrete change in  as a regressor changes by a fixed amount.

b. Marginal change in Y for an infinitely small change in a regressors.
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Discrete change in E(y|x)

1.Starting at E(y | X, X3): expected value before change in x3
2.Ending at E(y |X, X, + 1): expected value after change in xs.
3.The discrete change for a change of 1 in xs:

7AE( Ll:’ x) = Ending — Starting = /3,
=E(y|x,%+1)—E(y|x,x,)
:[,BO + X+ ByX, + By (X +1)}7[,BO + B X+ ByX, +@J
=p
4.The change does not depend on
a. The specific value of x3
b.The specific values of the xi's that are held constant

5. Graphically,...
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Discrete change

0 1 2 3 4 5 6 7 8 9 10

Irm-betas brmIrm-3xsV3.do js| 2015-01-23
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Marginal change in E(y|x)

1.The instantaneous rate of change in the expected value of y as xi changes,
holding other x’s constant

6E(y|x):ﬂ:ﬁ

OX, OX,
2.The marginal change is the slope at a specific location
3.In the LRM, the marginal does not depend on
a. The value of xx

b.The values at which other x's are held constant
Marginal and discrete change in LRM

In linear models (without interactions)

6E(y|x):AE(y|x)
OX, AX,

k
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Simple interpretation due to linearity

Continuous variables

1.For a unit increase in xi the expected change in y is Bk, holding other variables
constant.

2. For each additional year of education, income is expected to increase by
$1,400, holding other variables constant.
Dummy variables coded as 0 and 1:

1. Having characteristic xx (as opposed to not having the characteristic) results in
an expected change of Bk in y, holding other variables constant.

2.Being a female decreases the expected salary by $1,400, holding other
variables constant.
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Can you hold other variables constant?

1.These interpretations assume one variable changes without changing other
variables

2. With linked variables this is mathematically impossible
0 x and x?> must change together
3. More generally

0 Does it make substantive sense to change one regressor holding others
constant?

0 Can you increase education holding everything else constant?
What does it mean when we say a variable is changing?

1. What does the counterfactual mean: increasing a person's education while
holding income and occupation constant?

2.Does it make sense to imagine changing gender?
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Example: academic job prestige (-lrm-regjob.do)

#1 Descriptive statistics

. use regjob3, clear
(Long"s data on academic jobs of biochemists \ 2009-03-13)

. codebook job100 fem phd100 ment fel art cit, compact

Variable Obs Unique Mean Min Max Label

jobl00 408 80 223.3431 100 480 Prestige of 1st job on 100 to...
fem 408 2 .3897059 0 1 Gender: 1=female O=male

phd100 408 89 320.0564 100 480 PhD prestige on 100 to 500 scale
ment 408 123 45.47058 0 531.9999 Citations received by mentor

fel 408 2 .6176471 0 1 Fellow: 1=yes 0O=no

art 408 14 2.276961 0 18 # of articles published

cit 408 87 21.71569 0 203 # of citations received

In serious research, the variables would be carefully examined before
modeling begins.
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#7 Estimating the LRM

<cmd> <lhs> <rhs> [, <options>]

. regress jobl00 i.fem c.phd100 c.ment i.fel c.art c.cit

Source | SS df MS Number of obs = 408
- e e e EE L P e P e P Pt F(6, 401) = 17.78
Model | 810584.791 6 135097.465 Prob > F = 0.0000
Residual | 3047379.21 401 7599.44941  R-squared = 0.2101
- B et et ] Adj R-squared = 0.1983
Total | 3857964 407 9479.02704 Root MSE = 87.175
Job100 | Coef.  Std. Err. t P>]t] [95% Conf. Interval]
- e
fem |
1Female | -13.91939 9.023442 -1.54 0.124 -31.65856 3.819769
phd100 | .2726826 .0493183 5.53  0.000 .1757278 .3696375
ment | .1186708 .0701164 1.69 0.091 -.0191709 .2565125
fel |
1Fellow | 23.41384  9.482065 2.47 0.014 4.773075 42.05461
art | 2.280112  2.888427 0.79 0.430 -3.398239 7.958464
cit | .4478843 -1968665 2.28 0.023 .060865 .8349036
_cons | 106.7184  16.61357 6.42  0.000 74.05785 139.379
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Factor-variables notation

1. i .varname creates indicator variables of all but the base category of varname
o i .Tem has some advantages over fem when using margins
2.For i .Tem:
a. 1.femequals1if femis 1.
b. O.Ffemequals 1if femis 0.
3.For i .agecat, 2.agecat and 3.agecat indicate if agecatis 2 or 3

Continuous variables

1. By default a variable is not an indicator variable
2.To make this explicit, use c.varname
c.art could have been specified art

Interpretations follow...
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Interpreting unstandardized coefficients

1.Being a female scientist decreases the expected prestige of the first job by
14 points on a 400 point scale, holding other variables constant.

job100 | Coef. Std. Err. t P>]t] [95% Conf. Interval]

fem | -13.91939 9.023442 -1.54 0.124 -31.65856 3.819769

2. For each additional citation, the prestige of the first job is expected to increase
by .45 units, holding other variables constant.

job100 | Coef. Std. Err. t P>]t] [95% Conf. Interval]
cit | .4478843  .1968665 2.28 0.023 .060865 .8349036
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Standardized coefficients

1.Standardized coefficients are often used to interpret the LRM.

2.In binary & ordinal models, standardization is required due to identification.
Tool: Standardizing to 1

1.Standard deviation of xc:  sd(xk) =0

2.Standard deviation of axx: sd(axc)=ac

3.Then: sd(1/ox¢)=(1/0)sd(x)=0/c=1
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#8 Standardizing variables

. egen jobl00std = std(job1l00) // jobl00O standardized
. egen artstd = std(art) // articles standardized
. sum jobl00 jobl0OOstd art artstd

Variable | Obs Mean Std. Dev. Min Max

- e
job100 | 408 223.3431 97.36029 100 480
job100std | 408  -8.73e-09 1 -1.266873 2.636156
art | 408 2.276961 2.256143 0 18

artstd | 408 -1.68e-08 1 -1.009227 6.968991

* unstandardized variables
regress job100 fem phd100 ment fel art cit

* none standardized
regress jobl00 fem phd100 ment fel art cit

* y & x standardized
regress jobl00std fem phd100 ment fel artstd cit

* x standardized
regress job100 fem phd100 ment fel artstd cit

* y standardized
regress jobl1l00std fem phd100 ment fel art cit

This is what listcoef does
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#7 Standardized coefficients with listcoef

. listcoef, cons help
regress (N=408): Unstandardized and Standardized Estimates

Observed SD: 97.360295
SD of Error: 87.174821

job100 | b t P>|t] bStdX bStdY  bStdXY SDofX
- e
fem | -13.91939 -1.543 0.124 -6-7966 -0.1430 -0-0698 0.4883
phd100 | 0.27268 5.529 0.000 26.0071 0.0028 0.2671 95.3751
ment | 0.11867 1.692 0.091 7.7765 0.0012 0.0799 65.5299
fel | 23.41384 2.469 0.014 1313922 0.2405 0.1170 0.4866
art | 2.28011 0.789 0.430 5.1443 0.0234 0.0528 2.2561
cit | 0.44788 2.275 0.023 14.8070 0.0046 0.1521 33.0599
_cons | 106.71842 6.424  0.000
b = raw coefficient
t = t-score for test of b=0
P>|t] = p-value for t-test
bStdX = x-standardized coefficient
bStdY = y-standardized coefficient
bStdXY = fully standardized coefficient
SDofX = standard deviation of X
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y-standardized coefficients

regress jobl1l00std fem phdl100 ment fel art cit

Standardize y to a unit variance:
£
Vb By B P E
o

GY O-y GV y O-y Gy

:ﬂosy +ﬂ15yxl +:B25yxz +:H35yxs +&%

For a continuous variable

For a unit increase in xi, y is expected to change by ,@Sy standard deviations,
holding other variables constant.

For a dummy variable

Having characteristic xi (as opposed to not having it) results in an expected

changeiny of,ﬁfystandard deviations, holding other variables constant.
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Examples

1.Being a woman decreases the expected prestige of the first job by .14 standard
deviations, holding other variables constant.

Job100 | b t P>]t] bStdX bStdY  bStdXY SDofX
- A
fem | -13.91939 -1.543 0.124 -6.7966 -0.1430 -0.0698 0.4883

2. For every additional citation, the prestige of the first job is expected to
increase by .005 standard deviations, holding other variables constant.

job100 | b t P>t bStdX bStdY  bStdXY SDofX
- e
cit | 0.44788 2.275 0.023 14.8070 0.0046 0.1521 33.0599
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Fully standardized ("beta") coefficients

regress jobl100std fem phdl100 ment fel artstd cit

Combine y and x's standardization:

_X_ = fZ&.+ fﬂfZL -KL-F fZQZZL 2£L.+ fZifZL 2&14__5_

o, o, o, Jo, o, Jo, o, Jo, ©

=B A BIX +BEXS + BXS + &

y

For a continuous variable

For a standard deviation increase in xy, y is expected to change by ,Bks standard
deviations, holding other variables constant.

0 For every standard deviation increase in citations, the prestige of the first job

constant.
job100 | b t P>1t] bStdx bStdY  bStdXY SDofX

+
cit | 0.44788 2.275 0.023 14.8070 0.0046 0.1521  33.0599
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Linear and nonlinear models

A: Linear model B: Nonlinear model
" 3

g 5“7 5
— X
> E®
w ~

o = 52

0 1 2 3 4 5 0 1 2 3 4 5
X X

linear frame-nonlinV/1.do js| 2015-02-13 nonlinear frame-nonlinV1.do js| 2015-02-13
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Nonlinear compared to linear models

Marginal effect of xk in linear models
1.The size of the effect does not depend on the value of x
2.The size of the effect does not depend on the values of other x's
3. Marginal change and discrete change are equal
GE() _ AE()

OXy AX,
Marginal effect of xx in nonlinear models
1.The size of the effect does depend on the value of x
2.The size of the effect does depend on the values of the other x's
3. Marginal and discrete change are usually unequal
OE(-) AE()

—_—

OX, AX,
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Nonlinear linear regression models
1. By transforming regressors, effects of variables can be “nonlinear”
2.The x's enter in the linear form X = Bo+ Bix1 + Baxa +...

3.But the x's can be transformations of variables, such as.

y:ﬂ0+ﬂlwl +ﬁ2W12+5

Quadratic:
=B+ BX +BoX, ¢
=B + X+ S,JW, +&
Square root: =Byt B+ P W,

=L+ BX + BoX, +e&

Loglinear:  y=Inz=/f+BX + X, +¢&
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Loglinear models: essential for later models
1.Review: exp(a+b) =exp(a) exp(b)
log[exp(a+b)]=a+b

2. An exponential model is multiplicative on the y metric

y= exp(ﬁ0 + BX + ByX, +g)

= exp(ﬁo)exp(ﬂlxl)exp(ﬂzxz)exp(g)

3.Taking the log makes the model loglinear on the log(y) metric

ln(y) = ln[exp(ﬁo + B X, + By X, +£)]

=Ly +BX + L% +¢

4.B1is interpreted as:

0 For a unit increase in x1, the log of y is expected to increase by B1 units,
holding other variables constant.

5.A change in the log of y is often substantively unclear
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Interpreting loglinear models with factor change
What is a "factor change"?

y =10.
Factor change of 2: y is doubled or twice as large

2*%10=20

Factor change of .5: v is made half as large
.5*%10=5

Factor and percentage change
If y is 2 times larger, yincreases 100%
If y is 1.5 times larger, y increases 50%

If y is .5 times smaller, y decreases 50%
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Factor change iny
1.Start value: Let y(x,x1) be the value of y focusing on x1:
y(x.X ) =exp(fB, + B X + PrX, + &)
=exp( B, )exp(B.x )exp(B,X, )exp(&)
2.End value: y(x,x1+1) is the value of y after increasing x; by 1:
y(x.x +1)=exp(, )exp[ B (X, +1) Jexp(B,x, )exp()
=exp( /3, )exp(Bx, )exp( 5 )exp( By, )exp(&)
3.The ratio y(x,x1+1)/y(x,x1) is the factor change in y for a unit increase in xi:
y(x,x +1) Yens
V(%) Ve
B exp(B,)exp(B,x, )exp(,)exp( By, Jexp(&)
- exp (B, )exp(B,x, )exp(B,x, )exp(&)

For a unit increase in x3, y is expected be exp(B1) times larger (or smaller),
holding other variables constant.

=exp(f))
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Percentage and factor change
1. We can translate the factor change exp(B:1) to percentage change:
y(x,x +1)-y(x,x,)
100 =100[ exp(,)-1
y (X’ X ) [ ( l ) :'
0 If you make $10/hour and get a raise to $11/hour, a 10% raise:

100311510 :10()&:100{&_@}
$10 $10

$10 $10

2. Either factor or percentage change can be used

0 For a unit increase in x3, y is expected to change by 100[exp(B1)-1] percent,
holding other variables constant.

0 For a unitincrease in x3, y is expected be exp(B:1) times larger (or smaller),
holding other variables constant.
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Example: Wages in Canada (-lrm-slid-ontario.do)
Fox (2008) Applied Regression Analysis and Generalized Linear Models 2nd, p267.
Survey of Labour & Income Dynamics, Ontario, Canada, 1994.

Descriptive statistics:

. use slid-ontarioOl, clear
(Canada®s 1994 Survey of Labor and Income Dynamics \ 2011-04-04)

. codebook, compact

Variable Mean  StdDev Minimum Maximum Label

logwages 2.62 0.50 0.83 3.91 Log(wages) in base e

male 0.50 0.50 0.00 1.00 Is male?

age 36.96 12.00 16.00 65.00 Age in years.

edyears 13.21 3.04 0.00 20.00 Years of education completed.
N=3,997

M1: baseline loglinear regression
In(wages) = 3, + S male + S,edyears + Bage+ &

Estimates follow with a focus on age...
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#11 estimating M1

. regress logwages male age edyears

Source | SS df MS Number of obs = 3997

- o e e FC 3, 3993) = 629.73
Model | 324.777885 3 108.259295 Prob > F = 0.0000
Residual | 686.449784 3993 .171913294 R-squared = 0.3212

- B et Adj R-squared = 0.3207
Total | 1011.22767 3996 .253059977 Root MSE = .41462
logwages | Coef. Std. Err. t P>]t] [95% Conf. Interval]
male | .2244959 .0131208 17.11  0.000 .1987718 .2502201

age | .0181548 .0005491 33.06 0.000 .0170782 .0192315

edyears | .0558764 .0021713 25.73  0.000 .0516195 .0601334
_cons | 1.099018 .0379649 28.95 0.000 1.024585 1.17345

Linear in log wages

1. For each additional year of age, the log of wages is expected to increase by
.018, holding other variables constant.

2. Graphically, on the next page...
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3. At all ages, getting one year older leads to the same increase in log wages.

~M1: For respondents with 20 years of education

Log wages

25 35 45 55 65
Age
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#13 Transforming log(wages) to wages
1. Wages are easier to understand than log of wages
2.To plot wages against age, take the exponential:
wages = exp[ log(wages) |
3.The plot shows a specific form of nonlinearity.
0 Details on graphing discussed in later chapters

Graph on next page...
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_M1: For respondents with 20 years of education

‘9 -
o T T T 1
25 35 45 55 65
Age
Interpretation of coefficients follows...
Part 2: Linear regression Page 53

#11 The rate of increase in wages

regress, eform(Factor) // "Factor™ is a name | use to label coefficients

logwages | Factor Std. Err. t P>]t] [95% Conf. Interval]

- e
male | 1.251692 .0164232 17.11  0.000 1.219904 1.284308

age | 1.018321 .0005592 33.06 0.000 1.017225 1.019418

edyears | 1.057467 .0022961 25.73  0.000 1.052975 1.061978
_cons | 3.001216 .1139408 28.95 0.000 2.78594 3.233128

1. For each year of age, wages increase by a factor of 1.018 or 1.8%.
exp(bage) = exp(.018) = 1.018
100[exp(bage )-1] = 100[exp(.018)-1] = 1.8%
2.For each 5-years of age, wages increase by a factor of 1.093 or 9.3%.
[exp(.018)]5 =(1.018) (1.018) (1.018) (1.018) (1.018)=1.0185
=1.093
0 Same rate of change from 30 to 35 or from 40 to 45.
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OLS estimates of 3's

1. Guess the values of the coefficients: B*

2. For this guess, the residuals for case i are:
F=Y—xB =y -y
N *\2
3. Compute the sum of squared residuals SSR= ZH(E )
4.Try other values of B* to see if you can make SSR smaller.
5. The OLS estimate [p minimizes the SSR:
A\2 N2
SSR=31 (v, —xB) =2(4)

6. 0LS has a simple "closed-form" formula:

p= (XX)1 X'y
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Properties of the OLS estimator

1.When the assumptions hold, OLS estimates are BLUE.
a. Best: smallest possible sampling variance.
b.Linear: a linear combination of the data.

c. Unbiased: on average the correct answer across samples.

2.These properties are asymptotic, but OLS works very well for small N.

Residuals

1. First we estimate the intercept and the slope coefficients.

2. With these estimates and the observed data we compute residuals.
&=Y,—xp

3.The residuals are used to estimate the variance of the error:
N

. 1 . \2 1 S o 2
ar(g) N—K—IZ:(yl y')' N—K—lizzllgI s

i=l
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R2: explained variation
R? is the percent of the variation in y explained by the regressors.

. Var(§)  Explained Variation
_Var()‘/)+Var(g”)_ Total Variation

Knowing the f's does not tell you the R?

1. Consider models for men and women:
y=/4"+p"edyears+ j3"age+ ¢
y ="+ p"edyears+ A" age + ¢

2. Equal coefficients for men and women does not impIyR,zV = R,f,l if
Var, (&) #Var, (£).

If the slopes are equal, but the R?'s differ, are the "effects" the same for both

groups? Are the social processes the same?
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Maximum likelihood estimation (MLE)

1. ML estimates maximize the likelihood of what you observe.

2. No other values of parameters increase your chance of observing your data.

3.In LRM OLS estimates are the same as ML estimates.

4.In later models, we cannot use OLS and rely on MLE.

5. Graphically, here is how MLE works in the LRM.

Graph on next page...
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Graphical view of ML estimation for LRM

1. Which set of parameters makes the data more likely?

_Parameter set A: L=0.005

_Parameter set B: L=0.029

Irm-mi-3xsV3.do 2015-03-21

Irm-mi-3xsV3.do 2015-03-21

2.The likelihood curve considers all possible values of the parameters.
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Properties of ML estimators

1. Under general conditions, the MLE is:

a. Consistent: the mean of the sampling distribution approaches the true

value.

b. Asymptotically efficient: Data are used as well as possible.

c. Asymptotically normal: The sampling distribution becomes normal.

2.How big must N be to approximate infinity? If N is small, are the estimates

necessarily bad? No.

3. 0LS tends to work well with very small samples.

4. Part 3 considers how large N needs to be for other models.
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Variance in estimated f3's used for testing

1.The covariance matrix the X and Z coefficients:
Var( By )
Cov( /2,5 )

-1

o’ (X'X) :Var(fi for X and Z) =

Cov (3,4, )
Var(,@Z )

2.Let X be the right wall, Z the left, and Y the height of the room.

3. Off-diagonal elements indicate how the regression plane "rocks".

4. Off-diagonal elements are critical for tests of multiple coefficients.

5. What affects Var(ﬂAx )?

6.Imagine holding a large sheet of plywood. Why does it wobble?
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What affects the variance of the estimated slope?
llet:y=6,+pX+pB,72+¢
2.pxzis the correlation between X and Z
3.Then:
2
5 o
Var(fy | =——F"——
Py sy

Each component affects the variance
1.Increasing sample size (N): Decreases Var (ﬁx )
2.Increasing variance in X (of(): Decreases Var [;’X )
3.Increasing collinearity (pf<Z ): Increases Var(,l?x )
4.Increasing error variance (o"f): Increases Var(,[?x )
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Overview of hypothesis testing
1. Consider the hypothesis

Ho: Bk=0
2.Two types of errors are possible when testing Ho: =0

Decision
Ho: =0 Accept Ho Reject Ho
In fact =0 No error Type I: Pr(reject true)=a
Area in the shaded tail.
Size of the test.
In fact 20 Type Il: accept false No error
Power of test.
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3.1f the errors are normal and B«=0, then
ﬁk -0

Reject Ho
N

Reject Ho
v

1.96 0 1.96

testadisiV2 2014-12-05

5.For a two-tailed test, Ho is rejected at the .05 level when t/z falls in the shaded
region of either tail.
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#17 Example of t-tests in regression (-Irm-regjob.do)
. regress jobl00 fem phd100 ment fel art cit

job100 | Coef. Std. Err. t P>]t] [95% Conf. Interval]
fem | -13.91939 9.023442 -1.54 0.124 -31.65856 3.819769
phd100 | .2726826  .0493183 5.53  0.000 .1757278 .3696375
ment | .1186708  .0701164 1.69 0.091 -.0191709 .2565125
fel | 23.41384  9.482065 2.47 0.014 4.773075 42.05461
art | 2.280112 2.888427 0.79 0.430 -3.398239 7.958464
cit | .4478843  .1968665 2.28 0.023 .060865 .8349036
_cons | 106.7184  16.61357 6.42  0.000 74.05785 139.379

1. Doctoral origin has a significant effect on the prestige of the current job
(t=5.53, p<0.01 for a two-tailed test).

2.Being female does not significantly affect job prestige (p>.05 for a 2-tailed
test).
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Overview of continuous LHS
1.LRM is the foundation for CDA models

0 But be careful about generalizing from LRM to other models!
2.Variables enter the model as xB, called the index function
3.xB allows flexible specifications through interactions and transformations
4. Nonlinearity makes interpretation more complicated even in linear models

s. All of the models in later sections are nonlinear
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Part 3: Binary outcomes

Read and run
Long & Freese  Chapters 5and 6

cdalec*.do cdalec-brm-Ifp.do; cdalec-brm-science.do

Objectives

1.Why are binary variables coded as 0 and 1?

2.What are the limitations of the LRM for binary outcomes?
3. Derive the binary regression model (BRM) as

o Latent variable model o Probability model
o Random utility model o Generalized linear model

4. Illustrate fundamental methods of interpretation using predictions.

0 Parameters versus predictions
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Binary variables, means and expectations
1. Consider probabilities of observing the binary values 0 and 1
y —value Probability
0 1/4
1 3/4

2.The mean mixes the 0's and 1's weighted by their probabilities
Mean =[0xPr(y=0)]+[1xPr(y=1)]
=[0x1/4]+[1x3/4]
=3/4
3. More formally
E(y)=[0xPr(y=0)]+[IxPr(y=1)]=Py=1)
4. Conditional on values of other variables

E(y|x)=Pry=1|x)
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The linear probability model (LPM)
1. The structural model
Vi =By + BiXiy + BoXin + BiXis + &
2.Taking expectations
E(yi |x)=Pr(yi =1|x)
= o+ BX + BoXiy + B

3.Example

a. LFP=

1 if in labor force
0 if not

b. LFP =a+ SEduc, +¢

c. E(LFP|Educ,)=Pr(LFP =1|Educ, )= a+ SEduc,

4.The model is linear in the probability of y
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Example: LPM for labor force participation (-brm-Ifp.do)

#1 Summary statistics

. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women | 2014-10-20)

. regress Ifp c.k5 c.k618 i.agecat i.wc i.hc c.lwg c.inc

<snip>

Ifp | Coef. Std. Err. t P>]t] [95% Conf. Interval]
- b
k5 | -.2827435 .0354894 -7.97 0.000 -.3524148  -.2130721
k618 | -.0125888 .0141043 -0.89 0.372 -.0402778 .0151003

agecat |
40_49 | -.1232177 .0417838 -2.95 0.003 -.2052458 -.0411896
50+ | -.2663019 .0529478 -5.03 0.000 -.3702467 -.162357

we |
College | .1616348 .0458621 3.52 0.000 .0716002 .2516693

he |
College | .0235894 .0424713 0.56 0.579 -.0597884 .1069672
Iwg | .1235474 .0302773 4.08 0.000 .0641082 .1829865
inc | -.0068515 .0015758 -4.35 0.000 -.0099451  -.0037578
_cons | .7060677 .0576341 12.25 0.000 .5929229 .8192124

Interpretations follow...
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Unstandardized Coefficients for Continuous Variables:

Ifp | Coef. Std. Err. t P>]t] [95% Conf. Interval]
+

k5 | -.2827435 -0354894 -7.97 0.000 -.3524148  -.2130721

For each additional child under six, the predicted probability of a woman being
employed decreases by .28, holding other variables constant.

Problems with the LPM
Next page
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LPM

1.0 1 /

> 0.51

Ommmmmmmmme e > Q= mm == DO

0.0+

o
N
N
w
N
o
o -
~
(o]
©

10

assumptions brm-lpmV2.do jsl 2015-01-21
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LPM versus BRM
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X
Logit model ——-—-- LPM
brm-lpm-funcform scott long 2017-03-02
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BRM as a latent variable model

1.The unobserved propensity to work y* generates the observed y.

-00 Not in LF | In the LF ©
*
| y
y=1
T

y=0

2.y*is linked to the observed y:
~ {1 ify; >z
Ylo ify' <z
3. Not all women with y=1 are in the labor force with the same certainty or
"propensity y* to work".
a. One working woman is about to leave the labor force.
b. Another working woman is firm in her decision to be in the labor force.
4. Near t a tiny change in y* changes the value of y.

5.Suppose, y* was propensity to vote? Propensity to engage in risky behavior?
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What if you don’t believe in a latent variables?
Identical statistical model can be derived four ways.

1. A latent variable model

2. A probability model without a latent variable

3. A random utility model (RUM) from economic theory

4. A generalized linear model (GLM)

Why use a latent variable model?
1.1t builds on what you know about the LRM.
2.t generalizes to models not considered in this class.

0 Measurement models such as IRT.
0 Sample selection models.
0 Models for censored outcomes such as tobit.
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The structural model y* = a + Bx + €

y=11
> y=0|

0 1 2 3 4 5 6 7 8 9 10

brmirm-3xsV4.do jsl 2017-03-02 -brm-prob

Where y* and € are both latent.
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Identification: the scale of y* cannot be estimated
What we can know about y* affects interpretation in fundamental ways.
1. Our structural model regresses latent y* on x:
y¥=a+px+e
2.Since y* and € are unobserved, we do not know their means or variances.

What if someone doubled the unobserved y*?

1. Since the relationship with x is unchanged
2y* =20+ 2Bx + 2¢

2. Changing notation, where underlining indicates "two times"
y*=a+Bx+e

3.You cannot tell if  or B is the "true" parameter since you can’t observe y*

4. We can't directly interpret the B’s since we don’t know the metric
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Tools: the PDF and CDF
1l.yvalues: -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
1. PDF for y: Probability density function
For example: Pr(y=-2)
Pr(y =-1.5)
Pr(y=-1)
2.CDF for y: Cumulative density function is sum the PDFs up to a given value.
For example: Pr(y £-1.0) = Pr(y =-2.0) + Pr(y =-1.5) + Pr(y =-1.0)
Pr(y £-1.5) = Pr(y =-2.0) + Pr(y =-1.5)
Graphically,...
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The PDF is in colors; the CDF is in black (pdfcdf-example.xls)

1

0.75

Probability
o

0.25
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Errors in the latent variable model

Normal errors for probit

1. Normal PDF: standard deviation o

1 —&?
g it=0,0)= ex P
P(&ps 1 ) Yoy ptzazj

2.Standardized normal PDF: standard deviation o=1

s 1 —&
@ (5P)ZEGXP[ 5 j

3.Standardized normal CDF

* (5) = [ :ﬁexp(%zjdt
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Logistic errors for the logit model
1.Standardized logistic PDF: 0=1

FE (EL) _ %exp(%q)
2
[1 + exp(%eL)J
2.Standard logistic PDF: o=rt/v3=1.81...

2(e) - exp(e,)

- [1 +exp(&, )]2
3. Standard logistic CDF: o=m1/v3=1.81...
exp(&,)
Ale )= ——P\eL)
(&) 1+exp(e,)
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PDF: Comparing logit and probit distributions

Panel A: pdf's for logistics and normal distributions

0
e Normal: =1
™ —— == Logistic: 02:n2/3
€/ N |- Logistic: 0‘2=1
o
«
©
N
o
S
o
=
T T T T T T T T T
4 3 2 1 0 1 2 3 4
dist_logistic_normal.do jsl 2012-10-22
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CDF: Comparing logit and probit distributions

Panel B: cdf's for logistics and normal distributions

o

S 2

- Normal: 5 =1 -
—— == Logistic: 5 ='/3 pad -
********* Logistic: ¢ =1 Y

w Y/

l\‘ .

o

o

L{)_ .

o

[Ye]

E\! .

o

o

O_ .

O T T T T T T T T
4 3 2 1 0 1 2 3 4

dist_logistic_normal.do jsl 2012-10-22
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Computing Pr(y=1|x)

We will now show where these formulas come from.

1. For probit with standardized normal errors

Pr(y=1|x)=®(xB)= J.ii \/;_ﬂex;{_?tzjdt
2. For logit with standard logistic errors
exp(xB)
1+exp(xB)
3. Generally, using 1() as shorthand for Pr(y=1])
7(xB)=Pr(y=1|x)=F(xB)

4. Where do these formula come from?

Pr(y=1/x)=A(xp)=

Graphically...
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We need a formula for the shaded region

Pr(y=1|x=6)
N
y=11
X T=
Pr(y=0|x=6)
o
T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
X
probeq brm-1xV3.do jsl 2015-01-23
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1.The tedious algebra involves these steps...

Panel A: Rotated Panel B: Shifted Panel C: Reversed
r(y=11x) r(y=11x) Pr(y=§
W/ Pr(y=0|x r(y=0|x)
R A o
v y*-xp=¢ -e=xp-y*
2.Resulting in
w1 [t
Probit: o(xp)=| —(—]dt
=27\ 2
Logit: A(xp)=—R0B)_
(l + exp(xB))
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y* and Pr(y=1]|x) for a single regressor
1.The structural equation is:

y' =a+fx+e where ¢ ~N(0,1)
2.The probability equation is:

Pr(y=1|x)=F(a+ £X)

3.The link between y* and Pr(y=1) leads to the classic S-shaped curve relating x
to Pr(y=1|x).

Next page...

Part 3: Binary outcomes Page 87




.75

(X)

.50 1

.25

.00

Part 3: Binary outcomes

Page 88

Does the empirical relationship need to be S-shaped?
1. Does anyone in the sample need to have a probability near O or 1?
2.Can the relationship be linear?

3.Can changes in x's change the probability from 0 to 1 in the sample?

Consider the probability curve...
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Where is your observed data located?

00to10 brm-probyV3.do 2015-03-31
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Only low probabilities

Q

Change is linear

3 -
B B
So 1 2 3 P 45 5 55 6
X X
00t025 brm-probyV/3.do 2015-03-31 25t075 brm-probyV3.do 2015-03-31
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Negative relations are possible
S e S e ; ; ; o
X
And so on...
Part 3: Binary outcomes Page 92
On the support of the data
Where is your data? Where do you want to explore
o
e
o
R
14
‘el
9 -
o
d T T T T T T T T T 1
0o 1 2 3 4 5 6 7 8 9 10

00to10 brm-probyV3.do 2015-03-31

For example,...
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How confident are you about the predictions?

For average scientists in year seven

Women -7
g
S5 €A
c
2
©
2
T ™
3
S ™1
o ~
o - N e e
T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50
Number of articles
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Scale change and regression coefficients

The following tools and ideas are essential for understanding identification.
The variance and rescaling
N 2
> (% -%)
Var(x)=4&=i="' 7
(x) N

Scale change
Var(bx) = b*Var(x)
SD(bx) =bSD(x)

Normalizing a variable

Var (i xj = %Var(x) =1
o (o2
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#3 Rescaling by a factor of 100 (-brm-science.do)

. gen job100=100*job
. label var job100 "job*100"
. gen phd100=100*phd
. label var phd100 *‘phd*100"

. sum job jobl00 phd phdl100 publ nopub9 female

Variable | Obs Mean Std. Dev Min Max
_____________ A
job | 163 2.967117 .880396 1.01 4.69

job100 | 163 296.7117 88.0396 101 469
_____________ e
phd | 308 3.177987 1.012738 1 4.77

phd100 | 308 317.7987 101.2738 100 477
_____________ A e e e e e e e e e e e e
publ | 308 2.545455 3.092685 0 24

nopub9 | 308 .1980519 .3991801 0 1
female | 308 .3474026 .4769198 0 1
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#4 LRM with rescaling

. qui regress job phd publ female

. estimates store mljob

. qui regress jobl00 phd publ female

. estimates store m2job100

. estimates table mljob m2job100, stats(r2 Il) b(%8.3F) t(%8.2F)

Variable | mljob m2job100
_____________ S
phd | 0.357 35.709
| 5.54 5.54
publ | 0.032 3.212
| 1.61 1.61
female | -0.246 -24.570
| -1.65 -1.65
_cons | 1.736 173.555
| 7.62 7.62
_____________ T
r2 | 0.190 0.190
Il | -192.819 -943.462
legend: b/t
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Identification in the BRM

Scaling and identification are critical for understanding the BRM

y=11
> y=0 i/

0 1 2 3 4 5 6 7 8 9 10

brm-prob brmirm-3xsV3.do js| 2015-01-23
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Identifying assumptions

Three arbitrary but necessary identifying assumptions:

Assumption 1: Value of threshold
=0

Assumption 2: Mean of the errors
E(¢1x)=0

Assumption 3: Variance of the errors
Var(e|x)=1 for probit

Var(g \ x) =7x"/3 forlogit
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Graphical illustration of identification assumption 3
1.The B's cannot be interpreted directly since their magnitude reflects:
a. The relationship between the x's and y*.
b.Arbitrary identifying assumptions.
2.Pr(y=1|x) is unaffected by the identifying assumption about Var(e |x).

= =
- y=11 ° y=11
R y=0 . y=0{
> >
© 4 w |
e ——— 2 ———
"o 1 2 3 4 5 6 7 8 9 10 ‘o 1 2 3 4 5 6 7 8 9 10
X X
ot0sprot o s o 20150209 205 scaing o 20150209
3. Demonstration: see CDAlec BRM ident prob demo 2017-03-02.docx
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#3 Comparing logit and probit with Mroz data (-brm-Ifp.do)

Estimate the two models

. // logit
logit Ifp k5 k618 i.agecat i.wc i.-hc lwg inc, nolog robust

<snip>
. estimates store blm

. // probit
. probit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

<snip>
. estimates store bpm

. // create table
. estimates table blm bpm, stats(aic bic r2_p 11) b(%8.3f) t(%8.3F) p(%8.3F)
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Comparing estimates of coefficients
1.p’s differ by a factor of about 1.7

2.7's are roughly equal

| bIm | bpm | ratio
| b z | b z | b z
- + T e
Ifp | | |
ks | -1.392 -7.182 | -0.840 -7.480 | 1.657 0.960
k618 | -0.066 -0.916 | -0.041 -0.975 | 1.593 0.939
1.agecat | -b | -b A | R R
2.agecat | -0.627 -3.042 | -0.382 -3.107 | 1.643 0.979
3.agecat | -1.279 -4.956 | -0.780 -5.031 ] 1.640 0.985
O.wc | -b . | -b | - -
l.wc | 0.798 3.367 | 0.482 3.481 ] 1.655 0.967
0.hc | -b | -b | - -
l1.hc | 0.136 0.659 | 0.074 0.596 | 1.841 1.106
Iwg | 0.610 3.677 | 0.371 3.894 | 1.644 0.944
inc | -0.035 -3.989 | -0.021 -4.136 | 1.665 0.965
_cons | 1.014 3.329 | 0.622 3.493 ] 1.630 0.953
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Predicted probabilities

. estimates restore blm

. predict prblm

(option pr assumed; Pr(1fp))

. label var prblm "Logit: Pr(LFP|X)"

. estimates restore bpm

(results bpm are active now)

. predict prbpm

(option pr assumed; Pr(1fp))

. label var prbpm "Probit: Pr(LFP|X)"

. pwcorr prblm prbpm
| prblm prbpm

_____________ S
prbim | 1.0000
prbpm | 0.9998  1.0000
. twoway scatter prblm prbpm, ysize(7) xsize(7) mcol(blue) ///
> msym(Oh) xlabel(0(-2)1,grid) ylabel(0(.2)1,grid) ///
> caption("#24 “tag"", size(vsmall))
Graph follows...
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Probit: Pr(LFP|X)
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Review of identification in BRM
1. The magnitude of the slopes depends on the scale of the outcome
2.Since y* is latent, we do not know its scale (i.e., variance)

3. Therefore, the slopes are not identified

4.The estimated B's cannot be directly interpreted since they reflect

a. The relationship between the x's and y*
b.The arbitrary identifying assumption for Var(g|x)

5. The identifying assumption does not affect Pr(y=1]x)

0 Probabilities can be interpreted without concern about identification
6. This identification issue has profound implications for interpreting the models
0 Group comparisons
0 Nested models

0 Mediation effects
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* Alternative derivations of the BRM

Probability model
Pr(y:1|x) 3 Pr(y:1|x) B
1n|:Pr(y=0x)}_ln[l—Pr(y:1|x):|_XB
BRM as a Random Utility Model (RUM)

1.Two choices where

Choice 0 provides utility uo
Choice 1 provides utility us;

2.The utility received from a choice is modeled as
Uoi = XiBo + Eoi
U1 = XiB1 + €1

3. A person chooses 0 if ug; > usg; with Pr(uei > us|x)=Pr(0]x)
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BRM as a generalized linear model (GLM)

1.The observed y has a binomial distribution with mean p

2.The linear predictor is n = xp

3. Link function for logit is In[u /(1- )] = n = xB and for probit is ®(u) =n = xB

All lead to the same estimates and predictions
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ML estimation

1. Probability of what was observed for each observation

{Pr(yi =1]x;) ify, =11is observed
1-Pr(y, =1]x;) ify, =0 is observed

i
2.If observations are independent, Pr(HH) = Pr(H)*Pr(H). Thus,

L(B|Yax):1i[pi
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MLE shown graphically: a worse fit

Panel A: Worse Fit

Part 3: Binary outcomes Page 109

MLE shown graphically: a better fit

Panel B: Better Fit
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MLE and sample size
1. Consistency, normality, and efficiency are asymptotic properties

2. ML estimators are not necessarily bad in small samples

3. But small sample behavior is largely unknown

When is the N large enough to justify MLE?
1.1t is risky to use MLE for N<100. N>500 is generally safe
2.N's should be larger in some cases
a. If there are a lot of parameters, more observations are needed
OAt least ten observations per parameter seems reasonable

b.If data are ill-conditioned or if there is little variation in the dependent
variable, a larger N is required

3.Some models seem to require more observations (e.g., ordinal regression)

4.Small depends on the size of the smallest outcome category. "Rare events"
methods deal with this.
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Adjusting p-values for small samples?

1.1n small samples do not use larger p-values as evidence against the null
hypothesis

2.Since the degree to which MLEs are normal is unknown, it is reasonable to
require smaller p-values in small samples

Exact and Firth estimation for small samples
1. ML is biased in small samples

2.exlogistic computes exact estimates in small samples but is
computationally intensive

R.A. Fisher devised exact tests when Muriel Bristol claimed she could detect
whether tea or milk was added first to her cup. He asked her to taste 8 cups of
tea, 4 with tea added first and 4 not, and decide which was added first. He had
to figure out how to perform a test with so few observations. Essentially, he
counted every possible outcome.

3. Penalized maximum likelihood (Firth estimation) is a computationally simpler
way to address small sample bias
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Maximizing the likelihood and numerical methods
1. Algebraic maximization of In L(B|X,y) is rarely possible

2. Numerical methods search for the maximum using the slope and change in
slope of the likelihood equation (i.e., first and second derivatives)

3.The process corresponds to what you would do to find the top of a hill if you
were blindfolded

0 What would it take to make sure you were at the top?

0 What would you want to know before playing this game?

0 Will you end up at the same place as another person? Why? Why not?
0 How big of a step will you take? Always the same?

0 Why would you play this silly game?

4. Estimates of coefficients are usually very close in different software, with
perhaps small differences in standard errors
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Possible problems with ML

1. A flat likelihood function makes convergence difficult. Errors might be: (a)
Convergence not obtained after 250 iterations; (b) Hessian not of full rank.

2. Little variation in the outcome or ill conditioned data cause problems

3.Some models (not the BRM), have a local maxima
4. Perfect prediction is a pseudo problem (-brm-science.do).

. tabulate hipub mmale, miss

Pubs |
greater | Mentor male?
than 10? | OFemMent 1MalMent | Total
___________ g S S
0_LoPub | 4 293 5] 302
1 10plus | 0 6 01 6
___________ S S
Total | 4 299 5 308

0 The odds of LoPub if female mentor are 4/0 which is undefined.
0 The odds of 10plus if female mentor are 0/4=0.

Here is the logit results:
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The four cases with female mentors are dropped by logit.
. logit hipub i.mmale phd, nolog

note: O.mmale != O predicts failure perfectly
O.mmale dropped and 4 obs not used

This means: female mentors are low publishers with probability 1.

note: 1.mmale omitted because of collinearity

Logistic regression Number of obs = 299
LR chi2(1) = 0.23
Prob > chi2 = 0.6320
Log likelihood = -29.276794 Pseudo R2 = 0.0039
hipub | Coef. Std. Err. z P>|z| [95% Conf. Interval]
- e
mmale |
OFemMent | 0 (empty)
1MalMent | 0 (omitted)
phd | -.1927085 .4023944 -0.48 0.632 -.9813871 .5959701
_cons | -3.293021 1.272882 -2.59 0.010 -5.787824  -.7982179
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When problems occur with ML, what to do?
1. Check that the model is correctly specified
2. Verify that variables are correct

3. A large ratio between the largest and smallest standard deviations of
regressors causes problems with ML

0 For example, rescale income in $1's to income in $1000's

4.1f a very large proportion of cases are in one of the categories of the outcome,
convergence may be difficult

Overall

1. Numerical methods for ML estimation work very well "when your model is
appropriate for your data"

2.Cramer (1986:10) gives excellent advice

Check the data, check their transfer into the computer, check the actual
computations (preferably by repeating at least a sample by a rival program),
and always remain suspicious of the results, regardless of the appeal.
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Parameters and the probability curve
1.In the LRM

a. The intercept moves the curve "up and down"

b.The slope changes the rate of change
2.Consider the BRM with a single x:

Logit: Pr(y=1[x)=A(a+/Xx)

Probit: Pr(y:l|x):CD(a+ﬂX)
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Changing the slope

Smaller the slope, greater change in X required for a given change in Pr(y).

o Note: a=0 for all curves

------- p=0.8
—-—- p=1.6
© B
N | ——- p=3.2
— p=8.0
X2
B
0
& -
------ - -
O eeemmmT -7
S T T T
-5 -4 -3 -2
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Changing B changes the effect of x

o Note: a=0 for both curves

— o
— p=0.8 //
o ——-B=3.2
R -
X B A
=gt
0
« -
/
7/
o ___//
o T T
0 1
X
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Changing the intercept

Smaller intercept, curve moves right.

o Note: 3=3.2 for all curves

7(X)
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Changing a changes the effect of x

o _Note: 3=3.2 for both curves

A -~
a=-3.0 //

© - - - a=-5.0 /
R -

X B

=gt
0
& A
o
e

X
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How Z changes the effect of x
The intercept absorbs the level of xz
1.The model is:
Pr(y=1|%,X%)=®(—4+.6X +.5X,)
2.1f x2=0 (curve with squares on the next page):
Pr(y=1[x.X, =0)=®(-4+.6x +[.5x0])
=P (-4+.6X)
3. If x,=5 (curve with circles on next page):
Pr(y=1[x,X,=5)=®(-4+.6X +[.5x5]) =0 ([-4+2.5]+.6X,)
=0(-1.5+.6x,)
4. When looking at the effect of xi, values of other variable change the intercept.

5. Graphically...
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How x: "affects the effect” of x1

7r(x1,x2)
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Interpretation using predictions

1. Probabilities are the fundamental statistic for interpreting the BRM:

Logit: ﬁ(y—l|x)—A(xﬁ)—%— F(xﬁ)

Probit: Fr(y=1/x) = (xf) = J;_exp(_gdt ~F(x})
N2

2.Since the model is nonlinear, no single method of interpretation can fully
describe the relationship between a variable and the outcome.
3.Search for an elegant method that reflects the substantive complexities.

4. The critical decision is at which values of x you want to examine the
predictions.

Let's explore this...
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Value of the regressors for Pr(y=1]x)

1. In-sample predictions use x-values from the sample: Pr(y=1 | x;)

2. Out-sample or counterfactual predictions use any values of x

On the support When making counterfactual predictions, the values should
be where real data might be found now or in the future.

Counterfactual experiments involves imagining the value of a variable
changes while other variables are held constant.

Average: |s an average person a reasonable counterfactual? Even if that
person is .53 female?
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Ways of using predictions for interpretation

1. Predictions at observed values

2. Marginal effects: changes in predictions

3.ldeal types or profiles: predictions at values of substantive interest
4. Tables: predictions at multiple levels of regressors

5. Graphs: predictions at many levels of regressors

6. 0dds ratios: ratios of predicted probabilities
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Commands for predictions

Official Stata 11+
predict: Predictions for observations in the dataset
margins: Predictions at specific values or averaged over observed values
marginsplot: Plot predictions from margins

SPost13

1.SPost13 has m* commands that are "wrappers" to make margins easier and
more powerful. The most important commands are:

mchange: Changes in predictions

mgen: Predictions as one variable changes over a range
mtable: Tables of predictions

mlincom: Tests of predictions

2.They work with most models and with complex surveys.
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Tool: specifying values of regressors in margins and m*

atmeans: all regressors at their means.
mtable, atmeans

at() for single values of regressors
mtable, at(age=25 male=1 edyears=20) atmeans

Variables not specified are held at their mean.

at() with linked variables
mtable, at(age=25) atmeans

If c.age#c.age is a regressor, predictions are made at 25*25 for age-squared.

at() for multiple values using a numlist
mtable, at(age=(25(5)75) male=1 edyears=20) atmeans

Predictions are computed for age = 25, 30, 35, etc.

at() at multiple specified values
mtable, at(age=25 male=1 edyears=20) ///
at(age=60 male=0 edyears=12) atmeans
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In-sample predicted probabilities

1. In-sample predictions use x; values from the sample

PR

Probit: Pr(y,=1]x,)= (xa) [ J_exp(——]d

Start with the distribution of predictions
1.The range suggests how large the "effects" of regressors can be

2. Clumping suggest "types" of respondents or strong effects of categorical
regressors

3. Outliers can indicate incorrectly coded variables.

4. If things stand out or are unexpected, figure out what is going on before
interpreting the model.
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#4 In-sample predictions (-brm-Ifp.do)

estimates restore bilm

predict prblm
label var prblm "Logit: predicted probability"

* mean prediction
qui sum prblm
local mn = string(r(mean),"%5.3f") // store formatted string

* distribution of predictions

dotplot prblm, ylab(0(-2)1, nogrid) ylin(0 1, Icol(blue)) mcol(gsl0) ///
title(Model: logit Ifp k5 k618 i.agecat i.wc i.-hc lwg inc, pos(1l)) ///
subtitle('Observed proportion of 1"s: “mn"", position(11)) ///
caption(#34a “tag", size(vsmall))
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#34 dotplot of predicted probabilities

Model: logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc
Observed proportion of 1's: 0.568

E‘ ® 4 000000000000
] 88888888°°°°°
'g_ ° 88o000e
3 8888°°°
5 ooo0000000
8 < 1
<
Q
N 4
g |uu
o eee
T T T
O 10 20 30 40
Frequency

0 Are there observations you want to explore?

What does this imply about "effects"? Consider the graph...
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Effects are largest at rt()=.5

7r(x1,x2)
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Example of predictions for health outcomes (details later)

Logit predictions for health outcomes

o]

2
I.q -
[Ye]

Q-
o4

T T T
arthritis diabetes goodhlth
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Marginal effects: changes in probabilities
1.A marginal effect is

The change in Pr(y|x) for a change of 6 in x¢ holding other regressors at
specific values.

2.1t is often the best summary of the effect of a variable.

Decisions when using MEs
1.How much change?

0 An infinitely small change leads to the marginal change.
0 A finite change leads to a discrete change or first difference.

2.Where is the change computed?
0 The size of the ME depends on where it is computed.
3.How should the marginal effect be summarized?

These important issues are now examined, starting with a graph...
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Marginal change and discrete change

w0
& X
52 An(X)
B AX
o
S T T 1
0 1 2 3
X

dcVSmc brm-me-dcV13.do 2015-04-08

0 Speedometer reading compared to average speed for day.
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Marginal change versus discrete change

1. Marginal change tells you how much the probability would change for a unit
change in x if the probability curve was linear.

2. Discrete change is the change that occurs over a fixed distance.

3.The more nonlinear the curve near x, the greater the difference between the
MC and the DC.

4. Unless your field uses MC, DC is more intuitive.
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* Marginal change (MC)

1. Assuming there are no product terms (e.g., x1*x2) the MC is the partial
derivative of Pr(y) with respect to x:
. OPr(y=1|x
Logit: ZT') —A(xB) S, = f (xB) 4,
k
. 0Pr(y=1]|x
Probit: % =p(xB)B = F(xB)A
K

0 instantaneous rate of change in the probability with respect to x¢ holding
other variables at specific values
0 slope of the Pr(y=1]|x) curve at x holding other variables a specific values

2. Sign of MC determined by B since f(xB) is always positive.
3. Magnitude depends on B and f(xB), thus by all variables and coefficients.
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Discrete change (DC) or first difference

X
dc brm-me-dcV14.do 2015-06-10

Here's how we compute the DC...
Page 139
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1. Compute probabilities at start and end values of xi
Start probability given x* & start value x.

Pr(y =1]|x*Start X, ):
End probability after changing only x.

Pr(y=1|x*Endx,):

2. Discrete change

APr(y:l\x)
AX,

=Pr(y=1\x*,End Xk)—Pr(y=1|x*,Start Xk)

3. Interpretation
0 For a change in xi from start x, to end x, the probability changes by
), holding other variables at the specific values.

APr(y=1|x
e

4. Example
Attending college increases the probability of women being in the labor
force by .19, holding other variables at their means.

le’r(y:1|WC=1,;)—Pr(y=1|WC=0,;)

AX,
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Centered and uncentered changes of 1
&
X o __An(x)
=3 Ax(uncentered) C
/ ATC(X)
/B Ax(centered)
. — A >
o
o' T T T T 1
0 5 1 1.5 2 2.5
centeredarrow brm-me-dcV13.do 2015-04-08
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Mathematically, ...
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Uncentered change of 1

%:Pr(yzllx X +1)=Pr(y=1|x",x)
Centered change of 1
r(A—Xklx):Pr(y=1|x an+%)—Pr(y:1|x ’Xk—%)
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Overview of what affects the size of the marginal effect?
1.The regression coefficient B

: The larger the magnitude the larger the effect
2. Start value of x

: The curve changes more rapidly at some places
3.The amount of change in x

: Bigger changes have bigger effects (assuming no polynomials)
4.Value at which other variables are evaluated along with their coefficents

: These change the intercept which changes the effect

Graphically...
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Effect of start value on DC of 1
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Effect of other variables on DC of 1

1.0

Pry=1)
0.5
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Options for amount of change in xx

1. Infinitely small

2.0 to 1 for binary variables

3. Unit change

4.Standard deviation change

5. Minimum to maximum

6. Four years of education, $10,000, or whatever makes substantive sense
7.Changes in several variables, such as white males to black females

8.Changing linked variables
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Summarizing the marginal effects

1.The ME depends on the levels of all variables in the model

2. Where to hold variables constant and how to summarize this variation is an
important substantive decision.

Common summary measures

1. Marginal effects at the mean (MEM) is the effects with all variables at their
means

O Is anyone average?
0 Skewed variables
0 Mean of a dummy variable?

2. Marginal effects at substantively representative values (MER)
0 At values that are representative of substantive interests
3. Average marginal effect (AME) is the mean across all observations

0 Compute ME for each observation and average
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Marginal effect at the mean (MEM)
Often used, perhaps due to ease of computation and tradition.

1. Hold all variables held at theirs means:

aPr(yzl\E)_ _ . APr(y=1x)
—5 -feBA DeM: — T

MCM

2.1s the mean representative of what you want to know?
Marginal effect at representative values (MER)
1. Think of a specific set of values x* and compute the ME there.

oPr(y=1/x") DCR. APr(y=1|x)
OX, AX,

MCR:

2.Maddala in 1980s recommended using MER's at multiple locations

0 We apply this by creating "ideal types" and computing MER's for these
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Average marginal effect (AME)

1.Compute the ME at each x;. For example:

MC, - oPr(y=1]x) bC - APr(y=1|x,)
6xik Axik
2. AME averages over all cases:
N — N = .
AMC=izaPr(y_l|xi) ADC:iZAPr(y 1]x;)
N i=l axlk N i=1 Axlk

3.Generally, AME's are the most useful summary measure.
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Which measure of change? AME, MEM, MER
1. AME and MEM can be similar, but are not asymptotically equivalent
2. Traditionally, MEM prevailed
a. AME requires N times more computation
b. MEM was in common software like SPost9
3. Newer software computes both measures
4. A critique MEM is that the mean might not correspond to anyone
a.Nobody is .47 female.

b.But the ME at the mean of a binary variable roughly averages the ME for
the two groups.

c. MER can use modal values of the binary variables, but this ignores
everyone who is in a less well represented group.

5. Consider this example...
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Limitations of the AME

1. The AME replaces one mean with another.
a. Computation at the mean is replaced by the mean of.
b.Means are only one characteristic of a distribution.

2.The AME might not be close to the effect for anyone in the sample.

a. Suppose effects are small for men and large for women. The AME does not
indicate this difference.

b.If you are planning an intervention, are you interested in the average
effect or the average for those you want to target (e.g., high risk youth)?

What do you want to know?
1.The best measure is the one that addresses the goals of your research

2.Think about what you want to know

mchange computes marginal effects
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Overview of mchange
. mchange, atmeans dec(2)
logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(1fp), predict(pr)

| Change p-value

________________ S,
k5 |

+1 | -0.32 0.00

+SD | -0.18 0.00

Predictions at base value

| not in LF in LF
_____________ e
Pr(y|lbase) | 0.42 0.58
Base values of regressors
| 2. 3. 1. 1.
| k5 k618 agecat agecat wc hc
at | .24 1.4 .39 .22 .28 .39
I -
| Iwg inc
at | 1.1 20
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Hypothesis testing for marginal effects
1.Standard errors are computed by delta method
2.You can test if change is 0 or to compute a confidence interval
0 Is the effect of having another child significant?
3. And more test complex hypotheses, such as the equality of effects by group

0 Is effect of age the same for men and women?
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Examples of marginal effects (-brm-1fp.do)
#5.1 MEM: marginal effects at the mean

. mchange, atmeans dec(2) amount(one sd)
logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(1fp), predict(pr)

| Change p-value
- A
k5 |
+1 | -0.32 0.00
+SD | -0.18 0.00
Marginal | -0.34 0.00
k618 |
+1 | -0.02 0.34
+SD | -0.02 0.34
Marginal | -0.02 0.34
agecat |
40-49 vs 30-39 | -0.15 0.00
50+ vs 30-39 | -0.31 0.00
50+ vs 40-49 | -0.16 0.00
wc |
college vs no | 0.19 0.00
hc |
college vs no | 0.03 0.51
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Iwg |
+1 ] 0.14 0.00
+SD | 0.08 0.00
Marginal | 0.15 0.00
inc |
+1 ] -0.01 0.00
+SD | -0.10 0.00
Marginal | -0.01 0.00

Predictions at base value

| not in LF in LF
- + _
Pr(y|base) | 0.42 0.58

Base values of regressors

| 2. 3. 1. 1.
| k5 k618 agecat agecat wc hc
- A
at | .24 1.4 .39 .22 .28 .39
I Iwg inc
- +
at | 1.1 20

1: Estimates with margins option atmeans.
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A unit change: +1
APr(y =1] x*)

A =Pr(y=1|x"x +1)-Pr(y=1/x",x)

1.A unit increase in x, from X, to X, +1 results in a change of A- in the
predicted probability, holding other variables at the specified values.

2.For example:

Change p-value

|
S,
|
|

k5

+1 -0.32 0.00

For a woman who is average on all characteristics, an additional young
child decreases the probability of being in the labor force by .32 (p<.01).

The additional child is added to the average number of children (.24), which
isn't ideal. More on this later.
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A standard deviation change: +SD

1.The effect of a standard deviation change:

APr(y=1|x*)
— T =Pr(y=1|x",x +s )-Pr(y=1]x",x,
o ( o) =Pr( ‘)
2.For example:
| Change p-value
R
inc |
+1 ] -0.01 0.00
+SD | -0.10 0.00

A standard deviation increases in family income, about 520,000,
decreases the probability of being in the labor force by .10 (p<.01, two-
tailed test), with variables held at their means.
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A change from 0to 1: 0 to 1

1.Binary variables were entered as (for example) i .wc so mchange knows to
change them from 0 to 1.

2.For example,

| Change p-value
e ———————————————
we |
college vs no | 0.19 0.00
hc |
college vs no | 0.03 0.51

If an average woman attends college, her probability of being in the
labor force is .19 greater than that of a woman who does not attend
college (p<.01).
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#5.2 Centered changes in xx

APr(y:1|x*) . ..
— 2 =Pr(y=1|x,x +1)-Pr(y=1|x",x -1
Py =1 o )Py =105 )
APr(y=1|x") C Co
S )y =1ix g 3) - Pr(y = 11X % - %)
AXy
. mchange, atmeans dec(2) centered
<snip>
| Change p-value
________________ S
k5 |
+1 centered | -0.33 0.00
+SD centered | -0.18 0.00
Marginal | -0.34 0.00
<snip>
inc |
+1 centered | -0.01 0.00
+SD centered | -0.10 0.00
Marginal | -0.01 0.00
<snip>
For example...
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1.For k5

For a woman who is average on all characteristics, an additional young
child centered around the mean decreases the probability of being in the
labor force by .33 (p<.01).

The added child is centered on the average number of children (.24), which
leads to a negative start value!
2.Forinc
A standard deviation change in family income (about $20,000) centered
around the mean income increases the probability of being in the labor

force by .10 (p<.01, two-tailed test), with other variables held at their
means.
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Change from the minimum to the maximum

Even when the change is substantively unrealistic, this is a useful measure of the
total possible effect of a variable:
APr(y = 1|x*)
AX,

. mchange k5 k618 wc hc lwg inc agecat, ///
> atmeans amount(range) stat(from to change pvalue) dec(2) brief

:Pr(y:l\x*,maxxk)—Pr(y=1|x*,minxk)

logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(1fp), predict(pr)

| From To Change p-value
- b
k5 |
Range | 0.66 0.03 -0.63 0.00
k618 |
Range | 0.60 0.47 -0.13 0.34
we |
college vs no | 0.52 0.71 0.19 0.00
hc |
college vs no | 0.56 0.60 0.03 0.51

<continued>
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|

+

Iwg |
Range | 0.17 0.83 0.67 0.00

inc |
Range | 0.74 0.09 -0.65 0.00

agecat |
40-49 vs 30-39 | 0.70 0.55 -0.15 0.00
50+ vs 30-39 | 0.70 0.39 -0.31 0.00
50+ vs 40-49 | 0.55 0.39 -0.16 0.00

1. There is little to be learned if the total change is small, such as hc. Variables
k5, wc, and Inc have potentially large effects.

2.Option trim() can be used to remove extreme values (help mchange).

* trim upper and lower 5th percentiles
mchange inc, atmeans amount(range) trim(5)
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#5.4 AME: average marginal effects

. mchange // <= no atmeans
logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(Ifp), predict(pr)

| Change p-value
________________ e
k5 |
+1 ] -0.281 0.000
+SD | -0.153 0.000
Marginal | -0.289 0.000
k618 |
+1 ] -0.014 0.337
+SD | -0.018 0.337
Marginal | -0.014 0.335
agecat |
40-49 vs 30-39 | -0.124 0.002
50+ vs 30-39 | -0.262 0.000
50+ vs 40-49 | -0.138 0.002
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wc |
college vs no | 0.162 0.000
hc |
college vs no | 0.028 0.508
Iwg |
+1 ] 0.120 0.000
+SD | 0.072 0.000
Marginal | 0.127 0.000
inc |
+1 ] -0.007 0.000
+SD | -0.086 0.000
Marginal | -0.007 0.000
Average predictions
| not in LF in LF
_____________ e e
Pr(y|base) | 0.432 0.568
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Interpretations (excluding p-values)
1. AME for k5

On average having one more young child decreases the probability of being
in the labor force by .28.

2. MEM for k5

For someone who is average on all characteristics, having an additional
young child is expected to decrease the probability of LFP by .32.

3. AME for wc

On average women who attend college have a probability of being in the
labor force that is .16 greater than those who do not attend college.

4. MEM for wc

If an average woman attends college, her probability of being in the
labor force is .19 greater than that of an average woman who does not
attend college.
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MEM vs AME
mchange, amount(sd) // AME

mchange, amount(sd) atmeans // MEM

| AME | MEM |
| Change | Change | AME-MEM
-------------- Ry
k5 +SD | -0.153 | -0.180 | 0.027
k618 +SD | -0.018 | -0.021 | 0.003
—————————————— o
agecat 40vs39 | -0.124 | -0.146 | 0.021
50+ vs 30-39 | -0.262 | -0.307 | 0.044
50+ vs 40-49 | -0.138 | -0.161 | 0.023
-------------- Fom e
wc college vs | 0.162 | 0.186 | -0.024
—————————————— Fom e
inc +SD | -0.086 | -0.101 | 0.016
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Distribution of marginal effects

1.0n average the marginal effect for the log of wages on the probability of labor
force is .127.

2.0n average if a woman attends college her probability of labor force
participation increase by .162.

3. Averages do not indicate variation in the sample.
0 The effect of college might depend on the levels of other variables.

4. This suggests the importance of looking at the distribution of marginal effects.
0 This is not commonly done, but should be.

5.How do you do this?

0 In Stata 13 you can do this with some simple programming as shown in the
do-file at #54 for details on how to create these plots

O Stata 14 added an undocumented feature to do this!
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Distribution of effects for lwg

1. For the first case, compute the effect
. list k5 k618 agecat wc hc lwg inc in 1, clean
k5 k618 agecat wc hc Twg inc
1. 0 3 30_39  NoCol NoCol .8532125  28.363
. mchange Iwg, at(k5=0 k618=3 agecat=1 wc=0 hc=0 lwg=.8532125 inc=28.363)
atmeans

logit: Changes in Pr(Ifp) | Number of obs = 753

| Change P>]z|

- + _
Iwg I

+1 | 0.137 0.000

+SD | 0.084 0.000

Marginal | 0.148 0.000

Base values of predictors

| k5 k618  agecat wc hc Iwg inc
U

at | 0 3 1 0 0 .853 28.4

2. Do this for all cases and plot...
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Distribution of marginal change for lwg

(ﬁ_ -
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=
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L
AME MEM
S T T t t
0 .05 A 15
margins generate variable for lwg
effects-lwg-stata14 cdalec15-brm-Ifp.do scott long 2015-06-15
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#5.5 computing the distribution of effects for wc
Stata 14 distribution of marginal effects

margins, dydx(wc) generate(dydxwc)

1.The variable dydxwc has the DC for each observation

2.Plot using graph

3.help margins undocumented for details on the generate () option
Using Stata 12 and Stata 13

1. Estimate the model.

2.Change wc to 0 for all cases and compute predictions:

gen wc_orig = wc

label var wc_orig "'source wc variable"
replace wc = 0

predict pratwcO

label var pratwcO "PR if wc=0 for all cases

3.Change wc to 1 for all cases and compute predictions in pratwcl.
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4.Create prdif = pratwcO - pratwcl and take the mean of prdif.

. // AVE for wc

. gen wc_orig = wc // save original values for wc
. replace wc = 0 // make all cases wc=0

(212 real changes made)

. predict pratwcO // make predictions

(option pr assumed; Pr(1fp))

label var pratwcO "PR if wc=0 for all cases"

. replace wc = 1 // make all cases wc=1
(753 real changes made)

. predict effects_phatl // make predictions
(option pr assumed; Pr(1fp))

label var pratwcl "PR if wc=1 for all cases"

. replace wc = wc_orig // restore original values
(541 real changes made)
. drop wc_orig

. gen double me_wc = pratwcl - pratwcO // DCwc
label var me_wc "Discrete change of wc on Pr(LFP)"

. * sum me_wc matches result from margins, dydx(wc)

. sum me_wc
Variable | Obs Mean Std. Dev. Min Max
""" ne_we | 753 .1624037  .0344572  .0074083  .196826
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Distribution of DC for wc
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Discrete change of wc on Pr(LFP)
#56 cda13lec-brm-Ifp.do scott long 2013-04-12
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Summary of marginal effects
1. A summary measure of the "effect" of a variable is often useful.

2.In the BRM, regression coefficients do not directly indicate the magnitude of
the effect.

3.0R's are often used, but are limited as discussed below.

4.In most cases measures of the change in the probability for a change in a
regressor are the best way to summarize the effect of a regressor.

5. AME and MEM are often close, but AME is preferred as a single measure in
most cases.

6. Multiple MER's might be the best approach.
0 Look at effects at "interesting" locations in the data space.
7.Summary measures are only summaries.

8.Remember, the model is nonlinear....
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#6 Predictions for ideal types (-brm-Ifp.do)

1. Next, think about the substantive issue. What types of people are you

interested in? What interesting clusters of characteristics occur together?

2.These sets of characteristics are called ideal types or profiles

3. Defining profiles forces you to think about where you want to look in the data

4. Comparing predictions across profiles helps you understand your data and the

effects of variables

5. We will compute these types and later compare them statistically

| Pr(y) 11 ul
__________________________ gy S S
Average person | 0.578 0.539 0.616

Young lower ed Kids | 0.159 0.068 0.251
Young higher ed kids | 0.394 0.234 0.554
Middle age higher ed kids | 0.748 0.672 0.823
Older higher ed | 0.631 0.528 0.734
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An "average person"
. estimates restore blm
. mtable, rowname(Average person) atmeans ci clear
Expression: Pr(1fp), predict()
| Pr{y) 11 ul
Average person | 0.578 0.539 0.616
Specified values of covariates
1 2. 3. 1. 1.
| k5 k618 agecat agecat we hc
o
Current | .238 1.35 .385 .219 .282 .392
|
| Iwg inc
+ -
Current | 1.1 20.1
. local Average "“r(atspec)"" // see next page
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A very useful feature for comparing profiles
. di "“Average™"
k5=.2377158 k618=1.3532537 1lb.agecat=.39575033 2.agecat=.38512616
> 3.agecat=.21912351 Ob.wc=.7184595 1.wc=.2815405 Ob.hc=.60823373
> 1.hc=.39176627 lwg=1.0971148 inc=20.128965.
This is the at-spec we saved earlier that we now use with at()
. mtable, rowname(Average person) at("Average®) ci clear
Expression: Pr(1fp), predict()
| Pr{y) 11 ul
S
Average person | 0.578 0.539 0.616
Specified values of covariates
] 2. 3. 1. 1.
1 k5 k618 agecat agecat wc hc
A o e o e e e e e e o e e e e
Current | .238 1.35 .385 .219 .282 .392
| )
| Twg inc
+ -
Current | 1.1 20.1
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Young, lower class, less educated mom

* note: in 1975 $2.10 is min wage; .75 for lwg

mtable, rowname(Young lower ed kids) atmeans ci ///
at(agecat=1 k5=2 k618=0 inc=10 Iwg=.75 hc=0 wc=0) below

local YoungLowEdMom "'~ r(atspec)*™"

Young, middle class, more educated mom
1.1 define this profile as

agecat==1 & kb5==2 & k618==0 & wc==1 & hc==1
2.Where should I hold lwg and inc?

0 Global means based on the entire sample might be inconsistent with the
idea of the profile?
0 Local means are based only on individuals who meet this condition
if agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
3.1 create a selection variable equal to 1 if you have these characteristics:

. gen isYoungHiEdMom = agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
. label var isYoungHiEdMom "Select young, higher ed mothers"
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. tab isYoungHiEdMom, miss

Select |
young, |
higher ed |
mothers | Freq. Percent Cum.
_____ + e
(| 747 99.20 99.20
1] 6 0.80 100.00
_____ + e
Total | 753 100.00

4. Comparing global and local means
. sum lwg inc /7 global

Variable | Obs Mean Std. Dev. Min Max
_____________ A e e e e e e e e e e e e e e
Iwg | 753 1.097115 .5875564 -2.054124  3.218876

inc | 753 20.12897 11.6348 -.0290001 96

. sum lwg inc if isYoungHiEdMom // local

Variable | Obs Mean Std. Dev. Min Max
_____________ A e e e e e e e e e e e e e e e
Iwg | 6 1.621039 .3411624  1.230121 2.230264

inc | 6 16.64083 3.490015 14.245 23.6

5.1 can use these values with the at() option — next page.
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mtable, at(agecat=1 wc=1 hc=1 k5=2 k618=0 lwg=1.62 inc=16.64)

6.A simpler way is to use 1fand atmeans

mtable if isYoungHiEdMom, rowname(Young higher ed kids) ///
atmeans ci below

Middle aged, educated dad with kids

gen isMiddleEdDad = agecat==2 & k5==0 & k618>=1 & wc==1 & hc==1
mtable if isMiddleEdDad, rowname(Middle age higher ed kids) ///
atmeans ci below

Highly educated older couples

gen isOlderHiEd = agecat==3 & wc==1 & hc==1 & k618==0
mtable if isOlderHiEd, rowname(Older higher ed) ///
atmeans ci below twidth(25)
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Summary of ideal types
Expression: Pr(1fp), predict()

| Pr(y) 11 ul
__________________________ e
Average person | 0.578 0.539 0.616

Young lower ed kids | 0.159 0.068 0.251
Young higher ed kids | 0.394 0.234 0.554
Middle age higher ed kids | 0.748 0.672 0.823
Older higher ed | 0.631 0.528 0.734

Specified values of covariates
<snip>

1. Which variables seem important explaining LFP?
2. What is your next step to verify this?

3. Before pursuing this, let's make sure that the differences in the predictions are
statistically significant.
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Standard errors of predictions
1. How precise are the predictions? Are predictions equal?

2.The delta method computes the standard error for the sampling distribution of
the estimated predictions

3.Standard errors can be used for confidence intervals and significance tests

Confidence intervals
1.The confidence interval (Cl) is: [ Lower level, Upper level ]
2. With a 95% Cl, we conclude:
We are 95% certain that our Cl includes the true value of the parameter.
Or:

With repeated samples we would expect our prediction to be within the C/
95% of the time.
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Examples

1. The predicted probability of labor force participation is .59 with a 95% confidence
interval from .48 to .62.

2. The estimated probability of labor force participation is .59 (95%Cl: .48, .62).
3. Our results suggest that the predicted probability of labor force participation could
be as small as .48 or as large as .62 with 95 percent confidence.

Summary of ideal types

In our commands for ideal types, we could add the option statistics(ci)
or Ci to add confidence intervals to the table.

| Pr(y) 11 ul
__________________________ e
Average person | 0.578 0.539 0.616

Young lower ed kids | 0.159 0.068 0.251
Young higher ed kids | 0.394 0.234 0.554
Middle age higher ed kids | 0.748 0.672 0.823
Older higher ed | 0.631 0.528 0.734

4. Are they significantly different?
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Comparing profiles/predictions
1. Consider two predictions:
p1 with Cl [p1LB, p1UB] and p1 with Cl [p1LB, p1UB]
2.1f the Cl's do not overlap, the predictions are significantly different

3.People incorrectly assume: If the Cl's overlap, the predictions are not
significantly different

4. To test if predictions differ, | suggest testing if the predictions are equal.
5.The easiest way to do this is to estimate all of the predictions simultaneously

6.To do this we take advantage of the return r(atspec)
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#6.4 Estimate all predictions simultaneously and post them

mtable, at("Average®) at( YoungLowEdMom™) at( YoungHiEdMom*®) ///
at(CMiddleEdDad") at("OlderHiEd") post atright

Expression: Pr(1fp), predict()

| 2. 3. 1.
| Pr(y) k5 k618 agecat agecat wc
S
1] 0.578 .238 1.35 .385 .219 .282
2] 0.159 2 0 0 0 0
3] 0.394 2 0 0 0 1
4 ] 0.748 0 1.77 1 0 1
5] 0.631 0 0 0 1 1
| 1.
| hc Iwg inc
A
1] .392 1.1 20.1
2] 0 .75 10
3] 1 1.62 16.6
4 1 1 1.32 26.3
5] 1 1.38 27.9

Specified values where .n indicates no values specified with at()

No at()

|
+
Current | -n
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#6.5 Test if predictions are equal
. mlincom 2 - 3 // young lower - young higher

lincom pvalue 11 ul

|
1]

-0.235 0.000 -0.340 -0.129

A young mother in a low income family without college is significantly less
likely to be in the labor force than a similar mother in a college educated
family (p<.001).
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Tables of predicted probabilities
1.The profiles suggest young children and the wife's education are important

2.This table summarizes the effects of these variables
Number Did Not

of Young Attend Attended
Children College College Difference

0 60 77 17
1 28 .46 18
2 09 .17 09 < due to rounding
3 02 05 03

3. Where do these numbers come from?
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Curves behind the table of probabilities
1. Let © be the linear combination of all variables except k5 and wc
2.The model is

Pr(y=1|x)=A(f,+ B:k5+ B,.Wwc+0O)

= A(B, + Busk5+ B,owe)

3.1fwc=0

Pr(y =1]x,wc=0)=A(f; +B:kS)
4.1fwe=1

Pr(y=1{x,wc=1)=A(B; +BkS+B,)
A([ B +Buc ]+ Bsks)
=A(B) +Bk5)

5.These are parallel curves as shown on the next page.
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# Young Not Attended
Children College College Difference
0 .60 .77 .17
1 .28 .46 .18
2 .09 .17 .09
3 .02 .05 .03

75
|

Pr( In Labor Force )
5
L

25
|

-4 -3 -2 -1 0 1 2 3 4
Number of Children

Attended College ————- Did Not Attend College

#74 cdat3lec-brm-Ifp.do scott long 2013-04-12
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#7.1 mtabl e for two variables
. mtable, atmeans at(wc=(0 1) k5=(0 1 2 3))

Expression: Pr(1fp), predict()

| k5 wc Pr(y)
__________ U
1] 0 0 0.604

2 0 1 0.772

3] 1 0 0.275

4 | 1 1 0.457

5| 2 0 0.086

6 | 2 1 0.173

7] 3 0 0.023

8 | 3 1 0.049

Specified values of covariates

| 2. 3. 1.
| k618 agecat agecat hc Twg inc
__________ e —————————————————————————————————————
Current | 1.35 385 219 392 1.1 20.1
Part 3: Binary outcomes Page 190

#7.2 mtabl e for a nicer table

1.mtabl e stacks predictions from previous mtable results.

2.clear means we want a new table, starting from nothing.

3. right means place new estimates to the right.

4.atvars(_none) means that no atvars should be added to the table.

5.dydx((wc) requests a discrete change in i .wc.

1] qui mtable, atmeans at(wc=(0) k5=(0 1 2 3)) atvars(k5) ///
clear estname(NoCol)
2] . qui mtable, atmeans at(wc=(1) k5=(0 1 2 3)) atvars(_none) ///

Vo

> right estname(College)
3] . mtable, atmeans dydx(wc) at(k5=(0 1 2 3)) atvars(_none) ///
> right estname(Diff) stats(est p)
| k5 NoCol College Diff p
__________ o ———————————————————
1] 0 0.604 0.772 0.168 0.000
2 1 0.275 0.457 0.182 0.001
3] 2 0.086 0.173 0.087 0.013
4 ] 3 0.023 0.049 0.027 0.085
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Local and global means
1. We held other variables at the global means, which might be unrealistic
o If you have 3 young children, you are unlikely to be in the oldest age group

2. Local means hold other variables at levels "around" or local to other variables
being examined held constant

0 For example, the mean age for those with 3 young children
3. Compute predictions with local means using if and atmeans
a. Create a selection variable that defines the group of interest.
b.Tellmtable to select only these cases.
c. Use atmeans to compute means within this group.

4.0ne of the regressors can be the selection variable or other variables can be
used

Part 3: Binary outcomes Page 192




#7.3 local means for tables using if

1.Select cases where k5 is 0 and use atmeans

. mtable if k5==0, estname(k5_0) at(wc=(0 1) k5=0) atvars(l.wc) atmeans ///
> clear

1.
wc k5 0
0 0.583 <= prediction for k5==0 and wc==0
1 0.757 <= prediction for k5==0 and wc==1
2. 3. 1.

k5 k618 agecat agecat hc Twg inc

0.000 1.279 0.436 0.269 0.358 1.107 19.987
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2. Adding predictions for k5=1

. mtable if k5==1, estname(k5_1) at(wc=(0 1) k5=1) atvars(_none) ///
> atmeans right

3. Adding predictions for k5=2 and k5=3
. mtable if k5==2, estname(k5_2) at(wc=(0 1) k5=2) atvars(_none) atmeans ///
> right
. mtable if k5==3, estname(k5_3) at(wc=(0 1) k5=3) atvars(_none) atmeans ///
> right

1.

wc k5 0 k5 1 k5 2 k5 3
0 0.583 0.337 0.154 0.017
1 0.757 0.530 0.288 0.037

4. Compute discrete changes for wc for each level of k5

0 Does the probability for a given number of children differ by wc?

Part 3: Binary outcomes Page 194

#7.4 DC for wc

1.dydx(var) tells margins and m* commands to compute marginal effects
for var.

2.If var is a factor variable, it computes a discrete change; else a marginal change

mtable if k5==0, dydx(wc) stat(est p) atmeans clear long ///
roweqnm(DCwc) colegqnm(k5_0)

mtable if k5==1, dydx(wc) stat(est p) atmeans right long colegnm(k5_1)

mtable if k5==2, dydx(wc) stat(est p) atmeans right long colegnm(k5_2)

mtable if k5==3, dydx(wc) stat(est p) atmeans right long colegnm(k5_3)

3.Results in
Expression: Pr(1fp), predict()

] kK5_0 k5_1 k5_2 k5_3
| dPr(¢y) dPr(y) dPr@y) dPr(y
A
DCwc |
d Pr(y) | 0.173 0.193 0.134 0.020
p 1l 0.000 0.000 0.003 0.070

Specified values of covariates
<snip>
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Comparing results for global and local means

| wc=0 we=1 Change pvalue

_____________ e
global |

k5=0 | 0.60 0.77 0.17 0.00

k5=1 | 0.27 0.46 0.18 0.00

k5=2 | 0.09 0.17 0.09 0.01

k5=3 | 0.02 0.05 0.03 0.09

_____________ e e
local |

k5=0 | 0.58 0.76 0.17 0.00

k5=1 | 0.34 0.53 0.19 0.00

k5=2 | 0.15 0.29 0.13 0.00

k5=3 | 0.02 0.04 0.02 0.07

1.Trends are similar
2.Biggest differences are for one and two children
3. Which predictions make the most sense to you?

4.1t is important to determine how sensitive results are to the levels of the other
variables
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Plotting predictions
1. For continuous variables, graphs can be effective
0 To know if a graph is effective, you have to create it

2.marginsplotis easy, but does not allow you to combine results from
multiple models and in Stata 13 does not work with multiple outcomes

3.1 prefer mgen to generate variables to plot with graph

Tool: graph options
1. Graphs have many options that make the command difficult to read
2.1t is hard to keep options consistent across graphs
3.1 put key options into locals.
a. local ylab "0(-.25)1., grid gmin gmax"
b.Then “ylab®™ means 0(.25)1., grid gmin gmax
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4. Here are the options used for the graphs that follow:

0 They help you create consistent graphs
0 They make it easier to debug graph commands

local inc_rng '0(5)100"

local xlab_inc "0(20)100"

local ylab "0(-25)1., grid gmin gmax"

local ylabdc "0(.1).4, grid gmin gmax"

local ytitle "Pr(In Labor Force)"

local lineprob "msym(i) lIcol(green) Ipat(solid)"

local linelow "msym(i) lIcol(gold) Ipat(dash)"

local linel "msym(i) lcol(red) Ipat(dash)"

local lineO "msym(i) lIcol(blue) Ipat(solid)”

local 1ine30  "msym(Oh) msiz(*1.1) mcol(red) Icol(red)"
local 1ine40 "msym(Sh) msiz(*0.9) mcol(green) lcol(green)"
local 1ine50 "msym(Th) msiz(*0.9) mcol(blue) Icol(blue)"
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Introduction to lowess plots
1.This is the probability plot for income

2.ls it substantively reasonable?

Regressors: k5 k618 inc wc hc lwg inc

Pr(In Labor Force)
5
h

T i
0 20 40 60 80 100
Family income excluding wife's
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#8.1 Start analysis with a lowess plot

1.Since a lowess plot is non-parametric, it does not constrain the shape of the
relationship between a regressor and the outcome

2. A lowess is a valuable first step in evaluating how a regressor is related to the
outcome
Intuition behind a lowess plot

1. Compute mean LFP within income intervals of 5:
. sum Ifp if inc>=0 & inc<5

Variable | Obs Mean Std. Dev. Min Max
Ifp | 12 .6666667 .492366 0 1
<snip>

. sum Ifp if inc>=35 & inc<40

Variable | Obs Mean Std. Dev. Min Max
_____________ A ———————————————————————————
Ifp | 18 .3888889 .5016313 0 1
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2. Plotting the means by income

Average LFP in $5,000 income interval

Mean LFP
5
*
*
*
*
*

0 20 40 60 80 100
Income

0 The "noise" above 50 due to the small N's
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3. A lowess plot is a sophisticated way to do this that uses “sliding” intervals.

. sort inc

. lowess Ifp inc, jitter(3) gen(lowesslfp) xlab("xlab_inc®) ///
bwidth(.5) ytitle(Smoothed mean LFP) ylab("ylab®) ///
ylin(0 1, Icol(gs13)) msym(oh) lineopt(lcol(green) ///
Iwid(medthick))

4.The gen(lowess 1 Tp) option saves the predictions to a variable.

Graph on next page...
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Lowess smoother

Smoothed mean LFP

o - ocliRRAEREER W > B B ® © o oo o o}

T T
0 20 40 60 80 100
Family income excluding wife's

bandwidth = .5
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Lowess and logit curves
1.Sometimes lowess curves do not look like something from a logit model

a. Since lowess does not control for other variables, the curve might not look
"logit-like"

b.The process might not fit the standard specification of the logit model.
Examples of this are given in Part 8.

2. Next we plot the predicted probabilities by income from a logit model.
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#8.2 predictions from logit

1. Estimate model with only income

. logit Ifp inc
<snip>
. estimates store blminconly

2.mgen computes predictions at specific values of income and saves predictions
in variables to plot
0 stub(stub-name): Variables generated begin with stub-name.

0 predname(pred-name): The default name of prediction is name returned by
mtable. If you want a different name, use the predname().

0 predlabel(/abel): The label used for the prediction. This is useful for making
graphs where the label is used for titles and legends.

0 at(var-name=<range>): Values of var-name are saved as <stub-name><var-
name>.
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3. Generated variables: <stub-name><stat-name>

<stat-name> Description

predname Estimate such as probabilities, dydx, etc.
11 Lower level bound of confidence interval
ul Upper level bound of confidence interval
pval p-value for test margin is O

se Standard error of margin

z z-value of test prediction is 0

4. Predict outcome as income increases from 0 to 100 by 5:
. mgen, at(inc=(0(5)100)) atmeans stub(PLT) predlabel(Logit prediction)

Predictions from: margins, at(inc=(0(5)100)) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

PLTpri 21 21 4223433 .2008354 .6669906 Logit prediction

PLTII1 21 21 .320794 .0336831 .6007513 95% lower limit

PLTull 21 21 .5238926 .3679877 .7332299 95% upper limit

PLTinc 21 21 50 0 100 Family income excluding .

* inc is the only covariate, so there is no list of other covariates
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5.Variables beginning with PLT are created by mgen:

. format %9.3g Ifp inc PLTpr PLTII PLTul PLTinc
list Ifp inc PLTpr PLTHI PLTul PLTinc in 1/25, clean nolabel

Observed
Variables mgen variables
1fp inc PLTpri PLTII1 PLTull PLTinc
1 1 -.029 .667 .601 .733 0
2 1 1.2 .644 .588 .699 5
3 0 1.5 .619 .573 .666 10
4. 1 2.13 .595 .556 .633 15
5. 1 2.2 -569 .534 .605 20
<snip>

15. 1 5 .319 .176 .462 70
16 1 5.12 .297 _146 .448 75
17. 1 5.12 .276 .119 .433 80
18. 1 5.32 .255 .0938 .417 85
19. 0 5.33 .236 .0714 .401 90
20 1 5.49 .218 .0514 .385 95
21. 0 5.55 .201 .0337 .368 100
22. 0 6 . . . .

23. 0 6

24. 1 6.02

25. 1 6.25
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6. Plotting PLTpr against PLTinc with lowess included

Model including only income

LFP

o
T T T T T T
0 20 40 60 80 100
Family income excluding wife's
Logit predicton ~————- Lowess
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#8.2 adding a Cl around the predictions

1.The means Ifp for $5,000 intervals of income were unstable at higher
incomes due to small N's

2.The logit model uses all the observations to fit a curve for all values of income
3.The curve is smooth, but the confidence in the prediction varies

4.The Cl reflects the lower certainty for larger values of income
graph twoway ///

> (rarea PLTul PLTII PLTinc, color(gsl3)) /// shaded ClI

> (connected PLTpr PLTinc, ~lineprob®™), /// line for prob

> subtitle("'Model including only income™, position(1l)) ///

> ytitle(C"ytitle™™) ylabCylab™) xtitle(" xtitle™") ///

> legend(off)
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Model including only income

Pr(In Labor Force)

T T
0 20 40 60 80 100
Family income excluding wife's
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Plot income in full model
1. Now consider the full model
logit Ifp k5 k618 i.agecat i.wc i.-hc lwg inc
2. Compute predictions holding other variables at their means
Pr(y=1|x",AGE)
. estimates restore blm // full logit model

. mgen, at(inc=Cinc_rng")) atmeans stub(PLT)
Predictions from: margins, at(inc=(0(5)100)) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

PLTpri 21 21 .3583955 .0768617 .7349035 pr(y=in LF) from margins
PLTII1 21 21 .2680128 -.0156624 .6641427 95% lower limit

PLTull 21 21 .4487782 .1693859 .8056643 95% upper limit

PLTinc 21 21 50 0 100 Family income excludi...

Specified values of covariates

2. 3. 1. 1.
k5 k618 agecat agecat wc hc Iwg

.2377158  1.353254 .3851262 .2191235 .2815405 .3917663  1.097115
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Full model: discussion follows next graph

Regressors: k5 k618 inc wc hc lwg inc

Pr(In Labor Force)

T T
20 40 60 80 100
Family income excluding wife's

o
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Income only model: discussion follows

Model including only income

Pr(In Labor Force)

T
20 40 60 80 100
Family income excluding wife's

o
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Adding controls affects the curve in three ways

1. The coefficients for inc differ; this affects the slope of the curves
a.Income only: -.0207569
b. Full model: -.0350542

2.The intercepts differ which move the curves left and right
a.Income only: .6946054
b. Full model: 1.013999

3.The levels of the other variables shift the curve left and right, essentially
changing the intercept

Recall our earlier graphs...
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Visually: How x2 affects the "effect” of x1
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#8.3 predictions for income by wife’s college
1.To show interactions, | plot curves at different values of other variables.
0 For example, plot Pr(LFP) by inc for each level of wc.
2. Let x* be the fixed values for all variable except age and wc.
3.Compute
Pr(y=1|x,WC =0, INC) and Pr(y=1|x",WC =1, INC)
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. mgen, at(inc=Cinc_rng") wc=0) atmeans stub(PLTwcQ) ///
> predlabel (Did not attend college)

Predictions from: margins, at(inc=(0(5)100) wc=0) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

PLTwcOpril 21 21 .3177494 .0623648 .6889161 Did not attend college
PLTwcOll1 21 21 .2309727 -.0151898 .6107004 95% lower limit
PLTwcOull 21 21 .404526 01399194 .7671317 95% upper limit
PLTwcOinc 21 21 50 0 100 Family income exclud...

<snip values of covariates>

. mgen, at(inc=Cinc_rng") wc=1) atmeans stub(PLTwcl) ///
> predlabel (Attended college)

Predictions from: margins, at(inc=(0(5)100) wc=1) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

PLTwclprl 21 21 .4684761 .1286839 .8310055 Attended college
PLTwcllll 21 21 .3404584 -.0173306 .7575446 95% lower limit
PLTwclull 21 21 .5964938 .2746983 .9044663 95% upper limit
PLTwclinc 21 21 50 0 100 Family income exclud...

<snip values of covariates>
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Income by wife's education

Regressors: k5 k618 agecat wc hc lwg inc

Pr(In Labor Force)

T
0 20 40 60 80 100
Family income excluding wife's

————— Attended college Did not attend college
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#8.4 DC(wc|inc): are the curves significantly different
1.Do women who go to college have higher rates of LFP for all levels of income?
2.The figure shows two curves with their Cls.
a.Red curve: CI [ LB Pr(y=1|wc=1, inc); UB Pr(y=1|wc=1, inc) ]
b.Blue curve: CI [ LB Pr(y=1|wc=0, inc); UB Pr(y=1|wc=0, inc) ]
3.If the Cl's do not overlap, the predictions are significantly different
4.If the Cl's overlap, significance is unknown

5.Here’s how to do this for the two curves
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Testing differences in predictions
1.We want to test
Ho: DC(wclinc) =0
2. We compute
[ Lower bound DC(wc|inc), Upper bound DC(wc|inc) ]

3.Since wc is a factor variable i .wc , mgen computes DC with the dydx(wc)

. mgen, dydx(wc) at(inc=Cinc_rng")) atmeans stub(PLTdc) ///
> predlabel (DC of wc by income)

Predictions from: margins, dydx(wc) at(inc=(0(5)100)) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

PLTdcd_pri 21 21 .1507267 066319 .1967745 DC of wc by income
PLTdclI1 21 21 .0556941 -.0111785 .0895455 95% lower limit
PLTdcull 21 21 .2457593 .1438166 .3049388 95% upper limit
PLTdcinc 21 21 50 0 100 Family income excl...

<snip values of covariates>
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DC of wc by income

Regressors: k5 k618 agecat wc hc lwg inc

=0)

1) - Pr(LFP|WC

Pr(LFPIWC
1
Il

T T
0 20 40 60 80 100
Family income excluding wife's
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Comparing overlapping Cl's to tests of DC:

Regressors: k5 k618 agecat wc hc lwg inc Regressors: k5 k618 agecat wc hc lwg inc

=0)

- Pr(LFP|WC

1)

Pr(In Labor Force)

Pr{(LFPIWC
A
|

0 20 40 60 80 100 o
Income T T T y y 0

0 20 40 60 80 100

Did not attend college ‘ Income

[-—-- Attended college

#87 caat Sec-brmip o scot lng 2013-04-12 85 cda S0 b do scoft g 2013:04-12

1. Overlapping Cls do not indicted non-significant differences

2. For two curves (left graph), | do not find plotting the Cl useful
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* Predictions by inc for various age levels

1. Here we look at the effect of income by age group:

. estimates restore blm
. mgen, at(inc=Cinc_rng") agecat=1) atmeans stub(p30) predlabel (Age 30-39)

Predictions from: margins, at(inc=(0(5)100) agecat=1) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

p30pri 21 21 .4583632 .1230226 .8236541 Age 30-39

p30li1 21 21 .3331298 -.0230338 .7624032 95% lower limit

p30ull 21 21 .5835967 .269079 .8849049 95% upper limit

p30inc 21 21 50 0 100 Family income exclud...

Specified values of covariates

1. 1.
k5 k618 agecat wc hc Iwg
.2377158  1.353254 1 .2815405 .3917663  1.097115

. mgen, at(inc=Cinc_rng") agecat=2) atmeans stub(p40) predlabel (Age 40-49)
<snip>

. mgen, at(inc=Cinc_rng") agecat=3) atmeans stub(p50) predlabel (Age 50+)
<snip>

We find...
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The effect of income on LFP by age category

Regressors: k5 k618 age wc hc lwg inc

Pr(In Labor Force)

T
0 20 40 60 80 100

Family income excluding wife's
—O— Age30-39 ——3—- Age 40-49
B Age 50+
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Graphs for discovery versus presentation

2.You need a graph to decide if you need a graph!

1.1f a graph is simple, you probably don’t need it in a paper
0 you need it to decide if you don’t need it

2.You need tools to create graphs quickly and must organize them efficiently or
you won’t do it

a. Use templates to speed up the process of making graphs

b.Use a file viewer to quickly examine graphs
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Interpretation with odds ratios (OR)

Odds ratios are a common and often unsatisfactory method of interpretation
What is an odds ratio?

Probability and odds at x and x+1

Probability: Pr(y:1|x) Pr(y:1|x+1)
oss: (e TUTIN gy POSLXE)
: Pr(y=0]x) Pr(y=0[x+1)
The OR is the ratio
Q(x+1)

Odds ratios: OR(Xx — x+1)=

Q(x)
For a unit increase in x, the odds increase by a factor of OR holding other
variables constant.

To fully understand this, we start with the log odds or logit
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Linear in the log of the odds

1.The logit is the log of the odds

2.The logit model is linear in the logit
In{m}:lnﬂ(x):xﬁzﬁ + BX + ByX, + BiX

l—Pr(yzl\x) 0 1 22 373
3.For a unit change in xy, the logit is expected to change by B, holding other
variables constant.
4. Substantively, what does a change of B« logits mean?

0 The logit of LFP decreases by 1.30

5.To understand the change in logit, we transform it to odds
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Change logit to odds and compute odds ratio (ORs)
1.Take the exponential of the logit with a focus on xs:
Q(x) = exp[an(x)] = exp(xﬁ)
— P AN i,
=ehefMel e =Q(x,x,)
2.Let x3 change by 1
Q(x,x, +1)=ehefehnee/ o
— phphnghtghtohs
3.The odds ratio
EndingQ  Q(x,x,+1) efefnehe/ e

_eb
- = =e
StartingQ  Q(x,x,)  eftefMefretn

4. The OR does not depend on the level of other variables
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A change of 1 in x has the same OR everywhere

Pr(y=1)
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#9 Logit estimates
. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
Ifp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
e
k5 | -1.391567 .1919279 -7.25 0.000 -1.767739 -1.015395
k618 | -.0656678 .068314 -0.96 0.336 -.1995607 .0682251
|
agecat |
2 | -.6267601 .208723 -3.00 0.003 -1.03585 -.2176705
3 | -1.279078 .2597827 -4.92 0.000 -1.788242 -.7699128
|
1.we | .7977136 .2291814 3.48 0.001 .3485263 1.246901
1.hc | .1358895  .2054464 0.66 0.508 -.266778 .5385569
Iwg | .6099096 .1507975 4.04 0.000 .314352 -9054672
inc | -.0350542 .0082718 -4.24 0.000 -.0512666 -.0188418
_cons | 1.013999  .2860488 3.54 0.000 .4533539 1.574645
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#9 ORs with 1 1stcoef: interpretation on next page
listcoef, constant help
logit (N=753): Factor Change in 0Odds
0dds of: 1InLF vs ONotInLF
1fp | b z P>]z| e"b e~bStdX SDofX
_____________ e e e —————————————
k5 | -1.39157 -7.250 0.000 0.2487 0.4823 0.5240
k618 | -0.06567 -0.961 0.336 0.9364 0.9170 1.3199
2.agecat | -0.62676 -3.003 0.003 0.5343 0.7370 0.4869
3.agecat | -1.27908 -4.924 0.000 0.2783 0.5889 0.4139
1.wc | 0.79771 3.481 0.001 2.2205 1.4319 0.4500
1.hc | 0.13589 0.661 0.508 1.1456 1.0686 0.4885
Iwg | 0.60991 4.045 0.000 1.8403 1.4310 0.5876
inc | -0.03505 -4.238 0.000 0.9656 0.6651 11.6348
_cons | 1.01400 3.545 0.000

b = raw coefficient
z = z-score for test of b=0
P>]z| = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
e~bStdX = exp(b*SD of X) = change in odds for SD increase in X
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Odds ratio: factor change in the odds

1. For a unit change in xi the odds are expected to change by a factor of exp(B«),
holding other variables constant.

a. For exp(Bk)>1, the odds are exp(B«) times larger.

By attending college her odds of LFP are 2.22 times larger, holding other
variables constant.

b. For exp(B«)<1, the odds are exp(Bx) times smaller.
For an additional young child, the odds of LFP are .25 times smaller, ...

2.For a standard deviation change in xi, the odds are expected to change by a
factor of exp(skfBk), holding other variables constant.

For a standard deviation increase in the log of wages the odds of LFP are
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Percentage change in the odds
1.1f the odds change by a factor of 2, they are 100% larger.
2.If the odds change by a factor of .5, they are 50% smaller.
3.In general, %change = 100*(OR-1).
100% = 100*(2-1) Double odds, is 100% increase
-50% = 100*(.5-1) Halve odds, is 50% decrease
4. For example

a. By attending college her odds of LFP are 124 percent larger, holding other
variables constant.

b. For an additional young child, the odds of LFP are 77 percent smaller, ...

c. For a standard deviation increase in the log of wages the odds of LFP are
43 percent larger, ...

5.To compute these: listcoef, percent
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Interpreting odds ratios (ORs)
1.0R is a multiplicative coefficient
a. Positive effects are greater than one
b. Negative effects are between zero and one

2. Magnitudes of positive and negative ORs are compared by taking the inverse
of the negative effect (or vice versa)

a. A positive OR=2 has the same magnitude as a "negative" OR=1/2.
b.An OR=1/10is larger than OR=2.

3.The effect on the odds of the event not occurring is the inverse of the OR of
the event occurring

Being ten years older makes the odds of not being in the labor force 1.9
(=1/.52) times greater, holding other variables constant.
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OR compared to Pr(y) for groups

1.Two logit models are estimated

logit tenure pub phdyr if female==1
logit tenure pub phdyr if female==0

A

where exp(ﬂ‘p"f,%me”) = exp(ﬁ,ﬁ”) =2.
2.Suppose the base probabilities and odds
pm = .500 - Qu=.500/(1-.500) = 1.000
pw = .050 > Qu=.050/(1-.050) = 0.053
3.How does doubling the odds change the probability?
2*Qu=2.000 > pwm=2.000/(2.000+1) =.667
2*Qw =0.105 - pw=0.105/(0.105+1) = .095
4.Then,
A pM/ A pub = .167 = (.667 - .500)
A pW/ A pub =.045 = (.095 - .050)
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Overview of binary LHS
Why so much time on BRM

1.The BRM is the foundation for many models for ordinal, nominal, and count
variables

2. A deep understanding of BRM makes models easier to understand

Key points
1. Interpretation requires understanding nonlinearity
2. No single method of interpretation is always best
O Try alternative methods to find which one works best.

3.There are subtle ways in which the BRM differs from the LRM that will be
explored as the class progresses

0 Be careful about taking what you know about LRM and appying it to BRM

Part 3: Binary outcomes Page 236

Part 4: Hypothesis testing

Read and run

Long & Freese  Chapter 3.2
cdalec*.do cdalec17-test-Ifp.do

Overview
Hypothesis testing is critical for the effective use of regression models
1. Review of the theory of hypothesis testing

2.Testing a single coefficients

3.Simultaneously testing multiple coefficients
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Barnett's model of inference

deduction
Model > Potential
A Data
A
Z
(o7
Yy,
v
v Observed
World Data
test-barnettV1.do jsl 2015-03-12
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Test of a single coefficients
1.1f Ho: B = A3, is true, the ML estimator is
B, ~Normal (ﬁ;,Var(ﬁk ))
2.Two types of errors are possible when testing Ho: =0

Decision

Ho: B=0 Accept Ho Reject Ho

In fact =0 No error Type I: Pr(reject true)=a
Size of test (the shaded tail).

In fact z0 Type Il: accept false No error
Power of test.
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3. Consider testing Ho: 5, = 0 using ﬁk with Gt

b =0

o
B

=

If Ho is true, then the sampling distribution is

Reject Ho Reject Ho
Ny «

-1.96 0 1.96

test-zdistV2 20141205
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Twenty tests when =0
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#11 z-test of B with logit (-test-Ifp.do)
logit Ifp k5 k618 i.agecat i.wc i.-hc lwg inc, nolog
Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
Ifp | Coef. Std. Err z P>|z| [95% Conf. Interval]
- o
k5 | -1.391567  .1919279 -7.25 0.000 -1.767739  -1.015395
k618 | -.0656678 .068314 -0.96 0.336 -.1995607 .0682251
|
agecat |
2 | -.6267601 .208723 -3.00 0.003 -1.03585 -.2176705
3 | -1.279078 .2597827 -4.92 0.000 -1.788242 -.7699128
|
1.we | .7977136 .2291814 3.48 0.001 .3485263 1.246901
1.hc | .1358895  .2054464 0.66 0.508 -.266778 .5385569
Iwg | .6099096 .1507975 4.04 0.000 .314352 -9054672
inc | -.0350542 .0082718 -4.24 0.000 -.0512666 -.0188418
_cons | 1.013999  .2860488 3.54  0.000 .4533539 1.574645
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Ifp | Coef. Std. Err. z [95% Conf. Interval]

- e
k5 | -1.391567  .1919279 -7.25 0.000 -1.767739  -1.015395

k618 | -.0656678 .068314 -0.96 0.336 -.1995607 .0682251

1. Having young children has a significant effect on the probability of working
(z=-7.25, p<0.01 for a two-tailed test).

2.The effect of having young children is significant (p<.01).
3.The effect of having older children is not significant (z=-.96, p=.34).

Note: Unless it is clear from the context in which the result is presented, you
should indicate if it is a one-tailed or two-tailed test.
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Hypothesis for multiple coefficients

1. Consider the model
logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc

2. What if we wanted to test

0 Kids have no impact on LFP
0 Education has no impact

3. We cannot do this with the z-values from logit

4. Consider algebraic statements and probabilistic statements
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Algebraic relationships among hypothesis
1.These hypotheses are algebraic statements
Ha: Bx=0 <= income has no effect
Hg: Bz=0 <= wealth has no effect
Hc: Bx= Bz <=income & wealth have equal effects
Hp: Bx=Bz=0  <=income & wealth have no effects
2.1/f Ha and Hg are true, then Hc and Hp must be true

0 Bx=0 & Bz=0 algebraically imply Bx=pz=0
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Conclusions from hypothesis tests

1. Consider conclusions from tests of four hypotheses
Ha: Bx=0 =>» evidence this might be true
He: Bz=0 =>» evidence this might be true
Hc: Bx = Bz 2>?
Hp: Bx=Bz=0 =>7?

2. Accepting Ha and Hg does not imply you will accept Hc or Hp!

0 Who stole my wallet?

3. More formally, consider the formula from the LRM

y=p6,+pX+p,1+¢
0_2

Var(ﬁx):m
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Wald tests of joint hypotheses

1. ML theory shows that:

ﬁiNormal(B, Var(f}))

2. With three coefficients:

Bo| |%, i i
var| 8, |=| 0. . o o. .
'ﬁx Bx-Po Px Px Pz

2

B) \%us %ni %

3 tell you how the "regression plane rocks".

by e
4.The Wald test measures:

a. How far estimates are from hypothesized values.
b.How flat the likelihood functions is.

Graphically...
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Wald test and the log likelihood function

Curvature

InL(B)

Distance

Bc=0 Bu
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Wald test overview
1.The Wald test estimates model without constraints
2. Hypothesis Ho: B=0 imposes a constraint on the coefficient
3.The Wald test evaluates
a. Distance from the unconstrained estimate to the constraint

b. Curvature of In L at the constraint as indicated by @;',T"ZL

4.The flatter the curve, the less significance

Shown on next page...
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Wald test of linear constraints
1. Consider linear constraints QB =0
a. B is vector of parameters

b. Q is matrix that combine the B's

2.Examples:
a.QB=PB1-B2=0
b.QB=pB1=0
c.QB=P1=B2=0

3.The Wald statistic equals

-1

w ~[ab-o] Quar(B)Q ] [0h-0]-
[Distance] [Curvature] [Distance]

4.See Long 1997 for details
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Sampling distribution of the Wald test

If Ho is true, as N increases the sampling distributions of W converges to the
chi-square distribution with degrees of freedom equal to the number of
constraints being tested

Reject Ho
Accept Ho

Examples follow...
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Wald tests using test

The model is:

logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc
estimates store blm

#13 Ho: Birs = 0
. test k5
(1) [Ifp]k5 = 0

52.57
0.0000

chi2( 1)
Prob > chi2

The effect of having young children on entering the labor force is significant at
the .01 level (X[ =52.6).

Note

Chi-square 52.57 equals the z-value squared -7.25*-7.25.
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How do you know the names of coefficients?
. logit, coeflegend

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
Ifp | Coef. Legend
k5 | -1.391567 _b[k5]
k618 | -.0656678 _b[k618]
|
agecat |
40-49 | -.6267601 _b[2.agecat]
50+ | -1.279078 _b[3.agecat]
|
we |
college | _7977136 _b[1.wc]
|
he |
college | .1358895 _b[1.hc]
Iwg | .6099096 _b[lwg]
inc | -.0350542 _b[inc]
_cons | 1.013999 _b[ _cons]
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#14‘ Ho.' ﬁwc = ﬁhc = 0
. test 1.wc 1.hc // not test wc hc

(1) [Ifp]i.wc =0
(2) [Ifp]i.hc =0
chi2( 2) = 17.83
Prob > chi2 = 0.000

We can reject the hypothesis that the effects of the husband's and the wife's
education are simultaneously zero (X22=17.83, p<.01).

#15 Ho: ﬁwc ﬁhc
. test 1.wc = 1.hc

(1) [Ifp]li.wc - [Ifp]l.hc =0

chi2( 1)
Prob > chi2

3.24
0.0719

The hypothesis that the effects of husband's and wife's education are equal is
rejected marginally at the .05 level (X}=3.24, p=.07).
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LR test of nested models
The LR test is an alternative to the Wald test.

Unconstrained=>  InL(Bu)

Constrained=>  InL(Bc)

Ir test-wald-Ir-ImV2.do 2015-06-10
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Nested models
1.What is a constrained model?
Constrained model = Unconstrained model + constraints.
2.Let Mc be the constrained model.
3.Let My be the unconstrained model.
4. Mc is nested in My.

5. Consider these models:

M1: Pr(y=1|x) = A(Bo + Bix1i+ Pax2 )
M2: Pr(y=1|x) = A(Bo + Bix1 + Baxs )
:Pr(y=1|x) = A(Bo + Bix1+ Pax2 + Baxs )

M4: Pr(y=1]x) =A(Bo + Bix1+ Baxa+ PBaxs + Baxs )

6. We can show how these are nested...
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M1: Bo, B1, B2 M2: Bo, By, B3 : Bo, B1, B2, Ba MA4: Bo, B, B2, B3, Ba
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Computation of LR
1. Mc with Le=L(Mc) is nested in My with Ly=L(My).

2.Bcis created from By by imposing constraints.

3. We test the hypothesis:

Ho: The constraints imposed on By are true.
4.The LR test statistic equals:

GZ(MC [My)=2InL,-2InL.

. . R InL(Bu/
5. Under general conditions, if Ho is true:
InL(Be) {7 /

G’ ~ »* (number of constraints)

pc‘zo Bu

Irtestavald-irimV2.do 2015.06-10

Part 4: Hypothesis testing Page 371




#21-23 Ho: Brs = 0
The full model

logit Ifp k5 k618 i.agecat i.wc i-hc lwg inc
Iteration O: log likelihood = -514.8732

<snip>
Iteration 4: log likelihood = -452.72367

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000

Log likelihood = -452.72367 Pseudo R2 = 0.1207
<snip>
. estimates store full
Restricted model

logit Ifp k618 i.agecat i.wc i.hc lwg inc, nolog

<snip>
. estimates store dropk5
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LR test

Irtest full dropk5
Likelihood-ratio test LR chi2(1) = 62.55
(Assumption: dropk5 nested in full) Prob > chi2 = 0.0000

2 _ 2 2 _

G’(Myg | My )=G(M,)~G*(M ) =62.55

Having young children is significant at the .01 level (LRX?(1)=62.55).
Reject Ho
Accept Ho
0 NG
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#29 Comparing LR and Wald results

1.LR and Wald are asymptotically equivalent, differ in finite samples

| | wald | LR |
| df | chi2 pval | chi2 pval | Ratio
- + B it B et LR Fomm e
k5_0 | 1.000 | 52.569 0.000 | 62.554 0.000 | 0.840
wc_hc_0 | 2.000 | 17.832 0.000 | 18.684 0.000 | 0.954
wc_hc | 1.000 | 3.239 0.072 | 3.264 0.071 | 0.992
agecat_0 | 2.000 | 24.273 0.000 | 25.417 0.000 | 0.955
all | 8.000 | 95.897 0.000 | 124.299 0.000 | 0.772

2. Which test is used is often determined by convenience and convention

3.LR test requires estimation of two models, but subtraction is easy

4. Wald test requires estimation of single model, but the computation requires

matrix manipulations

5. Statisticians generally prefer the LR test
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Practical issues when computing the LR test
1.The same sample must be the same for all model

a.Since ML excludes cases with missing data, the sample size can change
when the variables in a model change

b. Construct a data set that excludes every observation that has missing
values for any of the variables used in any of the models being tested

c. Use keep or drop to select observations that have no missing values for
variables in the model

2. Dropping categories of factor variable
a. Start with
logit y female 2.edcat 3.edcat 4.edcat
b.You cannot drop 2 .edcat with
logit y female 3.edcat 4.edcat

c. How should you do this?
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Summary on testing
1.LR and Wald tests can be used with other models using MLE
2. Testing multiple coefficients is often critical for your work

3.Sometimes researchers use only the default tests from the estimation
command

0 They test things they aren't interested in
0 They don't test things they are interested in

4. Never "add" the results of two or more tests!
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Part 5: Complex sampling

Primary source: Heeringa, S., West, B.T., & Berglund, P.A. (2010). Applied survey
data analysis. Boca Raton, FL: Chapman Hall/CRC. (HWB) Read and run
Long & Freese  Pages 100-103; help svy and read introduction to SVY manual

cdalec*.do cdalecl7-svy-hrs.do

Overview

1.Standard software assumes data come from a simple random sample (SRS)

a. Each person in the population has the same probability of selection

b.The probability of one person being selected does not affect the
probability of another person being selected.

c. It is conceptually simple, but impractical.
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2. Most major datasets use a complex sampling designs

a. Clustering: clusters are sampled; all cases in cluster are included

b. Stratification: strata are chosen, not sampled; sampling occurs within
strata

c. Sampling weights: different cases represent different proportions of the
population

3. Complex sampling can
a. Reduce costs
b.Reduce or increase sampling variability
c. Increase the representation of subpopulations
4.1f you do not adjust for complex sampling
a. Variances of estimates are usually underestimated
b. Estimates might be biased

5.1review key concepts and Svy syntax
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Complex sampling designs (HWB 2010)
1. We want to make the standard error (SE) of our estimate small
2. Four aspects of sampling affect the SE

a.N

b. Clustering

c. Stratification

d. Weights

3.This graph from Heeringa et al. summarizes how these affect the SE
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Sample and the size of the Standard Error
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1. Each sampling complication changes the "effective N" in the sample (HWB 34)

Design Estimator ; se(?) Effective n
SRS Yers 40.77 241  32.0
Clustered Ve 40.77 3.66 13.9
Stratified Yer 40.77 2.04 444
Stratified, clustered  y., ¢ 40.77 276 244
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Practical steps for using complex samples
See HWB (10, 13, 115)

1. Review documentation. Check the web site for best practices

2. ldentify the variables for survey adjustment.

0 This can be difficult

3. Plot survey weights against variables of interest. Variability in the weights can
affect sampling variability of descriptive statistics

4. Create an analysis dataset with analysis variables and survey design variables
0 Review the descriptive statistics

5. Examine the documentation to understand nonresponse issues

0 Check the web site for information on handling missing data
0 Contact the data producer if you have questions
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Using Stata for survey data
1. Stata's SVy commands provide design-based estimates for complex sampling

2.There are many subtle points involving the survey commands. Here | provide
only an overview. For details Stata Survey Data

3.Using SVy commands involves two steps
a.svyset to describe the design
b.svy: for commands such as svy: logit

c. Interpretation is largely unchanged from non-svy analysis
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HRS: Health and Retirement Study (-svy-hrs.do)

1.The University of Michigan Health and Retirement Study with 22K Americans
over 50 every two years. Large, longitudinal study of LFP and health transitions
later in life

2. My example examines
arthritis l=arthritis 0=no arthritis

3. Regressors

female Is female?

age Age at 2006 interview
edllless Ed years <= 117

edl2 Ed years = 12?

ed1315 Ed years 13-157?

edl6plus Ed years 16 or more?

4.The variables the describe the complex sample are:

secu sampling error computation unit
kwgtr 2006 weight: respondent level
stratum stratum id

5. In practice it can be hard to be sure which variables to use
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#2 Declaring the survey design
1.The design is specified

. svyset secu /// clusters

> [pweight=kwgtr], /// weights

> strata(stratum) /// stratum

> vce(linearized) singleunit(missing) // method of compute
SE"s

pweight: kwgtr
VCE: linearized
Single unit: missing
Strata 1: stratum
SU 1: secu
FPC 1: <zero>

2.The output means:
vce(linearized) : linearization for estimating standard errors.

singleunit(missing) : stratum with single sampling unit is missing.
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#6-9 Modeling arthritis

// #6 logits without survey

logit arthritis age i.female i.ed4cat
estimates store nosvy

predict nosvyphat

label var nosvyphat *"nosvy phat"

// #7 non-svy with weights and cluster

logit arthritis age i.female i.ed4cat ///
[pweight=kwgtr], cluster(secu)

estimates store wtclstr

predict wtclstrphat

label var wtclstrphat “wtclstr phat"

// #8 logits with full survey adjustments

svyset secu [pweight=kwgtr], 77/
strata(stratum) vce(linearized) singleunit(missing)
svy: logit arthritis age i.female i.ed4cat
estimates store svy
predict svyphat
label var svyphat "svy phat"
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. // #9 tables of estimated coefficients

. estimates table nosvy wtclstr svy, ///

> b(%9.3F) t(%9.2f) stats(N) eform
Variable | nosvy wtclstr svy
_____________ e e e e e e e e e e e e
age | 1.046 1.049 1.049
| 29.57 910.60 21.92
female |
1 ] 1.759 1.779 1.779
| 17.68 12.10 12.99
|
edllless | 1.162 1.206 1.206
| 3.50 2.57 3.16
ed1315 | 0.961 0.937 0.937
1 -0.92 -0.94 -1.21
edil6plus | 0.703 0.638 0.638
| -8.20 -11.47 -8.54
_cons | 0.054 0.046 0.046
| -26.60 -226.92 -19.54
_____________ e
N | 18341 16862 18375
legend: b/t
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Sources for complex sample

Heeringa, S., West, B. T., & Berglund, P. A. (2010). Applied survey data analysis.
Boca Raton, FL: Chapman & Hall/CRC. [HWB]

Korn, E. L., & Graubard, B. I. (1999). Analysis of health surveys. New York: Wiley.
[KG]

Levy, P. S., & Lemeshow, S. (1999). Sampling of populations : methods and
applications (3rd ed.). New York: Wiley. [LL]

StataCorp Stata Survey Data Reference Manual. StataCorp LP: College Station, TX.
[Stata]
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* Part 6: Internal fit.....

Read and run
Long & Freese  Pages 206-218

cdalec*.do cdalec17-fitinternal-Ifp.do

Overview
1.Internal fit consider how individual observations fit the overall model
2.This involves three related concepts
a. Residual: distance between model predictions and the observed values
b. Qutlier: observation that is far from predicted value

c. Influential observation: observation that strongly affects estimated
coefficients

3.These concepts are shown in these two figures:

Graph on next page...
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Panel A: Outlier that is not an Panel B: Influential observation

influential observation that is not an outlier
Large residual with low influence Small residual with high influence
o o
@ outier
o ©
Outier W
o ©
> > T
<~ <+ S S
o P—
i o i S
~ B ~
o
o -
0 1 2 3 4 5 0 10 20 30
x x
I Regression ine with outier included | I With outler dropped ——— =" Regression with oulier included]
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Residuals for binary outcomes
1.For a binary model
7 =Pr(y; =1]x;)
2. Deviations y, — 7, are heteroscedastic
Var(y, -z |x;) =7, (1-7)
3. Pearson residuals adjust deviations for heteroscedasticity
Yi — 7,
7 (1-7)
4. Standardized Pearson residuals correct for estimation of the variance in the
Pearson residual; results are usually similar

r

" ar(r) 1= (1= 2)x,var (B)x))

Std
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#10-12 Index plots for residuals (-fitinternal-Ifp.do)
1.Index plots show residuals against the case or index number

2.Create a variable with the index number

. use binlfp4, clear

. sort inc, stable // keep covariate sets in same relative order
. generate index = _n

. label var index "Observation Number™

3. Estimate model and compute residuals and influence

. // #11 estimate model

. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
<snip>

. estimates store Mllogit

. // #12 standardized residuals

. predict mlresid, rs
. label var mlresid "ml standardized residual™
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#14 Index plot of residuals with index numbers

345 752

PN o4 401 __ g S
09 4 &5
"W e 2m, . 30?6280 §55°

m1 standardized residual

T T
0 200 400 600 800
Observation Number

graph twoway scatter mlresid index,
msym(none) mlab(index) mlabpos(0) ...
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Influence for binary outcomes

Panel A: Outlier that is not an Panel B: Influential observation
influential observation. that is not an outlier.
Large residual with low influence R Small residual with high influence
: @ Outier i
Outier Il

s <
(o]
o 5o .
o
o -
0 1 2 g 4 5 6 10 20 30
x x
‘ Regression line with outlier included ‘ With outlier dropped ————- Regression with outlier mc\udec’
Overview follows...
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1. Large residuals indicate that an observation does not fit well
2. Influence reflects the impact an observation has on the ﬁs
3. Large residuals in the middle do not have a large influence
O Think of a see-saw
4. Extreme observations can influence estimates without being outliers

5.To determine influential or high-leverage observations, compute change in fi
when dropping each observation

6. Computing influence requires estimating N logits. Pregibon's approximation
uses a single estimate of the model.

7.Cook's distance summarizes the effects of removing each observation
8.There is no critical value for significantly influential observations

#18 computing Cook’s statistic

predict Mlcookstat, dbeta
label var Mlcookstat '""Cook"s statistic”
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#18 index plot of influential observations (resid next page)
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Compared to the residuals...
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Residuals for BRM

m1 standardized residual

T
0 200 400 600 800
Observation Number
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Examining outliers, residuals, and influence
1.1find this most useful for finding errors in the data
0 This is an essential step in your work

2. Outliers, residuals, and influential cases could suggests how the model should
be modified

0 | have rarely seen this happen
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Part 7: Scalar measures of fit

Read and run

Long & Freese  Chapter 3.3
cdalec*.do cdalec17-internalfit-Ifp.do

Overview

| consider two types of scalar numbers that characterize a model

1. Information criteria such as BIC and AIC are valuable for model selection

2. Briefly, Pseudo R?s
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Information criteria

1. Two information criteria are commonly used to select models

AIC: Akaike's information criterion
BIC: Bayesian information criterion

2.These measures quantify the tradeoff between
a. Fit of model to data.

b. Complexity of model

c. More complex models fit better at the cost of more parameters

3.1C are computed as

IC = -Fit + Complexity

= =-2InL + Function of N and # of parameters

O Fit is negative; more negative is a better fit
0 Complexity is positive so more positive is worse fit
4. Model with the smaller IC is preferred
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Computing IC measures
1. Define
N = number of observations
k = number of parameters

InL = log likelihood

2.Then
IC =fit + complexity
AIC =-2InL +2*k // smaller penalty
BIC =-2InL +In(N)*k // larger penalty

3. BIC prefers more parsimonious models than AIC
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Comparing models
1. Estimate multiple models
2.Select model with the smallest IC
Example
1. Consider models M1 and M2
a.ABIC = BIC1 - BIC2
b.If ABIC >0 choose M2 (BIC1 > BIC2)
c. If ABIC < 0 choose M1 (BIC1 < BIC2)

2. While BIC is not a statistical test, Raftery suggests degrees of evidence

Absolute Strength of
ABIC Evidence
0-2 Weak
2-6 Positive
6-10 Strong
>10 Very strong
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Software variations
1.BIC in Stata
BIC = [—2 In(likelihood )]+ [InN *k]
where k is the number of parameters
2.BIC'
BIC'=[-G*(M ) |+[df, InN ]
G?=LR chi-squared and dfk/ =# of regressors (not parameters)
3.BIC deviance or BIC in Raftery's notation
BIC® =[D]-[df InN]
Deviance D with df = N - (# of parameters):
4. Critically,
BIC, - BIC, = BIC, - BIC, = BIC - BIC?
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Comparing models with IC (-fitexternal-1fp.do)
#10 adding inc-squared and dropping k618 & hc

sysuse binlfp4, clear

. logit Ifp k5 k618 i.agecat i.wc i.-hc lwg inc, nolog
<snip>

. estimates store ml

. estat ic

Model | Obs 1(null) 11 (model) df AlIC BIC

- o
ml | 753  -514.8732  -452.7237 9 923.4473 965.0639

Note: N=Obs used in calculating BIC; see [R] BIC note
. qui fitstat, ic save
. logit Ifp k5 i.agecat i.wc lwg c.inc##c.inc, nolog
<snip>

. estimates store m2

. estat ic
<snip>
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. estimates table ml m2, stats(N bic) b(%9.3f) t(%6.2f)

Variable | ml m2
_____ + ———————————
k5 | -1.392 -1.385
| -7.25 -7.27
k618 | -0.066
| -0.96
agecat 2 | -0.627 -0.585
| -3.00 -2.87
3] -1.279 -1.186
1 -4.92 -5.08
we | 0.798 0.904
| 3.48 4.36
he | 0.136
| 0.66
Iwg | 0.610 0.631
| 4.04 4.19
inc | -0.035 -0.065
| -4.24 -3.47
c.inc#c.inc | 0.000
| 1.88
_____ + ————————————
N | 753 753
bic | 965.064 956.484
legend: b/t
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fitstat for IC measures

1.SPost Fitstat command compares BIC and AIC statistics
logit Ifp k5 k618 i.agecat i.wc i.hc Ilwg inc, nolog
<snip>

quietly fitstat, ic save

logit Ifp k5 i.agecat i.wc Iwg c.inc##c.inc, nolog
<snip>

fitstat, ic diff

| Current Saved Difference
_____ e
AlC |
AIC | 919.491 923.447 -3.956
(divided by N) | 1.221 1.226 -0.005
BIC |
BIC (df=8/9/-1) | 956.484 965.064 -8.580
BIC (based on deviance) | -4031.438 -4022.857 -8.580
BIC" (based on LRX2) | -79.887 -71.307 -8.580
Difference of 8.580 in BIC provides strong support for current model.

2.There is strong support for the model that adds income-squared and drops
k618 and hc
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* Pseudo R?'s

1.1t would be great to have a single number to summarize model fit
2.Such a measure would aid in comparing competing models
0 Within a substantive area, measures of fit might provide a rough index of
whether a model is adequate

0 If prior models of LFP routinely have values of .4 for a given measure, you
expect analyses with a different sample or with revised measures of the
variables to have a similar value for that measure.

3.Long (1997) warns

I am unaware of convincing evidence that selecting a model that maximizes
the value of a given measure of fit results in a model that is optimal in any
sense other than the model having a larger value of that measure.

4. Still, these measures are commonly used in the literature and you should use
the measure that is commonly used in your field. But, do not over-interpret it!
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#21 Pseudo R?'s in BLM

. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
<snip>
. estimates store ml
. qui fitstat, save
. logit Ifp k5 i.agecat i.wc Iwg c.inc##c.inc, nolog
<snip>
. estimates store m2
. fitstat, diff
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. fitstat, diff
| Current Saved Difference
- o
Log-likelihood |
Model | -451.746 -452.724 0.978
Intercept-only | -514.873 -514.873 0.000
Chi-square |
D (df=745/744/1) | 903.491 905.447 -1.956
LR (df=7/8/-1) | 126.255 124.299 1.956
p-value | 0.000 0.000 1.000
- e
R2 |
McFadden | 0.123 0.121 0.002
McFadden (adjusted) | 0.107 0.103 0.004
McKelvey & Zavoina | 0.216 0.215 0.001
Cox-Snel /ML | 0.154 0.152 0.002
Cragg-Uhler/Nagelkerke | 0.207 0.204 0.003
Efron | 0.156 0.153 0.003
Tjur®s D | 0.156 0.153 0.003
Count | 0.684 0.676 0.008
Count (adjusted) | 0.268 0.249 0.018
- e
1C |
AlC | 919.491 923.447 -3.956
AIC divided by N | 1.221 1.226 -0.005
BIC (df=8/9/-1) | 956.484 965.064 -8.580
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- e
Variance of |
e | 3.290 3.290 0.000
y-star | 4.195 4.192 0.003

Note: Likelihood-ratio test assumes current model nested in saved model.

Difference of 8.580 in BIC provides strong support for current model.
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Overview of fit
1.1C measures can be valuable for selecting models that are not nested

0 Do not over use it
0 Think about your model

2.Scalar measures of fit might be required by referees, but are often of little

value
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* Part 8: Nonlinearities on the RHS

Read and run
Long & Freese  Pages 301-302

cdalec*.do cdalec*-brmnonlin-hrs.do
0 The do file is complex with commands for three outcomes

0 Each outcome has these sections

#1 labels, retrieve mean

#2 lowess

#3 logit with only age

#5 M1: age with controls

#6 M2: age + age”2

#7 M3: age + age”™2 + age”3

#8 table of estimated coefficients

#9 Models without survey estimation to compare B
#10 svy: dotplot of predictions

#12 predictions by age for women with HS degree
#13 predictions with CI for each of the 3 models
#16 gender differences at 65
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Overview
1. Assume xp does not have power terms
2. As xi increases, either the probability:

0 Always increases with xi approaching 1.0
0 Always decreases with xi approaching 0.0

3.Substantively,

0 Should it only increase or only decreases?
0 Should the maximum be 1? The minimum 0?

Part 8: Nonlinearities on the RHS

Page 413




Adding nonlinearities to a nonlinear model
1. Consider model where x is age with other controls

Pr(y=1|x)=A(B, +Bx+Bx" +-)
2.x and x? are linked since you when x changes x? must change

If x=1, then x?>=1

If x=2, then x?=4

If x=3, then x2=9

3. With polynomials on the RHS, you are not limited to probabilities that
uniformly increase or uniformly decrease with x.

4.To see this, consider this graph.
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Top view of logit with x and x?
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Front view of logit with x and x?
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Side view of logit with x and x?

NN

A —
075} /] /7 7€

SOSN

N
NS S

AN
X
K

AN

w(x xz}
NN

T

TP

0.25 -// / /
" 554444/4/// ]
0 1 2 3 4 5
x
Part 8: Nonlinearities on the RHS Page 417

Lowess for assessing nonlinearities
1. Lowess plots show a moving average of y as x changes

2.When a regressor is potentially important, a lowess is an essential first step

3. Outcomes from the HRS: The Health and Retirement Stud.

arthritis 1=arthritis 0O=no arthritis
diabetes 1=has diabetes 0=no diabetes
goodhlth Is health good?

4. Age has a gualitatively different effect on each outcome

Graph follows...
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Lowess graphs for health outcomes (-brmnonlin-hrs.do)

—— Arthrits  ——— Diabetes —— Good health

combined-lowess-prob cdalec15-brmnonlin-hrs.do 2015-06-29
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Summary of lowess curves

1. Arthritis increases then levels off at .75, not at 1.0.

2. Diabetes increases till 65 and then decreases.

3.Good health steadily decreases, consistent with a logit on age.

Could these data be generated by a BLM?

1.The relationship between age and the probability could be "logit-like" if we

add controls

2.To explore this, | start with a logit on age as the

3.Then models are estimated that add controls and powers of age
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Arthritis: Lowess and BLM on age

-

Pr(arthritis|age)

Age

1
90 100

—————— Logit on age only

Lowess
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Diabetes: Lowess and BLM on age
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—————— Logit on age only Lowess
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Good health: Lowess and BLM on age

-—

.75

Pr(goodhlith|age)
5

.25
1

0

1
50 60 70 80 90 100
Age

Logitonageonly ————-—- Good health lowess
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Logit models for arthritis

1. Models are estimated with age, age-squared and age-cubed plus controls
2. Predicted probabilities at observed values are plotted

3.Tests of the effect of age are made

4.1C measures are computed

5. Predictions against age are made with mgen
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Estimation, test, and predict
// #A5 aMl: age

1> svy: logit arthritis age i.female i.ed4cat
2> estimates store aMl

3> predict aMlpred

4> label var aMlpred ""M1: age"

5> test age

// #A6 M2: age + age”2

6> svy: logit arthritis c.age##c.age i.female i.ed4cat
7> estimates store aM2

8> predict aM2pred

9> label var aM2pred "M2: +age-squared"

10> test age c.age#c.age

// #A7 aM3: age + age”2 + age”3

11> svy: logit arthritis c.age c.ageffc.age c.age#c.age#c.age ///
12> i.female i.ed4cat

13> estimates store aM3

14> predict aM3pred

15> label var aM3pred "M3: +age-cubed”

16> test age c.age#c.age c.age#c.age#c.age
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arthritis: estimates

Variable | am1 am2 am3
- e
female |
female | 1.77543 1.80948 1.81087
| 12.97 13.08 13.10
ed4cat |
12 years | 0.82788 0.82101 0.82109
| -3.12 -3.27 -3.27
13-15 years | 0.77455 0.79218 0.79310
| -3.82 -3.46 -3.44
16+ years | 0.52825 0.53507 0.53543
| -9.64 -9.69 -9.67
age | 1.04844 1.35998 2.28835
| 21.51 12.06 3.17
c.age#c.age | 0.99813 0.99076
| -10.54 -2.55
c.aget#c.age#|
c.age | 1.00003
| 2.07
_cons | 0.05711 0.00001 0.00000
| -16.39 -12.98 -3.86
legend: b/t
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Predictions with mgen
// #All predictions for women in high school

estimates restore aMl
mgen, at(age=(50(5)100) female=1 ed4cat=2) atmeans stub(aMl)

estimates restore aM2
mgen, at(age=(50(5)100) female=1 ed4cat=2) atmeans stub(aM2)

estimates restore aM3
mgen, at(age=(50(5)100) female=1 ed4cat=2) atmeans stub(aM3)
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Arthritis: Predictions for women with high school degrees

Women with a high school education
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Arthritis: M1 with CI

Women with a high school education

Pr(arthritis|age,X)

50 60 70 80 90 100
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Arthritis: M2 with CI
Women with a high school education
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Arthritis: M3 with CI

Women with a high school education

Pr(arthritis|age,X)

Age

------ M3: + age”3
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Arthritis: Dot plot of predictions across models

Models: arthritis with age
Observed proportion = 0.570

T T T
M1: age M2: +age”2 M3: + age”3
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Arthritis: Which model would you choose?
1. What does medical research say about the incidence of arthritis with age?

2. Are the higher order terms significant?

| F p df_r df
_____________ e e e e
Mlagel | 462.854 0.000 56.000 1.000
M2age2 | 111.134 0.000 56.000 1.000
M2agel2 | 261.602 0.000 55.000 2.000
M3age3 | 4.294 0.043 56.000 1.000
M3age23 | 54.470 0.000 55.000 2.000
M3agel23 | 168.888 0.000 54.000 3.000

3. Based on simplicity, which do you prefer?

4. Based on BIC and AIC for non-svy models

amli | 21247.04  21293.42
amM2 | 21093.76 21147.87
amM3 | 21086.76 21148.60
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Arthritis: gender differences at age 65
1.Suppose our concern was the movement into Medicare around age 65
2.Do men and women differ in how frequently they have arthritis?
3.We want to compute and test
Pr(arthritis | women, age=65, x*) - Pr(arthritis | men, age=65, x*)
4. Where should we hold other variables? The global mean doesn't make sense?

5. We will restrict the sample to those with high school degrees ages 60 to 70 and
compute the average discrete change for female in this subsample

6.The results (slightly edited)
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. estimates restore aMl
. mchange female if ed4cat==2 & age>=60 & age<=70, brief

svy logit: Changes in Pr(y) | Number of obs = 2208
Expression: Pr(arthritis), predict(pr)
Change p-value

|
- e,
female vs male | 0.139 0.000

. estimates restore aM2
. mchange female if ed4cat==2 & age>=60 & age<=70, brief

| Change p-value
- e
female vs male | 0.139 0.000

. estimates restore aM3
. mchange female if ed4cat==2 & age>=60 & age<=70, brief

| Change p-value
- S
female vs male | 0.139 0.000

Among high school graduates ages 60 to 70, women on average have a
probability of arthritis that is .14 larger than that of men (p<.001).
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Logit models for diabetes

Variable | dvi dv2 dm3
- e
female |
female | 0.80854 0.81816 0.81815
| -4.24 -3.99 -3.99
ed4cat |
12 years | 0.66281 0.65679 0.65678
| -8.01 -8.18 -8.18
13-15 years | 0.54123 0.55383 0.55378
| -9.66 -9.10 -9.09
16+ years | 0.44993 0.45797 0.45794
| -12.83 -12.68 -12.69
|
age | 1.00656 1.29691 1.25235
| 3.14 8.22 0.66
c.age#c.age | 0.99819 0.99869
| -8.14 -0.28
c.aget#c.age#|
c.age | 1.00000
|
_cons | 0.25513 0.00004
| -8.95 -8.98

Note Exponentiated coefficients; t statistics
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Diabetes: Predictions for women with high school degrees

Women with a high school education
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Diabetes: Dot plot of predictions across models

Models: diabetes with age
Observed proportion = 0.184

-

e}

R
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«

o

T T T
M1: age M2: +age-squared M3: + age”3
diabetes-dotplot-prob123 cdalec15-brmnonlin-hrs.do 2015-06-29
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Diabetes: Which model would you choose?
1. What does medical research say about the incidence of diabetes with age?

2. Are the higher order terms significant?

| F p df_r df
_____________ e e e e
Mlagel | 9.864 0.003 56.000 1.000
M2age2 | 66.222 0.000 56.000 1.000
M2agel2 | 33.479 0.000 55.000 2.000
M3age3 | 0.011 0.915 56.000 1.000
M3age23 | 38.202 0.000 55.000 2.000
M3agel23 | 25.701 0.000 54.000 3.000

3. Based on simplicity, which do you prefer?

4. Based on BIC and AIC for non-svy models:

dMl | 16881.38 16927.77
daM2 | 16774.23 16828.34
dM3 | 16775.96 16837.81
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Diabetes: Gender differences at age 65

The command:
mchange female if ed4cat==2 & age>=60 & age<=70, brief

is run for each of the models:

| Change p-value
Model 1: female vs male ; -0 03; ______ 6_666_
Model 2: female vs male I -0.033 0.000
Model 3: female vs male : -0.033 0.000

Among high school graduates ages 60 to 70, women on average have a
probability of diabetes that is .03 smaller than that of men (p<.001).
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Logit models for good health

Variable | gM1 gm2 gm3

female |

female | 0.96264 0.96545 0.96540

| -0.91 -0.84 -0.84
ed4cat |

12 years | 2.67666 2.67569 2.67557

| 19.76 19.75 19.74

13-15 years | 3.69172 3.72017 3.71935

| 22.41 22.00 21.92

16+ years | 6.33682 6.37862 6.37744

| 25.74 25.46 25.42

age | 0.98577 1.04372 0.97299

| -5.10 1.41 -0.10

c.aget#c.age | 0.99959 1.00059

| -1.97 0.16
c.age#c.age#|

c.age | 1.00000

| -0.27

_cons | 2.68731 0.37568 1.91674

| 4.90 -0.88 0.10

Note: Exponentiated coefficients; t statistics
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Good Health: Predictions for women with HS degrees
Women with a high school education
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Good Health: M1

Women with a high school education
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Good Health: M2

Women with a high school education

Pr(goodhlth|age,X)

o T T T T 1
50 60 70 80 90 100
Age

—————— M2: + age”2

goodhlth-prob2Cl cdalec15-brmnonlin-hrs.do 2015-06-29
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Good Health: M3

Women with a high school education

Pr(goodhlth|age,X)

o T T T T 1
50 60 70 80 90 100
Age

------------ M3: + age-cubed

goodhlth-prob3ClI cdalec15-brmnonlin-hrs.do 2015-06-29
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Good Health: Dot plot of predictions across models

Models: good health with age
Observed proportion = 0.731

L

© T T T
M1: age M2: + age”2 M3: + age"3
goodhlith-dotplot-prob123-sample cdalec15-brmnonlin-hrs.do 2015-06-29

What causes the dual mode?
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Good Health: Which model would you choose?

1. What does medical research say about the incidence of diabetes with age?

2. Are the higher order terms significant?

| F p df_r daf
_____________ e e e e
Mlagel | 9.864 0.003 56.000 1.000
M2age2 | 3.891 0.054 56.000 1.000
M2agel2 | 25.570 0.000 55.000 2.000
M3age3 | 0.075 0.785 56.000 1.000
M3age23 | 2.273 0.113 55.000 2.000
M3agel23 | 18.421 0.000 54.000 3.000

3. Based on simplicity, which do you prefer?

4. Based on BIC and AIC for non-svy models:

gM1 | 18999.61  19045.99
gM2 | 18989.54  19043.66
gM3 | 18989.99 19051.83
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Good Health: Gender differences at age 65

Commands not shown

Among high school graduates who are 60 to 70, there is difference by gender in

reporting good health (p>.10).
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Summary of nonlinearities on the RHS
1. Just like the LRM, you should consider nonlinearities on the RHS
2.This can lead to:

0 Effects that do not plateau at 1
0 Effects that change direction
0 Predictions that are more linear

3. start with a lowess
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Part 10: Nominal outcomes....

Read and run
Long & Freese  Chapter 8 sections on MNLM

cdalec*.do cdalec17-nrm-nomocc-.do; cdalecl7-nrm-partyid-.do;
cdalec17-nrm-ordwarm-.do

Overview
1.What does it mean for an outcome to be nominal or ordinal?
2.Introduce MNLM as a set of binary logits

3. Address challenges of interpretation
4. Briefly consider models related to the MNLM
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Level of measurement
1.S5.S. Stevens (1946) introduced terms nominal and ordinal

a. Nominal scales have numbers assigned to categories as labels with no
ordering implied by the numbers

b. Ordinal scales have numbers indicating rank ordering on one attribute.

2. Hotly debated and critiqued when it was proposed, his taxonomy is now firmly
established

3. Ordinal models assume his definition of ordinal. Is this a problem?
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The bias-efficiency trade-off

Bias and efficiency is LRM
regress y x1 x2 x3 // true model

regress y x1 // bias

regress y x1 x2 x3 x4 // inefficiency
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Effects of assuming wrong level of measurement

True Level
Nominal Ordinal Interval Ratio
Assumed N OK Inefficient | Inefficient | Inefficient
Level O| Biased OK Inefficient | Inefficient
for I Biased Biased OK Inefficient
Analysis R | Biased Biased Biased OK

1. If outcome is ordinal and model is nominal, it is inefficient, but often safe
choice.

2. MNLM can even be used for interval outcomes to explore nonlinearities

3.1 start with nominal models rather than ordinal to give you the tools for
assessing the implications of assuming ordinal
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Review of BLM
MNLM is a simple extension of the BLM

The latent variable model

Y =a+pBx+e
The probability model

exp(a+ BX)
1+exp(a+ Bx)

Pr(y=1|x)=

The logit model

logi{—Pr(y -1 lx)} =a+

Pr(y=0]|x) px

The link between y* and Pr(y)

Graph on next page...
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Panel A: E(y*|x) for logit model
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Panel B: n(x) for logit model
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BLM with new notation
1.The logit model is linear in the logit for outcome A versus B
P =A
In M =InQ(x)
Pr(y =B |x)
= ﬂO,A\B + ﬁ],NBXl + ﬂz,Nsxz + 183,A|BX3
2.The model is multiplicative in the odds
Q(x)= exp[an(x)]
— eﬂO.A\Beﬁl,ABXIeﬁZ.NBXZeﬂK.NBxl

=Q(x,X,)
3.The odds ratio
Q(X, X2 + 1) e/fo,A\e e/"l.Asxleﬁz.A\B(xz+1)eﬂs.A\Bxs

Q(X, XZ) eﬁO,A\Eeﬂ\.A\BXIeﬂZ.A\sze/&R.A\BXJ

— e/fz.A\e
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Interpreting odds ratios

1.For a unit increase in x, the odds are expected to change by a factor of
exp(PB2,aje), holding other variables constant.

The odds of tenure are 1.12 times larger for women than comparable men.

2.For a standard deviation increase in xx the odds are expected to change by a
factor of exp(s«Bkas), holding other variables constant.

Increasing the number of published articles by a standard deviation
increases the odds of tenure by a factor of 1.23, holding other variables
constant.

Properties of OR
1. OR does not depend on the level of any variables in the model
2.0R does not correspond to a constant change in Pr(y=1|x)

3.The substantive meaning of OR depends on values of all variables
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Introduction to the MNLM

1. MNLM simultaneously estimates BLMs for all comparisons among outcomes

2. Interpretation is complicated by large number of parameters
0 With 5 outcomes, there are 10 binary logits
0 With 10 outcomes, there are 45 binary logits

3. We start with a simple model and gradually make it more complicated
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MNLM with three outcomes

Categories L, S, and P with Ni, Ns, and Np observations.

L-Labor

S-Skilled < [> P-Professional
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MNLM is a set of BLM that are simultaneously estimated.
1.L vs S using Ni+Ns observations

[ Pr(L|Ed)

!
" Pr(sE0)

= ﬂo,us +ﬂ1,L\SEd

2.5 vs P using Ns+Np observations

[ Pr(S |Educ) |

In| 2 TEERE)
n_Pr(P | Educ) |

:IBO,S\P +ﬂl,S|PEd

3.L vs P using Ni+Np observations

[ Pr(L|Educ) |

In|l ——~
*| Pr(P| Educ) |

= ﬂO,L\P +ﬂ1,L|PEd
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Redundancy among the BLMs
1.Since In(a/b)=In a - In b we can add 0 as

m{%}:ozmm(s |Ed)~InPr(S | Ed)

2.Then

ln{%}zlnPr(uEd)—lnPr(P |Ed)+[InPr(S|Ed)—InPr(S|Ed)]

=[InPr(L|Ed)—InPr(S|Ed)]+[InPr(S|Ed)-InPr(P|Ed)]

:h{Pr(LEd):|+h{Pr(S | Ed)}

Pr(S|Ed)| | Pr(P|Ed)
3.Since
pr(L|Ed)]  [Pr(L|Ed)].  [Pr(S|Ed)
ln{Pr(P | Ed)}_ln[m(s | Ed)}ﬂn{Pr(P | Ed)}
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4.Then

(,Bo,us +131,L\5Ed)+(ﬂo,sm +ﬂl,S\PEd) = (ﬂo,up +ﬂl,L\PEd)
5.And
Burip =PBuis + Psips Buis = Brip = Psips Bsip = Puip — Buyss €IC.
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Numeric example of link among odds
1. Frequencies of events

Labor =10 Skilled = 20 Prof =30
2. 0dds of events

Labor/Skilled= 10/20

Skilled/Prof =20/30

Labor/Prof =10/30

3. Link among odds
(Labor/Skilled)  * (Skilled/Prof) = (Labor/Prof)
(10/20) * (20/30) = (10/30)

4. Link among logits
In(Labor/Skilled) + In(Skilled/Prof) = In(Labor/Prof)
In(10/20) + In(20/30) = In(10/30)
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A minimal set of coefficients
1. Because of mathematical links among odds, some coefficients are "extra"
ﬂL\P :ﬂL\S +Bsp
From any two of L/S, S/P, and L/P, you can compute the third
2.In general, with J outcomes you only need J-1 comparisons
3. Each set of J-1 comparisons is a minimal set

4. Different software computes different minimal sets
5.For example, here are the mlog it coefficients for education...
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#12 Minimal sets for 3 category MNLM (-nrm-nomocc.do)

1.Here are all comparisons in a model with 3 outcomes
mlogit (N=337): Factor change in the odds of occlsp

Variable: ed (sd=2.946)

|
+
lLabor vs 2Skilled | .
lLabor vs 3Prof | -0.7433 -8.773 0.000 0.476 0.112
|
|
|
|

2Skilled vs 1lLabor
2Skilled vs 3Prof
3Prof vs llLabor
3Prof vs 2Skilled

2. Notice links among coefficients
(1L]3P) = (1L]25) +  (25]3P)
-0.74332 = -0.17109 + -0.57223

3. MNLM forces these constraints to hold when it is estimating the model
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Comparing MNLM to a set of BLMs

1.These equalities are necessary relationships among population parameters
2.They do not hold exactly with sample estimates from separate BLMs.
3. MNLM estimates J-1 BLM simultaneously
a. This enforces the logical relationship among the parameters
b. It uses the data efficiently
4.Here's an example with real data.
labrskil =1iflabor, 0if skilled, else missing.
profskil =1if professional, 0 if skilled, else missing.
labrprof =1if labor, 0 if professional, else missing.

occlsp =1if labor, 2 if skilled, and 3 if professional.
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Comparing BLM and MNLM estimates

#11 Three binary logits
. logit labrskil ed

Odds of: 1Labor vs OSkilled (N=225)

labrskil | b z P>|z| eb ebStdX SDofX

- e
ed | -0.18398 -2.989 0.003 0.8320 0.6485 2.3536

. logit profskil ed
Odds of: 1Prof vs OSkilled (N=237)

profskil | b z P>]z| eb ebStdX SDofX
+

ed | 0.56026 7.186 0.000 1.7511 4.9101 2.8403
. logit labrprof ed
Odds of: 1Labor vs OProf (N=212)

labrprof | b z P>]z] e~b e~bStdX SDofX
+

ed | -0.69037 -7.115 0.000 0.5014 0.1065 3.2443
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#12 One MNLM
. mlogit occlsp ed

mlogit (N=337): Factor Change in the Odds of occlsp
Variable: ed (sd=2.9464271)

0dds comparing |

Alternative 1 |

to Alternative 2 | b z P>|z]|
__________________ S
lLabor vs 2Skilled] -0.1711 -2.900 0.004
lLabor vs 3Prof | -0.7433 -8.773 0.000
3Prof vs 2Skilled] 0.5722 7.651  0.000

| b z P>]z]|
__________________ A
labrskil | -0.1840 -2.989 0.003
labrprof | -0.6904 -7.115 0.000
profskil | 0.5603 7.186  0.000
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Estimating MNLM with five outcomes (-nrm-nomocc.do)

#21 Descriptive statistics

occ Occupation
white Race: 1=white O=nonwhite
ed Years of education

exper Years of work experience

-> tabulation of occ

Occupation | Freq. Percent Cum.
- S
Menial | 31 9.20 9.20
BlueCol | 69 20.47 29.67
Craft | 84 24.93 54.60
WhiteCol | 41 12.17 66.77
Prof | 112 33.23 100.00
- S
Total | 337 100.00

. sum white ed exper

Variable | Obs Mean Std. Dev. Min Max
white | 337 .9169139 .2764227 0 1
ed | 337 13.09496 2.946427 3 20
exper | 337 20.50148 13.95936 2 66
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#22 Output from mlogit using base(1)
1.Inmlogit option base(#) sets the base category.

2. Estimates shown for each category compared to base category Menial

. mlogit occ i.white ed exper, base(l) nolog

Multinomial logistic regression Number of obs = 337
LR chi2(12) = 166.09
Prob > chi2 = 0.0000
Log likelihood = -426.80048 Pseudo R2 = 0.1629
occ | Coef. Std. Err. z P>]z| [95% Conf. Interval]
- e
Menial | (base outcome)

A

BlueCol |
1.white | 1.236504 .7244352 1.71 0.088 -.1833631 2.656371
ed | -.0994247 .1022812 -0.97 0.331 -.2998922 .1010428
exper | .0047212 .0173984 0.27 0.786 -.0293789 .0388214
_cons | .7412336 1.51954 0.49 0.626 -2.23701 3.719477
o

Craft |
1l.white | .4723436 .6043097 0.78 0.434 -.7120817 1.656769
ed | .0938154 .097555 0.96 0.336 -.0973888 .2850197
exper | .0276838 .0166737 1.66 0.097 -.004996 .0603636
_cons | -1.091353 1.450218 -0.75 0.452 -3.933728 1.751022
e
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WhiteCol

|
l.white | 1.571385 .9027216 1.74 0.082 -.1979166 3.340687
ed | .3531577 .1172786 3.01 0.003 .1232959 .5830194
exper | .0345959 .0188294 1.84 0.066 -.002309 .0715007
_cons | -6.238608 1.899094 -3.29 0.001 -9.960764 -2.516453
_____ ¥ e
Prof |
1.white | 1.774306 . 7550543 2.35 0.019 .2944273 3.254186
ed | .7788519 .1146293 6.79 0.000 .5541826 1.003521
exper | .0356509 .018037 1.98 0.048 -000299 .0710028
cons | -11.51833 1.849356 -6.23 0.000 -15.143 -7.893659
3.Atable in a paper might look like this...
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Logit Coefficients
Comparison Constant WHITE ED EXP
B|M p 0.741 1.237  -0.099 0.0047
z 0.49 1.71 -0.97 0.27
C| M g -1.091 0472  0.094 0.0277
z -0.75 0.78 0.96 1.66
W | M g -6.239 1.571  0.353 0.0346
z -3.29 1.74 3.01 1.84
Pl M p -11.518 1.774  0.779 0.0357
z -6.23 2.35 6.79 1.98
4. This table corresponds to these equations
anB\M(Xi ) = IBO,EHM + ﬂ],B\MWHITE + ﬂZ,B\M ED+ ﬁ}.B\M EXP
Q¢ (%)= Bocw + B wWHITE + B, ¢\ ED + B, ¢ EXP
anW\M(xi )= Bowim + B wWHITE + B,y ED + By EXP
1nQP\M(Xi = ﬂO,P\M +ﬂl,P\MWHITE +ﬂ2.P\M ED +ﬂ3,P\M EXP
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5. Another minimal set

anB\P(Xi ) = ﬂO,B\P +ﬂ],B\PWHITE +ﬂ2,B\PED +ﬂ3,B\PEXP

anC‘P(xi) = Bocip + BicpWHITE + B, ¢ pED + B, ¢ s EXP

anW‘F,(xi ) = Bowp + B pWHITE + B,y o ED + B, s EXP

anM“,(xi ) = Bome + Bw pPWHITE + B,y ED + B, o EXP
6.And so on

7. Which minimal set should you use?
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#22 Examining all ORs (extracted output)
1. Do not judge statistical significance using tests from a minimal set

Base BlueCol: 0 significant coefficients
enb P>|z]|
WhiteCol vs BlueCol 1.3978 0.720
Prof vs BlueCol 1.7122 0.501
Craft vs BlueCol 0.4657 0.227
Menial vs BlueCol 0.2904 0.088

Base Craft: 1 significant coefficient

e”b P>]z]|
BlueCol vs Craft 2.1472 0.227
WhiteCol vs Craft 3.0013 0.179
Prof vs Craft 3.6765 0.044
Menial vs Craft 0.6235 0.434
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Base Menial: 1 significant coefficient
e”b P>]z]|
Craft vs Menial 1.6037 0.434
BlueCol vs Menial 3.4436 0.088
WhiteCol vs Menial 4.8133 0.082
Prof vs Menial 5.8962 0.019

Base Prof: 2 significant coefficients
enb P>|z]|

WhiteCol vs Prof 0.8163 0.815
BlueCol vs Prof 0.5840 0.501
Craft vs Prof 0.2720 0.044
Menial vs Prof 0.1696 0.019
Base WhiteCol: 0 significant coefficients

e”b P>]z]|
Prof vs WhiteCol 1.2250 0.815

BlueCol vs WhiteCol 0.7154 0.720
Craft vs WhiteCol 0.3332 0.179
Menial vs WhiteCol 0.2078 0.082

2.Looking at all ORs can be overwhelming....
. listcoef
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mlogit (N=337): Factor change in the odds of occ

Variable: 1.white (sd=0.276)

| b z P>]z] e”b ebStdX
- b
Menial vs BlueCol | -1.2365 -1.707 0.088 0.290 0.710
Menial vs Craft |] -0.4723 -0.782 0.434 0.624 0.878
Menial vs WhiteCol | -1.5714 -1.741 0.082 0.208 0.648
Menial vs Prof | -1.7743  -2.350 0.019 0.170 0.612
BlueCol vs Menial | 1.2365 1.707 0.088 3.444 1.407
BlueCol vs Craft | 0.7642 1.208 0.227 2.147 1.235
BlueCol vs WhiteCol | -0.3349 -0.359 0.720 0.715 0.912
BlueCol vs Prof ] -0.5378 -0.673 0.501 0.584 0.862
Craft vs Menial ] 0.4723 0.782 0.434 1.604 1.139
Craft vs BlueCol | -0.7642 -1.208 0.227 0.466 0.810
Craft vs WhiteCol | -1.0990 -1.343 0.179 0.333 0.738
Craft vs Prof ] -1.3020 -2.011 0.044 0.272 0.698
WhiteCol vs Menial | 1.5714 1.741 0.082 4.813 1.544
WhiteCol vs BlueCol | 0.3349 0.359 0.720 1.398 1.097
WhiteCol vs Craft ] 1.0990 1.343 0.179 3.001 1.355
WhiteCol vs Prof | -0.2029 -0.233 0.815 0.816 0.945
Prof vs Menial | 1.7743 2.350 0.019 5.896 1.633
Prof vs BlueCol | 0.5378 0.673 0.501 1.712 1.160
Prof vs Craft | 1.3020 2.011 0.044 3.677 1.433
Prof vs WhiteCol | 0.2029 0.233 0.815 1.225 1.058
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Variable: ed (sd=2.946)

Menial
Menial
Menial
Menial
BlueCol
BlueCol
BlueCol
BlueCol
Craft
Craft
Craft
Craft
WhiteCol
WhiteCol
WhiteCol
WhiteCol
Prof
Prof
Prof
Prof

VS

BlueCol
Craft
WhiteCol
Prof
Menial
Craft
WhiteCol
Prof
Menial
BlueCol
WhiteCol
Prof
Menial
BlueCol
Craft
Prof
Menial
BlueCol
Craft
WhiteCol

e e e e e e e o S o e e o -
o
o
©
w
[oe]
o
©
(2]
N
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Variable: exper (sd=13.959)

| b z P>]z] e”b ebStdX
_____ A
Menial vs BlueCol | -0.0047 -0.271 0.786 0.995 0.936
Menial vs Craft ] -0.0277 -1.660 0.097 0.973 0.679
Menial vs WhiteCol | -0.0346 -1.837 0.066 0.966 0.617
Menial vs Prof ] -0.0357 -1.977 0.048 0.965 0.608
BlueCol vs Menial | 0.0047 0.271 0.786 1.005 1.068
BlueCol vs Craft | -0.0230 -1.829 0.067 0.977 0.726
BlueCol vs WhiteCol | -0.0299 -1.954 0.051 0.971 0.659
BlueCol vs Prof ] -0.0309 -2.147 0.032 0.970 0.649
Craft vs Menial | 0.0277 1.660 0.097 1.028 1.472
Craft vs BlueCol | 0.0230 1.829 0.067 1.023 1.378
Craft vs WhiteCol | -0.0069 -0.495 0.621 0.993 0.908
Craft vs Prof ] -0.0080 -0.627 0.531 0.992 0.895
WhiteCol vs Menial ] 0.0346 1.837 0.066 1.035 1.621
WhiteCol vs BlueCol | 0.0299 1.954 0.051 1.030 1.517
WhiteCol vs Craft | 0.0069 0.495 0.621 1.007 1.101
WhiteCol vs Prof ] -0.0011 -0.073 0.941 0.999 0.985
Prof vs Menial ] 0.0357 1.977 0.048 1.036 1.645
Prof vs BlueCol | 0.0309 2.147 0.032 1.031 1.540
Prof vs Craft ] 0.0080 0.627 0.531 1.008 1.118
Prof vs WhiteCol | 0.0011 0.073 0.941 1.001 1.015
Out task is to make sense out of all of these numbers
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Roadmap

1.The MNLM as a probability model

2. Estimation

3.0mnibus tests of each regressor

4. Tests if categories can be combined

5. Methods of interpretation

a. Odds ratios
b. Predicted probabilities
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MNLM as a Probability Model

1. We motivated MNLM as a set of binary logits
2.0utcomes are logs of odds Log(Pra/Prs)
3. We can solve the equations in terms of these probabilities

4.1f y has J categories 1 to J, let Pr(y =m | X) be the probability of m given x:
_ exp(XiBmp )
P exp(XiBj\J )

5.You get the same values regardless of the base J you use

Pr(yi =m\xi)
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ML estimation
1. pi is the probability of observing the value of y actually observed for person i
a. If y=1 for person i, pi = Pr(y=1|xi)
b.If y=2 for person i, pi = Pr(y=2]|x;)
c. If y=3 for person i, pi = Pr(y=3|x)
d. Etc.

2.If the observations are independent, the likelihood equation is

L(ﬁzp :-~-:ﬁ3p |YaX) = Hpi

3.Solving for the parameters works well even with small samples

Software Issues

Different programs estimate different minimal sets of coefficients
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Testing

Contrasts

1.Tests in standard output are for the minimal set of coefficients.
a. Your program computes Bim|)
b.Another program computes Bk,m|L

2.Stata's baseoutcome() sets the reference category:

mlogit occ white ed exper, baseoutcome(l)
mlogit occ white ed exper, baseoutcome(2)

3. From the minimal set you can compute comparisons of other categories, which
are called contrasts

4. listcoef computes all contrasts automatically. For example, ...
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#22 All contrast for white

. listcoef white
mlogit (N=337): Factor change in the odds of occ

Variable: 1.white (sd=0.276)

| b z P>|z]| e~b ebStdX
Menial vs BlueCol | -1.2365 -1.707 0.088 0.290 0.710
Menial vs Craft | -0.4723 -0.782 0.434 0.624 0.878
Menial vs WhiteCol | -1.5714 -1.741 0.082 0.208 0.648
Menial vs Prof | -1.7743 -2.350 0.019 0.170 0.612
BlueCol vs Menial | 1.2365 1.707 0.088 3.444 1.407
BlueCol vs Craft | 0.7642 1.208 0.227 2.147 1.235
BlueCol vs WhiteCol | -0.3349 -0.359 0.720 0.715 0.912
BlueCol vs Prof | -0.5378 -0.673 0.501 0.584 0.862
Craft vs Menial | 0.4723 0.782 0.434 1.604 1.139
Craft vs BlueCol | -0.7642 -1.208 0.227 0.466 0.810
Craft vs WhiteCol | -1.0990 -1.343 0.179 0.333 0.738
Craft vs Prof ] -1.3020 -2.011 0.044 0.272 0.698
WhiteCol vs Menial | 1.5714 1.741 0.082 4.813 1.544
WhiteCol vs BlueCol | 0.3349 0.359 0.720 1.398 1.097
WhiteCol vs Craft ] 1.0990 1.343 0.179 3.001 1.355
WhiteCol vs Prof | -0.2029 -0.233 0.815 0.816 0.945
Prof vs Menial | 1.7743 2.350 0.019 5.896 1.633
Prof vs BlueCol | 0.5378 0.673 0.501 1.712 1.160
Prof vs Craft ] 1.3020 2.011 0.044 3.677 1.433
Prof vs WhiteCol | 0.2029 0.233 0.815 1.225 1.058
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Graphs with different base categories
Race: 1=white 0=nonwhite
1White vs ONonWhite ¢ B wp
-‘2 -1.‘33 -.‘67 0 .é7 1 ‘33 ‘2
Logit Coefficient Scale Relative to Category Menial
Race: 1=white 0=nonwhite
1White vs ONonWhite M B WP
2 as -7 0 & 13 2
Logit Coefficient Scale Relative to Category Craft
Race: 1=white 0=nonwhite
1White vs ONonWhite M c we
7‘2 -1 ‘33 ré'/ 0 é7 1 ‘33 é
Logit Coefficient Scale Relative to Category BlueCol
Race: 1=white 0=nonwhite
1White vs ONonWhite: M c B P
7‘2 -1 ‘33 - i‘i7 o é7 ; ;
Logit Coefficient Scale Relative to Category WhiteCol
Race: 1=white 0=nonwhite
1White vs ONonWhite M ¢ B W
2 s 7 0 & 1m b
Logit Coefficient Scale Relative to Category Prof
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Testing that a variable has no effect

1.The hypothesis that xx has no effect involves J-1 coefficients
Ho:ﬁk,B\M :ﬂk,cwl :ﬂk,W\M :ﬂk,P\M =0

2.This is not equivalent to combined tests of individual coefficients
Ho:ﬂk,B|M =0 H(ﬁﬂk,cwl =0
Ho:ﬁk,W|M =0 Ho:ﬂk,P\M =0

3.The Wald statistic for H :B, =0:1is:
W, = ﬁ;(Var(f}k )71 B

where W, ~ y7 , if Hois true

4.This is computed with test or the SPost mlogtest
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#24 Wald tests using test

. test 1.white // test will work with svy estimates too
. * 1.white is the variable created from i.white!

[MenialJo.white = 0 € This S Bunite.mu
[BlueCol]white = 0

[Craft]white = O

[WhiteColJwhite = 0O

[Profjwhite = O

Constraint 1 dropped

AAAAA
gabs wN -
o\ I\ NS

chi2( 4) = 8.15
Prob > chi2 = 0.0863
. test ed
<snip>
. test exper
<snip?
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#24 Wald tests using mlogtest

. mlogtest, wald
Wald tests for independent variables (N=337)
Ho: All coefficients associated with given variable(s) are 0

chi2 df P>chi2

|
_________________ S,
1.white | 8.149 4 0.086
ed | 84.968 4 0.000
exper | 7.995 4 0.092

1.The effect of race is not significant at the .05 level (G?>=8.15, df=4).
2.The effect of education is significant at the .01 level.

3.The effect of experience is significant at the .10 level but not at the .05 level.
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#25 LR test using mlogtest

. estimates restore full
(results full are active now)

. mlogtest, Ir
Likelihood-ratio tests for independent variables (N=337)

chi2 df  P>chi2

|
_________________ .
1.white | 8.095 4 0.088
ed | 156.937 4 0.000
exper | 8.561 4 0.073

1. We conclude:

The hypothesis that being white does not affect occupational attainment can
be rejected at the .10 level, but not at the .05 level (LRX?=8.10, df=4).

2. More simply:
The effect of race is significant at the .09 level.
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Comparing Wald and LR Tests

LR Wald

G df p w df p

WHITE 8.10 4 0.09 8.15 4 0.09
ED 156.94 4 <0.01 84.97 4 <0.01

EXPER 856 4 0.07 799 4 0.09

1.1 compute both tests for didactic purposes; in practice, only compute one
2.1f you do test all coefficients, you might be misled by the minimal set

3.Testing that all coefficients for a variable are simultaneously zero might not be
appropriate for your substantive goals

0 When we plot OR's this will be easy to see
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* Testing that outcomes can be combined
1.1f no regressor significantly affects the odds of P vs W, we say

0 P and W are indistinguishable.
2.The hypothesis that P and W are indistinguishable is

Ho: /Bl,P\W :ﬂz,P\w :ﬂ3,P|W =0
3. Tests of indistinguishably can be computed for all pairs of outcomes

Example on next page...
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Tests for combining can lead to inconsistencies
1.An LR test supports combining M and B (p=.251), suggesting
M can be combined with B M=8B

2.An LR test supports combining M and C (p=.337), suggesting
M can be combined with C M=C

3. Algebraically, this suggests
B can be combined with C B=C

4. An LR test rejects the hypothesis that B and C (p=.003) can be combined:
B cannot be combined withC B #C

5.Tests of hypothesis are not algebraic statements.
6. If you decide to combine categories
a. Estimate the model with the new outcome

b.Compute tests of indistinguishability for the new model
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#26 Wald tests for combining outcomes

mlogtest to test for indistinguishably
. mlogtest, combine

Wald tests for combining alternatives (N=337)

Ho: All coefficients except intercepts associated with a given pair
of alternatives are 0 (i.e., alternatives can be combined)

chi2 df P>chi2

|
_________________ S
Menial & BlueCol | 3.994 3 0.262
Menial & Craft | 3.203 3 0.361
Menial & White~1 | 11.951 3 0.008
Menial & Prof | 48.190 3 0.000
BlueCol & Craft | 8.441 3 0.038
BlueCol & Whit~1 | 20.055 3 0.000
BlueCol & Prof | 76.393 3 0.000
Craft & WhiteCol | 8.892 3 0.031
Craft & Prof | 60.583 3 0.000
WhiteCol & Prof | 22.203 3 0.000
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Specification searches

1. Tests for combining categories and tests that all coefficients for a variable are
zero can be used in a specification search

2.Be careful not to over-fit your data
3. Examine individual coefficients before revising your model

4. Think substantively about changes to your model

5.1n models constructed from tests using the same data, significance levels are
invalid.

0 Consider randomly dividing the sample into an exploration subsample and a
verification subsample
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Overview of interpretation

1.The MNLM has many parameters

2.Do not
a. Present a minimal set of parameters without interpretation
b.Include stars for significance of individual coefficients
c. Ignore coefficients not in the minimal set are ignored
d.Ignore direction of effects and overall significance

3. All coefficients can be interpreted

a. Odds ratios for all contrasts can tell part of the story
b. Predicted probabilities and marginal effects provide substantive insights

4. We start with marginal effects
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Using probabilities for interpretation
1. Check within-sample variation in predicted probabilities with predict

2. Examine the "effect" of x with marginal effects, tables, and graphs
3.Some methods are shown in this chapter; others in the next chapter
0 Methods for ordinal models generally work for nominal model
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Example: occupation type (-nrm-nomocc.do)

#31 Distribution of predictions

. predict prmenial prblue prcraft prwhite prprof
(option pr assumed; predicted probabilities)

. label var prmenial "Pr(menial)"

. label var prblue "Pr(blue)"

. label var prcraft "Pr(craft)”

. label var prwhite "Pr(white)"”

. label var prprof “Pr(prof)”

. local graphnm *"~“pgm®-phat-dotplot™

. dotplot prmenial prblue prcraft prwhite prprof, ///
> ylab(0(-25)1, grid gmin gmax)

Plot on next page...

Part 10: Nominal outcomes Page 583

i

Pr(m‘enial) Pr(k:llue) Pr(c;raft) Pr(vs)h ite) Pr(;;rof)

0 The biggest effects are likely to occur with professional outcomes
0 What causes the range in predictions? Does it concern you?
O Are there outliers to examine?
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Marginal change & discrete change

While OR's are often the first thing people examine, marginal effects are usually
more informative.
Marginal change
1.The marginal change (MC) is
oPr(y=m|x) J i
T: Pr(y =m |x) ﬁk,mu _Z‘ﬂk,ju Pr(y =] |x)
K j=1

2.The formula combines many coefficients and the since of the MC does not
need to be the same sign as the Bim|

3.The sign of the MC can change as xx changes
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Discrete change
1.The discrete change (DC) for xi
APr{y=m|x’) . .
——— 2 =Ply=m|x ,End x, )—Prl y=m|x ,Start X
™ fy=m| )-Pr(y=m| )
2.This can be interpreted as

If xx changes from the start value to the end value, the predicted
probability of outcome m changes by APr(y =m| x*)/Axk, holding

other variables at the specified values.

The DC for xk is affected by
1. All coefficients for x

2.The amount of change in x
3.The starting value of x

4.The values of other regressors
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#32 average marginal effects (AMEs)

. mchange, amount(one sd) brief
mlogit: Changes in Pr(y) | Number of obs = 337

Expression: Pr(occ), predict(outcome())

| Menial BlueCol Craft  WhiteCol Prof

white |
1Wwhite vs ONonWhite | -0.116 0.069 -0.129 0.052 0.124
p-value | 0.143 0.315 0.164 0.327 0.054

ed |
+1 | -0.017 -0.050 -0.033 0.002 0.099
p-value | 0.000 0.000 0.000 0.662 0.000
+SD | -0.050 -0.129 -0.111 -0.014 0.304
p-value | 0.000 0.000 0.000 0.333 0.000

exper |
+1 ] -0.002 -0.003 0.002 0.001 0.002
p-value | 0.127 0.051 0.338 0.329 0.187
+SD | -0.023 -0.040 0.019 0.017 0.027
p-value | 0.078 0.031 0.407 0.385 0.228

Graph using mchangeplot...
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mchangeplot, amount(sd sd) min(--3) max(-4) gap(-1) mcol(rainbow) aspect(.3)
title(Average discrete change, position(11l)) leftmargin(4) sig(-10)

Average discrete change

white .
1White vs ONonWhite av WB P
ed ) " X
SD increase BC M* W p
exper i
SD increase BM* \@
T T T 1 T T T T
-3 -2 -1 0 A 2 3 4

Marginal Effect on Outcome Probability

On average, being white decreases the probability of a menial job by .12 and a
craft job by .13, while increasing the probabilities of blue collar jobs by .07,
white color jobs by .05, and professional jobs by .12. However, only the change
in professional jobs is statistically significant at the .05 level.
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More interpretation

Average discrete change

white )
1White vs ONonWhite v WB P
ed * % *
SD increase BC* M*W =
exper .
SD increase BM* \@P
T T T T T T T T
-3 -2 -1 0 A 2 3 4

Marginal Effect on Outcome Probability
0 The effects of a standard deviation increase in education are largest, with an
increase of about .3 for professional occupations.
0 The effects of race are substantial, with blacks on average being less likely to
enter blue collar, white collar, or professional jobs.

0 The changes due to a standard deviation increase in experience are much
smaller and show that experience increases the probabilities of more highly
skilled occupations.
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#32 Marginal effect at the mean
mchange, atmeans amount(one sd)

Discrete change at the mean

white
1White vs ONonWhite

ed

SDincrease

exper
SD increase

BM* QvP

T T T T T T T T
-3 -19 -09 .02 A3 24 .34 45
Marginal Effect on Outcome Probability

0 For someone who is average on all characteristics, the effects of a standard
deviation increase in education are largest, with an increase of nearly .45 for
professional occupations.

0 The effects of race are substantial. Blacks with average education and
experience are less likely to enter blue collar, white collar, or professional
jobs than comparable white respondents.
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AME compared to MEM

Average discrete change

white

1White vs ONonWhite

a wB P*

ed

SD increase

BC* M*W P*

exper
SD increase

BM* \@®

T T T T T T T T
-3 -2 -1 0 A 2 3 4
Marginal Effect on Outcome Probability

Discrete change at the mean

white

1White vs ONonWhite

CM BW P*

ed

SD increase

cr B MW P

exper

SD increase

BM* GVP

T T T T
-3 -19 -.09 .02 13 24 .34 45
Marginal Effect on Outcome Probability
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Odds ratios
1. Discrete change (DC) is useful, but partial reflection of the process
2.DC's do not indicate the dynamics among the outcomes

0 For example, a decrease in education increases blue collar and craft jobs, but
how does it affect craft jobs relative to blue collar jobs?

3.The dynamics between categories is reflected by the OR.
4. Consider the odds of outcome m versus n, highlighting x,

Qm‘n(x’ Xz) — eﬁo,m\n eﬂl.m\nxle/}lm X2 eﬂs.m\nxz
5.1f x; is changed by 1, then
Q ﬂ(),m\n

BiminXi g Bomin%e g Bmin

Bs.min%s

(x,%, +1) =g gltnrighnghnng

min
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6.The OR for x; for a unit change is

Q (X, X2 + 1) eﬂo,m\n eﬂl,m\nxleﬁz.m nxzeﬂz.m\n eﬁ}.m\nXS

m|n — — eﬂlm\n

Qm \n(x’ X2 ) eﬂ(}.m\n eﬂl,m nxleﬂl,m\nxl eﬂs‘m\nxs

7.Interpretation
a. For a unit increase in Xk the odds of m versus n change by a factor of
exp(Bk,m|n), holding other variables constant.
b. For a standard deviation change in xi, the odds are expected to change by
a factor of exp(skBkm|n), holding other variables constant.
8. Unlike the DC or MC, the OR does not depend on the level of any of the
variables

0 The only requirement is that one variable changes while the others do not
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Challenges interpreting ORs
1. The meaning of an OR depends on the outcome probability

0 The outcome probability depends on all parameters and values of all
variables

2.You cannot use OR's if you have linked variables such as age and age-squared
0 Unless you computed them with advanced methods

3.There can be a /ot of ORs to interpret

0 We address this problem first
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ORs for white
Factor Change Outcome n
in the Odds of mvs n M B C W P
Outcome M Menial --- 0.29 0.62 0.21 0.17
m B BlueCollar 3.44 --- 2.15 0.72 0.58
C Craft 1.60 0.47 --- 0.33 0.27
W  White Collar 4.81 1.40 3.00 --- 0.82

P  Professional 5.90 1.71 3.68 1.23 ---

With listcoef...
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#41 Examining all ORs with listcoef

Variable: 1.white (sd=0.276)

|
————— +
Menial vs BlueCol |
Menial vs Craft |
Menial vs WhiteCol |
Menial vs Prof |
BlueCol vs Menial |
BlueCol vs Craft |
BlueCol vs WhiteCol |
BlueCol vs Prof |
Craft vs Menial |
Craft vs BlueCol |
Craft vs WhiteCol |
Craft vs Prof |
WhiteCol vs Menial | 1.5714 1.741 0.082 4.813 1.544
WhiteCol vs BlueCol | 0.3349 0.359 0.720 1.398 1.097
WhiteCol vs Craft ] 1.0990 1.343 0.179 3.001 1.355
WhiteCol vs Prof | -0.2029 -0.233 0.815 0.816 0.945
Prof vs Menial | 1.7743 2.350 0.019 5.896 1.633
Prof vs BlueCol | 0.5378 0.673 0.501 1.712 1.160
Prof vs Craft | 1.3020 2.011 0.044 3.677 1.433
Prof vs WhiteCol | 0.2029 0.233 0.815 1.225 1.058
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Plotting ORs for BLM
1. An odds ratio plot is an easy way to see complex patterns in the estimates
2.Consider a BLM with test coefficients

ﬂBlA exp(ﬂB\A) p
X, -0.693 0.500 0.02
0.000 1.000 0.99
0.347 1.414 0.11
X, 0.693 2.000 0.04

3. Think of the OR as the distance between outcomes A and B

>

Graph on next page...
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OR plot for binary logit
Odds Ratio Scale Relative to Category A
0.37 0.61 1.00 1.65 2.72
L L L L L
X1
Unit change B A
X2
Unit charge| B
X3
Unit charge| A B
X4
Unit change| A B

T T T T T
-1 -5 0 5
Logit Coefficient Scale Relative to Category A

#2 cda13lec-nm-orplot-didactic-matrixinput. doscott long 2013-06-27

X Pea eXp(ﬂB\A)
X -0.693 0.500
X, 0.000 1.000
X, 0.347 1.414
X, 0.693 2.000
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Lack of significance indicated by connecting line

1. Lack of significance is shown by a connecting line
2.1f a coefficient is not significant, the two outcomes are tied together
Odds Ratio Scale Relative to Category A

0.37 0.61 1.00 1.65 272
1 1 1 1 1
X1
Unit change B A
X2
Unit change é
X3
Unit change A B
X4
Unit change A B

T T T T T
-1 -5 0 5
Logit Coefficient Scale Relative to Category A
#2 cda13lec-nrm-orplot-didactic-matrixinput.do scott long 2013-06-27
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OR plot for three categories

1. Consider a hypothetical model with three outcomes:

Comparison x1 x2 x3
B|A  Bgla -.693 0.693 0.347
exp(Bsja) ©0.500 2.000 1.414
p 0.04 0.01 0.42
Cc|A Bcla 0.347 -.347 0.693
exp(Bcja) 1.414 0.707 2.000
p 0.21 0.04 0.37
Cc|B Bcis 1.040 -1.040 0.346
exp(Bcis) 2.828 0.354 1.414
p 0.02 0.03 0.21
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2. Plotting relative to A

Odds Ratio Scale Relative to Category A
0.37 0.47 0.61 0.78 1.00 1.28 1.65 2.12 2.72
1 1 1

X1
B A C
Unit change
X2
C A B
Unit change
X3
A B C
Unit change
T T T T T T T T T
-1 -75 -5 -25 0 25 5 75 1

Logit Coefficient Scale Relative to Category A

#1 cdat3lec-nrm-orplot-didactic.do scott long 2013-04-25
3. Consider the implicit constraints for x;:
a. Distance: B -> A =.693
b. Distance: A->C =.347
c. Distance: B->C =1.040=.693 +.347
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4. Indicate non-significance with a connecting line

Odds Ratio Scale Relative to Category A
0.37 0.47 0.61 0.78 1.00 1.28 1.65 212 2.72
1 1 1 1 1 1 1

X1 B c
Unit change A /
X2 c B
Unit change A
X3 A—m—  C
Unit change \ B /
T T T T T T T T T
-1 -75 -5 -.25 0 25 5 75 1

Logit Coefficient Scale Relative to Category A

#1 cda13lec-nrm-orplot-didactic.do scott long 2013-04-25
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5. Plotting relative to B shows the same information

Odds Ratio Scale Relative to Category B

0.22 0.37 0.61 1.00 1.65 2.72 4.48
1 1 1 1 1 1 1
X1 B C
Unit change A /
X2 C B
Unit change A
X3 A—=C
Unit change \ B /
T T T T T T T
-1.5 -1 -5 0 5 1 1.5
Logit Coefficient Scale Relative to Category B
#1 cda13lec-nrm-orplot-didactic.do scott long 2013-04-25
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6. Plotting relative to C shows the same information
Odds Ratio Scale Relative to Category C
0.22 0.37 0.61 1.00 1.65 2.72 4.48
1 1 1 1 1 1 1
X1 B C
Unit change A /
X2 Cc B
Unit change A
X3 A———C
Unit change \ B /
T T T T T T T
-1.5 -1 -5 0 5 1 1.5
Logit Coefficient Scale Relative to Category C
#1 cda13lec-nrm-orplot-didactic.do scott long 2013-04-25
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#41-47 OR plot for occupational attainment

1. Next we plot the three pages of OR's shown above
Variable: 1.white (sd=0.276)

Menial
Menial
Menial
Menial
BlueCol
BlueCol
BlueCol
BlueCol
Craft
Craft
Craft
Craft
WhiteCol
WhiteCol
WhiteCol
WhiteCol
Prof
Prof
Prof
Prof

And so on...

Vs
Vs
Vs
Vs
VS
Vs
Vs
Vs
Vs
Vs
VS
Vs
Vs
Vs
Vs
Vs
Vs
Vs
Vs
Vs

BlueCol
Craft
WhiteCol
Prof
Menial
Craft
WhiteCol
Prof
Menial
BlueCol
WhiteCol
Prof
Menial
BlueCol
Craft
Prof
Menial
BlueCol
Craft
WhiteCol
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-1.

-0

-1.
-1.
1.
0.
-0.
-0.

0

-0.
-1.
-1.

OFROROROR

2365
.4723
5714
7743
2365
7642
3349
5378
.4723
7642
0990
3020
.5714
.3349
.0990
.2029
.7743
.5378
.3020
.2029

-1.707
-0.782
-1.741
-2.350
1.707
1.208
-0.359
-0.673
0.782
-1.208
-1.343
-2.011
1.741
0.359
1.343
-0.233
2.350
0.673
2.011
0.233

P>]z]
0.088
0.434
0.082
0.019
0.088
0.227
0.720
0.501
0.434
0.227
0.179
0.044
0.082
0.720
0.179
0.815
0.019
0.501
0.044
0.815

e”b e”bStdX

0.290 0.710
0.624 0.878
0.208 0.648
0.170 0.612
3.444  1.407
2.147 1.235
0.715 0.912
0.584 0.862
1.604 1.139
0.466 0.810
0.333 0.738
0.272 0.698
4.813 1.544
1.398 1.097
3.001 1.355
0.816 0.945
5.896 1.633
1.712 1.160
3.677 1.433
1.225 1.058
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#43 OR plot for occupational attainment - base P

Odds Ratio Scale Relative to Category Prof

0.05 0.08 0.14 0.22 0.37 0.61 1.00 1.65
1 1 1 1 1 1 1 1
1.white " / B\— P
1White vs ONonWhite ~ c /
ed B\ p
SDi M\ w
increase C
exper B P
_ M w
SD increase v
T T T T T T T T
-3 -2.5 -2 -1.5 -1 -5 0 5
Logit Coefficient Scale Relative to Category Prof
#43 mlogitplot-sig-baseP5.emf cdalec-nrm-nomocc.do scott long 2014-07-30
mlogitplot command discussed below...
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#44 Change the base category to M
Odds Ratio Scale Relative to Category Menial
0.61 1.00 1.65 2.72 4.48 7.39 12.18 20.09
1 1 1 1 1 1 1 1
whi B——P
1.white N / N
1White vs ONonWhite ~— c /
ed B\ P
SD increase M\ w
C
exper B P
SDi M ”VV
increase C
T T T T T T T T
-5 0 5 1 15 2 25 3
Logit Coefficient Scale Relative to Category Menial
#44 mlogitplot-sig-baseM1.emf cdal do scott long 2014-07-30
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Odds Ratio Scale Relative to Category Prof

0.05 0.08
!

0Odds Ratio Scale Relative to Category Menial

014 022 037 061 100 165 061 100 165 272 448 739 1218 2009
{ ! : i ¢ ¢ i : ! ! ; ; ;
B—— 1.white P
1.white 5 <7 / <
Whio v ONorMihe ~—¢ Wit vs ONorihs ~=——
ed B el B B P
50 maose Ve w 50 nose ~c
exper] B exper E P
W
SO increase. M C’/ SD increase. C‘l
: ; : : : : : : ; : : : :
3 25 2 s 5 5 5 5 Tois 2 25 3
cale Relative to Category Prof Logit Coefficient Scale Relative to Category Menial
43 it s ot s o et o 2014750
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#45 Change the vertical offsets for clarity
Odds Ratio Scale Relative to Category Prof

0.05 0.08 0.14 0.22 0.37 0.61 1.00 1.65
1 1 1 1 1 1 1 1

1.white B
e
1White vs ONonWhite \VV/
ed M
. VRN w P
SD increase B C
exper M B
SD increase B Vi
C
T T T T T T T
-3 -25 -2 -1.5 -1 -5 0
Logit Coefficient Scale Relative to Category Prof
#45 mlogitplot-sig-baseP5-offset.emf cdal .do scott long 2014-07-30
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OR and change in probability
1.0ORs are the same at all values variables; DC varies by the values
2.Here are the average discrete changes for our model

Average discrete change

white
White vs ONonWhite (9] WB P
ed
SD increase BC MW p
exper|
SD increase BM \®
T T T T T T T T
-3 -2 -1 0 A 2 3 4

Marginal Effect on Outcome Probability

#32 mchangeplot-ame.emf cdalec-nm-nomoce.do scott long 2014-07-30

3. We add this to the OR plot

4.Size of letter in OR plot is proportional to area of the square around letter

5. Underline means a negative DC
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#46 using AME for area of coefficients
Odds Ratio Scale Relative to Category Menial

0.61 1.00 1.65 2.72 4.48 7.39 12.18
I I I I I I

1.white — B
Whi i M C_\\/\/P
ite vs ONonWhite — —_

ed

M
SD increase B/ \C_: P

P
exper
W b
SD increase B v
[
T T T T T T T
-5 0 5 1 15 2 25
Logit Coefficient Scale Relative to Category Menial
#46 baseP5-offset.emf cdal do scott long 2014-07-30
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mlogitplot for OR plots
1] mlogitplot white ed exper,

2] amount(sd sd) /// show OR and DC for SD change

3] base(1) /// line up on category 1
4] offsetlist(0 3 0 -3 0 2-2-200 1-1-303)

5] linep(.1) /// draw line if p>.1
6] linegapfactor(.5) /// blank space around letter
71 msizefactor(l.1) /// increase size of marker

8] mchange /// size of letter based on DC
9] min(-.5) max(2.5) ntics(7) mcol(rainbow)

10] leftmargin(3) /// more room on left for labels
11] aspect(.5) // aspect ratio of plot
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Example: Attitudes toward working mothers
(-nrm-ordwarm.do)
1. Attitudes toward working mothers

Working mothers can have a warm relationship with their children?

2.Responses in warm are

1=Strongly Disagree 2=Disagree 3=Agree 4=Strongly Agree

Working mom

can have
warm |
relations w |
child? | Freq. Percent Cum.
____________ +—— ———————
1_SD | 297 12.95 12.95
2D | 723 31.53 44.48
3A| 856 37.33 81.81
4 SA | 417 18.19 100.00
____________ I e
Total | 2,293 100.00
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3. Regressors

. codebook warm yr89 male white age ed prst, compact

Variable Obs Unique Mean Min Max Label

warm 2293 4 2.607501 1 4 Working mom can have warm...
yrd89 2293 2 .3986044 0 1 Survey year: 1=1989 0=1977
male 2293 2 .4648932 0 1 Gender: 1=male O=female
white 2293 2 .8765809 0 1 Race: l=white O=not white
age 2293 72 44.93546 18 89 Age in years

ed 2293 21 12.21805 0 20 Years of education

prst 2293 58 39.58526 12 82 Occupational prestige

4. Treating warm as nominal and fit the model
mlogit warm i.yr89 i.male i.white age i.edcat ///
prst, base(1) nolog

5. As we review the results, consider:

Are the results consistent with warm being an ordinal variables?
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#24 Tests of regressors
. mlogtest, wald set(edcat_set=2.edcat 3.edcat 4.edcat)

Wald tests for independent variables (N=2293)
Ho: All coefficients associated with given variable(s) are 0

chi2 df P>chi2

|
_________________ S,
1.yr89 | 54.503 3 0.000
1.male | 100.836 3 0.000
1.white | 7.638 3 0.054
age | 86.556 3 0.000
2.edcat | 1.241 3 0.743
3.edcat | 10.994 3 0.012
4 _edcat | 15.119 3 0.002
prst | 6.901 3 0.075
edcat_set | 26.063 9 0.002

edcat_set contains: 2.edcat 3.edcat 4.edcat
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#26 Tests for combining categories
. mlogtest, combine

Wald tests for combining alternatives (N=2293)
Ho: All coefficients except intercepts associated with a given
pair
of alternatives are 0 (i.e., alternatives can be combined)

chi2 df P>chi2

|
_________________ .
1.SD & 2.D | 38.245 8 0.000
1.SD & 3 A | 134.132 8 0.000
1.SD & 4_SA | 185.858 8 0.000
2D&3A| 95.727 8 0.000
2D &4SA| 172.166 8 0.000
3 A&4SA| 53.660 8 0.000
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#31 Predictions
2
LD_,
2
o
T T T T
Pr(SD1) Pr(D2) Pr(A3) Pr(SA4

Part 10: Nominal outcomes Page 617




#32 Average marginal effects -- we need a plot!
. mchange, amount(one sd)

mlogit: Changes in Pr(y) | Number of obs = 2293
Expression: Pr(warm), predict(outcome())
| 1 SD 2D 3 A 4 SA
- A
yrd89 |
1989 vs 1977 | -0.095 -0.029 0.079 0.045
p-value | 0.000 0.136 0.000 0.006
male |
Male vs Female | 0.038 0.120 -0.010 -0.148
p-value | 0.006 0.000 0.622 0.000
white |
White vs NonWhite | 0.040 0.018 -0.006 -0.052
p-value | 0.036 0.529 0.838 0.038
age |
+1 | 0.002 0.004 -0.003 -0.003
p-value | 0.000 0.000 0.000 0.000
+SD | 0.037 0.059 -0.054 -0.042
p-value | 0.000 0.000 0.000 0.000
<continued>
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| 1 SDb 2D 3 A 4 SA
- b
edcat |
12 yrs vs 0-11 yrs | -0.012 -0.004 0.028 -0.012
p-value | 0.535 0.880 0.305 0.580
13-15 yrs vs 0-11 yrs | -0.056 -0.042 0.053 0.045
p-value | 0.013 0.171 0.104 0.084
16-20 yrs vs 0-11 yrs | -0.090 -0.015 0.050 0.055
p-value | 0.000 0.694 0.198 0.093
13-15 yrs vs 12 yrs | -0.044 -0.038 0.025 0.057
p-value | 0.029 0.167 0.380 0.011
16-20 yrs vs 12 yrs | -0.078 -0.011 0.022 0.066
p-value | 0.000 0.745 0.510 0.017
16-20 yrs vs 13-15 yrs | -0.034 0.028 -0.003 0.009
p-value | 0.096 0.415 0.934 0.746
prst |
+1 | 0.000 -0.002 0.001 0.001
p-value | 0.818 0.011 0.193 0.220
+SD | 0.002 -0.029 0.016 0.012
p-value | 0.841 0.009 0.214 0.240
Average predictions
1 1.SD 2D 3 A 4 SA
- b T
Pr(y|base) | 0.130 0.315 0.373 0.182
A plot gives us a quick summary...
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#32 Marginal effects: part 1
Why are the colors ordered red — orange — green — blue used?
Average marginal effect
1=SD 2=D 3=A 4=SA
yr89
1989 vs 1977 1 2 4 3
male
Male vs Female 4 3 1 2
white
White vs NonWhite 4 3 2 1
age
SD increase 34 1 2
prst
SD increase 2 143
T T T T T T T
-15 -1 -.05 0 .05 A 15
Marginal Effect on Outcome Probability
#32 1-ame.emf cdals dh .do scott long 2014-07-30

Is this consistent with warm being ordinal?
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#32 Marginal effects: part 2

Average marginal effect
1=8D 2=D 3=A 4=SA

edcat
12 yrs vs 0-11 yrs 42 3

edcat
13-15 yrs vs 0-11 yrs 12 43

edcat
16-20 yrs vs 0-11 yrs 1 2 34

edcat
1345 yrs vs 12 yrs 12 3 4

edcat
16-20 yrs vs 12 yrs 1 2 3 4

edcat
16-20 yrs vs 13-15 yrs 1 34 2

T T T T T
-15 -1 -.05 0 .05 A
Marginal Effect on Outcome Probability

#32 cda13lec-nrm-ordwarm.do scott long 2013-09-26
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#34 OR plot with ADC: part 1
1=SD 2=D 3=A 4=SA
Odds Ratio Scale Relative to Category 4_SA
0.22 0.37 0.61 1.00 1.65 2.72 4.48
1 1 1 1 1 1 1
1.yr89 1 4
1989 vs 1977 2 J
1.male 4
Male vs Female - 3
1.white 4, 1
White vs NonWhite \ 5 //
age 4 1
SD increase § !
prst N
SD increase / I
2 3
T T T T T T T
-1.5 -1 -5 0 5 1 1.5
Logit Coefficient Scale Relative to Category 4_SA
#34 mlogitplot based-offset.emf cdal d .do scott long 2014-07-30
Is this consistent with warm being ordinal?
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#34 OR plot with ADC: part 2

1=8SD 2=D 3=A 4=SA
Odds Ratio Scale Relative to Category 4_SA
0.22 0.37 0.61 1.00 1.65 2.72 4.48
1 1 1 1 1 1

2.edcat u
12 yrs vs 0-11 yrs \3
3.edcat 1, 4
13-15 yrs vs 0-11 yrs \2 3/
4.edcat 1 4
16-20 yrs vs 0-11 yrs _/3/
T T T T T T T
-1.5 -1 -5 0 5 1 1.5
Logit Coefficient Scale Relative to Category 4_SA

#34 miogitplot based-offs

2.emf cdal i

do scott long 2014-07-30
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Example: Political orientation (-nrm-partyid.do)
1992 American National Election Study

#11 Outcome: party affiliation

. use partyid4, clear
(partyid4.dta | 1992 American National Election Study | 2014-03-12)

. tab party, miss

Party 1D | Freq. Percent Cum.
____________ S
D StrDem | 266 19.25 19.25
d Dem | 427 30.90 50.14
i Indep | 151 10.93 61.07
r Rep | 369 26.70 87.77
R StrRep | 169 12.23 100.00
____________ e —————————— e

Total | 1,382 100.00
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#11 Regressors

. nmlab party age income black female educ

party Party ID

age Age

income Income in $1,000s
black Black?

female Female?

educ Level of education

. sum party age income black female i.educ

Variable | Obs Mean Std. Dev. Min Max

___________ e

party | 1382 2.817656 1.342787 1 5

age | 1382 45.94645 16.78311 18 91

income | 1382 37.45767 27.78148 1.5 131.25

black | 1382 .1374819 .34448 0 1

female | 1382 .4934877 .5001386 0 1
educ |

hs only | 1382 .5803184 .4936854 0 1

college | 1382 .2590449 .4382689 0 1

"10" versions of variables divide age and income by 10.
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#12 Fit MNLM and test regressors

. mlogit party agelO incomelO i.black i.female i.educ
<snip>

. mlogtest, Ir set(educ_set=1.highschool 1.college)
LR tests for independent variables (N=1382)
Ho: All coefficients associated with given variable(s) are 0

chi2 df P>chi2

|
_________________ .
agel0 | 45_165 4 0.000
incomelO | 24.361 4 0.000
1.black | 126.467 4 0.000
1.female | 9.143 4 0.058
1.highschool | 5.567 4 0.234
1.college | 21.582 4 0.000
educ_set | 26.881 8 0.001

educ_set contains: 1_highschool 1.college
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#21 Average marginal effects (AME)

Average marginal effects

age10
) dr i R D
SD increase
income10
D d i R r
SD increase
T T T T T T T
-.06 -.04 -.02 0 .02 .04 .06
Marginal Effect on Outcome Probability
#21 emf cdal partyid.do scott long 2014-07-30

0 Age increases the probability of the extreme affiliations and decreases the
probability of other affiliations.
0 Income increase Republican affiliations, while decreasing Democratic.
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#13 0dds ratios for age and income

Odds ratios scale relative to category |

0.74 1.00 1.35 1.82
1 1 1 1
Age in decades d D
SD increase ! —~— r/ R/
Income in $10,000s d r
, D \ \
SD increase | R
T T T T
-3 0 3 6
Logit coefficient scale relative to category |
#13 mlogitplot-sig.emf cdal rtyid.do scott long 2014-07-30
Question Could A Pr(R) /A Age be negative?
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#21 0dds ratios for age and income: with marginal effects

Odds ratios scale relative to category |

0.74 1.00 1.35 1.82
| | | |
Age in decades d D
SD increase e~ r/ R/
Income in $10,000s d r
. D \ \
SD increase R
T T T T
-3 0 3 .6

Logit coefficient scale relative to category |
#21 mlogitplot.emf cdalec-nrm-partyid.do scott long 2014-07-30
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Stata code for mlogitplot
1] mchange agelO incomelO

2] mlogitplot agel0 incomelO, base(3) ///

3] linep(.1 .2 .3) lIcolor(red) Ishade ///

4] symbols(D d i r R) linegapfactor(.6) ///
5] offsetlist(2 2 0 -2 -2 02-22-2)1///

6] titletop(Odds ratios scale relative to category 1) ///

7] titlebot(Logit coefficient scale relative to category 1) ///

8] mcol (Cpartycol®) min(-.3) max(.6) gap(-3) ///
9] aspect(.4) varlabels mchange
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Plots of probabilities (#41--)

1. For continuous regressors, plots can be useful
0 The only way to know if it is useful is to create it!
2.0ne variable changes while others are held constant
0 Unless variables are linked, like age and age-squared
3.Here | create two plots holding other variables at their global means
a. Age changes while holding other variables at their means
b.Income changes holding other variables at their means

4.Commands are discussed after looking at plots
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#42 Probabilities by income

Multinomial logit model

O-——o-—-—0o_

Probability of party affiliation

T T
0 20 40 60 80 100
Income in $1,000s

—@&— Strong Dem ——& —- Democrat ---<%---- Independent
——B—- Republican =~ —#®—— Strong Rep
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#42 Probabilities by age

Multinomial logit model

c

K]

8

&=

®©

>

b=

©

a

—

[S)

2

3

©

Q

o

o

o
T T T T
20 40 60 80
Age
—@&— Strong Dem ——& —- Democrat ---<%---- Independent
——B—- Republican =~ —#®—— Strong Rep
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#41 Code for plots

Generate variables to plot
. mgen, atmeans at(agel0=(2(.5)8.5)) stub(MNLMage)

Predictions from: margins, atmeans at(agel0=(2(-5)8.5)) predict(outcome(5))

Variable Obs Unique Mean Min Max Label

MNLMageprl 14 14 2046258 .1047786 .3256354 pr(y=SD) from margins
MNLMagel 11 14 14 1675598 .0768825 .2487619 95% lower limit
MNLMageul1 14 14 .2416917 .1326748 .4025089 95% upper limit
MNLMageagelO0 14 14 5.25 2 8.5 Age in decades
MNLMageCprl 14 14 .2046258 .1047786 .3256354 pr(y<=SD)

MNLMagepr2 14 14 .329003 .2561781 .3826132 pr(y=D) from margins
MNLMagel 12 14 14 .2874055 .1949605 .3331204 95% lower limit
MNLMageul2 14 14 .3706006 .3173957 .435444 95% upper limit
MNLMageCpr2 14 14 .5336288 .4873918 .5818136 pr(y<=D)

<snip>

Specified values of covariates

1. 1. 2. 3.
incomelO black female educ educ

3.745767 -1374819 -4934877 .5803184 .2590449
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. mgen, atmeans at(incomel0=(0(1)10)) stub(MNLMinc)
Predictions from: margins, atmeans at(incomel0=(0(1)10)) predict(outcome(5))

Variable Obs Unique Mean Min Max Label

MNLMincpril 11 11 .1604032 .090648 .2445128 pr(y=SD) from margins
MNLMincll1 11 11 .1253144 .0479288 .1908274 95% lower limit
MNLMincull 11 11 1954919 .1333672 .2981982 95% upper limit
MNLMincin~10 11 11 5 0 10 Income in $10,000s
MNLMincCprl 11 11 .1604032 .090648 .2445128 pr(y<=SD)

MNLMincpr2 11 11 .3325221 .2827661 .3683488 pr(y=D) from margins
MNLMincl 12 11 11 .2882002 .2133308 .3252223 95% lower limit
MNLMincul2 11 11 .3768441 .3522013 .420665 95% upper limit
MNLMincCpr2 11 11 4929253 .3734141 .6128616 pr(y<=D)

<snip>

Specified values of covariates

1. 1. 2. 3.
agelO black female educ educ

4.594645 .1374819 .4934877 .5803184 .2590449
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Customize variables and options for plots

. gen PLTincomelO0 = MNLMincincomelO

. label var PLTincomelO "Income in $10,000s"

. gen PLTincome = MNLMincincomel0*10

. label var PLTincome "Income in $1,000s"

. gen PLTagel0 = MNLMageagelO

. label var PLTagelO ""Age in decades"

. gen PLTage = MNLMageagelO*10

. label var PLTage "Age"

. local yaxis_p /7//

> "ytitle(Probability of party affiliation)”

local yaxis_p /7//

"“yaxis_p" ylab(0(.1).4, grid) ylin(0 .4, lIcol(gsl4))"
. local yaxis_c ///

> "ytitle(Cumulative probability) ylab(0(.2)1, grid) ylin(0 1,
. local titleopt "position(1l) size(medium)"

Vo

Icol(gs14))"

. * line options for probabilities
1 "msym(0O Oh dh sh s)"
““line5_opts”

. local
. local
. local
. local
. local

Iwid(medium medium medium medium medium)*
Ipat(solid dash shortdash dash solid)"

|ne5:opts
i mcol(red red*.8 black blue*.8 blue)"

ine5_opts

line5_opts

. label
. label
. label

var
var
var

MNLMagepril
MNLMagepr2
MNLMagepr3
. label var MNLMagepr4
. label var MNLMagepr5
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"'Strong Dem"
“"Democrat"

“Independent
“"Republican™
"'Strong Rep™

Icol(red red*.8 black blue*.8 blue)"
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. label
. label
. label
. label
. label

Create plots
. * probability by age

var
var
var
var
var

MNLMincpril
MNLMincpr2
MNLMincpr3
MNLMincpr4
MNLMincpr5

titleC title™,

V VvV V.

"Strong Dem"
""Democrat"

"Independent
“Republican™
"'Strong Rep™

graph twoway (connected MNLMageprl MNLMagepr2 MNLMagepr3 ///
MNLMagepr4 MNLMagepr5 PLTage, ~line5_opts®), ///

“titleopt®™) “yaxis_p" “xaxis_age® ///

legend(rows(2)) // caption(* tag"",size(vsmall))

. * probability by income

title(C title™™,

V V V.
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graph twoway (connected MNLMincprl MNLMincpr2 MNLMincpr3 ///
MNLMincpr4 MNLMincpr5 PLTincome, ~line5_opts®), ///

“titleopt®™) “yaxis_p" “xaxis_inc® ///

legend(rows(2)) // caption(* tag"",size(vsmall))
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Independence of irrelevant alternatives (I1A)
1. Fundamental assumption of MNLM and CLM is IIA

0 Independence of Irrelevant Alternatives

2.In these models the odds of two outcomes do not depend on other outcomes

0 The odds of A vs B does not depend on what other options there are

Part 10: Nominal outcomes

Page 638




Why IIA fails? McFadden's buses
1. A person has two choices
Pr(car) =1/2 and Pr(redbus) =1/2
2.The odds of taking the car versus a red bus
Pr(car) _12 .
Pr(red bus) 1/2
3. A new bus company opens with identical service & blue buses
4.11A requires
Pr(car) =1/3;  Pr(redbus) =1/3;  Pr(bluebus) =1/3
5.This is necessary so that the odds remain constant
Pr(car) . _13
Pr(red bus) 1/3
6. Substantively, we would expect a violation of 1A
Pr(car) =1/2;  Pr(redbus) =1/4;  Pr(blue bus) =1/4
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IIA, mlogit and logit
mlogit party age, base(5) nolog vsquish

party | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____ + S
StrDem |

age | .0104532 .0056788 1.84 0.066 -.0006771 .0215834

_cons | -.072338 .3003037 -0.24 0.810 -.6609224 .5162464

StrRep | (base outcome)

. gen partyl5 = 1 if party==1
. replace partyl5 = 0 if party==

. logit partyl5 age, nolog

partyl5 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____ + e
age | .0102276 .005633 1.82 0.069 -.0008129 .0212681
_cons | -.0609598  .2981109 -0.20 0.838 -.6452465 .5233269
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Summary of 1A

1.11A requires that if a new choice becomes available, probabilities for prior
choices adjust precisely to retain the original odds among choices

2. McFadden suggested that IIA implies that MNLM and CLM should only be used
when outcome categories can plausibly be assumed to be distinct and weighed
independently in the eyes of each decision maker

3. Amemiya suggested that the MNLM works well when the alternatives are
dissimilar

4. Simulations by Cheng and Long (SMR) and other studies found that formal
tests do not work well

5. Care in specifying the model to involve distinct outcomes that are not
substitutes for one another seems to be reasonable, albeit ambiguous, advice

6. But, reviewers sometimes demand to see an IIA test...
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Formal tests of 1IA
1.Hausman and McFadden proposed a Hausman-type test of 1A

a. This compares two estimates of the same parameters
i. One estimate is consistent and efficient if the Ho is true

ii. The second estimate is consistent but inefficient

b.Cheng and Long (2006) find the Hausman-McFadden test has very poor
statistical properties

2.McFadden, Tye, and Train (1977) and Small and Hsiao (1985) proposed a LR
type test. The Small-Hsiao test works better, but not always

3. We found no test that works well in all cases
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#50 "Testing" IIA with mlogtest (-nrm-partyid.do)

Hausman test
. mlogtest, hausman

Hausman tests of IIA assumption (N=1382)
Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives

chi2 df  P>chi2

|
¥
StrDem | 4.622 20 1.000
Dem | 0.919 21 1.000
Indep | -2.244 19 R
Rep | 3.030 21 1.000
StrRep | -0.580 21

Note: A significant test is evidence against Ho.
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Small-Hsiao: Seed 124386

. mlogtest, smhsiao

Small-Hsiao tests of IIA assumption (N=1382)

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives

| InL(full) InL(omit) chi2 df P>chi2

- o
StrDem | -696.753 -690.654 12.198 21 0.934

Dem | -565.571 -557.488 16.166 21 0.760

Indep | -764.563 -758.290 12.547 21 0.924

Rep | -621.562 -615.492 12.140 21 0.936

StrRep | -761.598 -752.804 17.587 21 0.675

Note: A significant test is evidence against Ho.
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Seed 254331

. mlogtest, smhsiao
Small-Hsiao tests of IIA assumption (N=1382)

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives

| InL(full) InL(omit) chi2 df P>chi2

_____ + e
StrDem | -727.367 -692.048 70.639 21 0.000

Dem | -610.636 -573.268 74.736 21 0.000

Indep | -783.456  -747.654 71.604 21 0.000

Rep | -650.962 -615.434 71.057 21 0.000

StrRep | -751.887 -740.193 23.388 21 0.324

Note: A significant test is evidence against Ho.
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Review of nominal LHS
1.The MNLM is a set of BLMs for all pairs of outcomes

2. MNLM can be overwhelmingly complex if you try to absorb all of the
coefficients individually

3. Plots of coefficients make it trivially easy to uncover patterns

0 Use the plots to find patterns, but you might not want to use them in papers
or presentations
4.11A is a restrictive assumption that does not have an adequate test. If outcomes
are reasonably distinct, MNLM works well. No good alternative is readily
available
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Part 11: Ordinal outcomes

Read and run

Long & Freese  Chapter
cdalec*.do cdalec17-orm-ordwarm-.do; cdalec17-orm-partyid-.do

Overview
1.What does ordinal mean? What is an ordinal regression model?
2. Derive the ordinal regression model (ORM) as

a. A latent variable model

b. A nonlinear probability model
3. Apply methods of interpretation from the BRM and MNLM
4.How do you decide if an odinal model is appropriates
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What does ordinal mean?

1. An ordinal variable has
a. Categories ordered on a single dimension
b.Unknown distances between categories

SD D N A SA

Direction
2.An ordinal model is defined by the nature of the relationship between
regressors and outcomes (Anderson 1980)
3.Consider the statement
A working mother can establish just as warm and secure of a
relationship with her child as a mother who does not work.
with answers Strongly agree, Agree, Neutral, Disagree, Strongly disagree
4. Anderson argues that the following pattern must be found for a model to be
ordinal...
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>
=
o)
®
o]
(@]
o
o
Age
------- Pr(Strongly agree) — — — Pr(Agree) —— — Pr(Neutral)
—— == Pr(Disagree) Pr(Strongly disagree)
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Is the outcome ordered?

1.Because values can be ordered does not mean it is substantively meaningful to
order categories

2. A variable can be partially ordered such as SA, A, D, SD, Don't know.

3. A can be ordered on multiple dimensions

a. Miller and Volker ordered occupational groupings both by status and by
income of the occupations leading to different conclusions

b. Likert scales could reflect two dimensions, not one

For example...
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Multiple ordering of a Likert scale

A
SD SA

Intensity

N

N,
rd

A

Direction

orm-measurment-2factorV2.do jsl 2015-03-12
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Ordinal is not interval
1.Researchers often treat ordinal variables (e.g., summated scale) as interval.

2. Results can be misleading in terms of magnitude and significance.

. coeem weo oo

o T T T T 1

0 2 4 6 8 10

yobserved orm-IrmV1.do js| 2015-03-06
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A latent variable model for ordinal outcomes

Structural model relating x's to y*'s
Same as BRM
y' =xp+e
Measurement model linking y* to y
Observed y obtained from y* by dividing it into segments by thresholds tq

y,=q ifr, <y <z, forq=1toJ

For example...
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Attitudes toward working mothers

1. Evaluate the statement

A working mother can establish just as warm and secure of a
relationship with her child as a mother who does not work.

2. Graphically,

=00

SD | D | A

3. Mathematically,
1 = SD-Strongly Disagree
_ |2 = D-Disagree
Yi= 3= A-Agree

4 = SA-Strongly Agree
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| SA y

orm-measurmentV1.do js| 2015-03-06

if 7,=-0<y <7
if 7,y <7,
if 7,<y’ <71,

if r,<y <7, =0
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If we observed y*

0
—
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ylatent orm-IrmV1.do js| 2015-03-06
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Since y* is latent we focus on Pr(y=m|x)

T4

T3 7

T2 7
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orm-prob-3xsV2.do js| 2015-03-12
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Pr(y=m | x) is the area between 7, , and 7,
0 Ordered probit assumes: & ~N (0,1)

0 Ordered logit assumes: &~ A(O,ﬂz /3)

Tool: Computing areas between thresholds

Overview

. oo
4o B W

Step 1. Area<R Step 2. Area<L

oo

Step 3. Area between L & R

R
% % 4o

Details follow...
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Step 1. Compute area less than R.
CDF(R) is everything to the left of R.
4o -:?lc 2‘6 4c
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Step 2. Compute area less than L.
CDF(L) is everything to the left of L.
| | | L R
4c -3¢ 26 G n c 2¢ 3o 4o
Page 659
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Step 3. Compute area between L and R.
CDF(R) - CDF(L).

Part 11: Ordinal outcomes Page 660

The probabilities of observed values
1.Ordered probit assumes: &~N (0,1)

2.0rdered logit assumes: &~ A(O, v /3)

3.Pr(y=m | x) is the area between 7, and 7;:
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4.For a given outcome m
Pr(y=m|x)=F(z, —-xB)-F(z, , —xB)
where CDF(-e2) = 0 and CDF(e°) = 1
5. With four outcomes
Pr(y, =1|%)=®(r,—a—B%)-®(r,—a—BX)

Pr(y, =2|%)=®(z,—a—B%)-d(

Pr(y; =3|x)=®(r,—a-px)-®(r,—a-px)

Pr(y, =4[x)=®(z,—a—p%)-®(r;—a— )
=®(0—a—px)-P(r;—a—BX)
=1-®(r,—a-Bx)

)

)
=®(r,—a-fx)-

)

)
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Identification
1.0RM is not identified without additional assumptions
2.Since y* is latent, the variance of y* cannot be estimated
a. For logit we assume:  Var(g|x)=rr?/3
b. For probit we assume: Var(e|x)=1
3. We cannot estimate all of the thresholds and the intercept
4. Consider the thresholds tm and the structural model

V' =a+fx+e
5.Let a and the tms be the true parameters
6.Pick any 6 and create imposter parameters

a'=a-0 and rgzrq—é

7.Probabilities are the same for all values of &
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9.Adding0=6-6

Pr(y =q|x)=F(z,—a-BX)-F(z,, —a - Bx)
(7, —a=px+[6-5])-F(r,, —a- px+[s-5])
([z-0 ]-[a@=5]1-px)-F( 7, - |-[@=5]-px)
(ri—e = px)=F(;, —a - px)

10. Two sets of identifying assumptions are often used

F
F
F

Alternative 1: 7, = 0 (so that 6 must equal 11)
Alternative 2: a = 0 (so that 6 must equal a)
11. These alternative lead to different parameterizations
12. The parameterization
a. Does not affect the Bs
b.Does not affect the significance tests of the Bs
c. Does not affect the probabilities of observed outcomes
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13. Different programs use different parameterizations:

| |
| b z | b z
_____________ e e e e e
yr8o | 0.524 6.557 | 0.524 6.557
male | -0.733 -9.343 | -0.733 -9.343
white | -0.391 -3.304 | -0.391 -3.304
age | -0.022 -8.778 | -0.022 -8.778
ed | 0.067 4.205 | 0.067 4.205
prst | 0.006 1.844 | 0.006 1.844
_____________ e e
taul | -2.465  -10.319 |
tau2 | -0.631 -2.704 | 1.834 29.098
tau3 | 1.262 5.392 | 1.893 32.537
beta0 | 0.000 0.000 | 2.465 10.319
_____________ e By
2InL | -2844.912 0.000 | -2844.912 0.000
LRchi2 | 301.716 0.000 | 301.716 0.000

. display -.631 - -2.465
1.834
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ML estimation

1.The probability of observed outcome g for case i
pi = Pr(yi =q ‘Xiaﬁar) = F(Tq _XiB)_ F(Tq—l _XiB)

2.If the observations are independent, then
N
L(&t‘yax):zrlp
i=1

Software issues

1.You must know which parameterization is used

2. Different methods of maximization produce slightly different test statistics

3.0RM takes longer to converge than some models

4.Small N's in a category can lead to failure to converge

0 You can merge adjacent categories and only lose efficiency
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Example: Attitudes toward working mothers (-orm-warm.do)

A working mother can establish just as warm and secure a
relationship with her child as a mother who does not work.

#12 Descriptive statistics
Working mom |

can have |
warm |
relations w |
child? | Freq. Percent Cum.
____________ S
1sD | 297 12.95 12.95
2D | 723 31.53 44 .48
3A | 856 37.33 81.81
4SA | 417 18.19 100.00
____________ S
Total | 2,293 100.00
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. nmlab warm yr89 male white age ed prst
warm Working mom can have warm relations w child?
yr89 Survey year: 1=1989 0=1977
male Gender: 1=male O=female
white Race: 1l=white O=not white
age Age in years
ed Years of education
prst  Occupational prestige
. sum warm yr89 male white age ed prst
Variable | Obs Mean Std. Dev Min Max
_____________ A e e e e e e e e e e e e e e e
warm | 2293 2.607501 .9282156 1 4
yr8o | 2293 .3986044 .4897178 0 1
male | 2293 .4648932 .4988748 0 1
white | 2293 .8765809 .3289894 0 1
age | 2293 4493546 16.77903 18 89
ed | 2293 12.21805 3.160827 0 20
prst | 2293 39.58526 14.49226 12 82
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#13 Ordinal logit and probit

. ologit warm i.yr89 i.male i.white age ed prst, nolog

Ordered logistic regression Number of obs = 2293
LR chi2(6) = 301.72
Prob > chi2 = 0.0000
Log likelihood = -2844.9123 Pseudo R2 = 0.0504
warm | Coef. Std. Err. z P>]z] [95% Conf. Interval]
- A
yr8o |
1989 | .5239025 .0798989 6.56 0.000 .3673036 .6805014
male |
Male | -.7332997 .0784827 -9.34 0.000 -.887123 -.5794765
white |
White | -.3911595 .1183808 -3.30 0.001 -.6231816 -.1591373
age | -.0216655  .0024683 -8.78 0.000 -.0265032 -.0168278
ed | .0671728 .015975 4.20 0.000 .0358624 .0984831
prst | .0060727 .0032929 1.84 0.065 -.0003813 .0125267
- A
/cutl | -2.465362 .2389128 -2.933622 -1.997102
/cut2 | -.630904 .2333156 -1.088194 -.1736138
/cut3 | 1.261854 .234018 .8031871 1.720521
. estimates store olm
. oprobit warm yr89 male white age ed prst, nolog
<snip>
. estimates store opm
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#13 Comparing OLM and OPM: ratios on next page
| olm | opm
| b z | b z
- S, S
warm | |
yreg | 0.524 6.557 | 0.319 6.805
male | -0.733 -9.343 | -0.417 -9.156
white | -0.391 -3.304 | -0.227 -3.260
age | -0.022 -8.778 | -0.012 -8.471
ed | 0.067 4.205 | 0.039 4.153
prst | 0.006 1.844 | 0.003 1.705
- o o
cutl | |
_cons | -2.465 -10.319 | -1.429 -10.294
- o o
cut2 | |
_cons | -0.631 -2.704 | -0.361 -2.633
- o o
cut3 | |
_cons | 1.262 5.392 | 0.768 5.605
- e e
aux | |
N | 2293.000 | 2293.000 R
LRchi2 | 301.716 A | 294.319 -
BIC | 5759.463 | 5766.861 R
Looking at the ratios...
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| ratio olm to opm
| b z
- o
warm |
yra9 | 1.643 0.964
male | 1.758 1.020
white | 1.727 1.014
age | 1.773 1.036
ed | 1.735 1.012
prst | 1.850 1.081
- e —————————————— e
cutl |
_cons | 1.726 1.002
- e ————————————————
cut2 |
_cons | 1.750 1.027
- e —————————————————
cut3 |
_cons | 1.643 0.962
- S
aux |
N | 1.000 -
LRchi2 | 1.025 -
BIC | 0.999 -
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Interpretation with marginal change in y*
1.LRM is often used with an ordinal outcome which can be misleading.

2.If you are considering the LRM for ordinal outcomes, the ORM is a better
alternative

Y =xB+e=Lf+ X+ + P X +E
3.The scale of y* cannot be estimated, so we use fully standardized or
y*-standardized coefficients

4. We estimate variance of Var(y") using the assumed variance of the error
var(y°) =Var(,Bx + e)
=Var (/ix)+Var (e) + 2Cov( Ax.¢)
= f?Var(x)+Var(e)+0 where Var(e) is assumed.
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5.Generalizing
6. =p Var(x)B+ Var(¢)
6.The y* standardized coefficient
Sy _ ﬂ
S =
o.
y

0 For a unitincrease in x,, y" is expected to increase by ,Hksy* standard
deviations holding other variables constant.
7.The fully standardized coefficient is:
y
0 For a standard deviation increase in x,, y* is expected to increase by

ﬂks standard deviations, holding other variables constant.
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#14 y* standardized coefficients

. ologit warm i.yr89 i.male i.white age ed prst
listcoef, help std

ologit (N=2293): Unstandardized and standardized estimates

Observed SD: 0.9282
Latent SD: 1.9411

| b z P>]z| bStdX bStdyY  bStdXY SDofX
- A
yr89 | 0.5239 6.557 0.000 0.257 0.270 0.132 0.490
male | -0.7333 -9.343 0.000 -0.366 -0.378 -0.188 0.499
white | -0.3912 -3.304 0.001 -0.129 -0.202 -0.066 0.329
age | -0.0217 -8.778 0.000 -0.364 -0.011 -0.187 16.779
ed | 0.0672 4.205 0.000 0.212 0.035 0.109 3.161
prst | 0.0061 1.844 0.065 0.088 0.003 0.045 14.492

b raw coefficient

z z-score for test of b=0

P>|z] = p-value for z-test

bStdX = x-standardized coefficient

bStdY = y-standardized coefficient

bStdXY = fully standardized coefficient

SDofX = standard deviation of X. listcoef, help std

Interpretations follow...
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1.1n 1989 support was .27 standard deviations higher than in 1977, holding other
variables constant.

b z P>|z]| bStdX bStdY  bStdXY SDofX
1.yr89 | 0.52390 6.557 0.000 0.2566 0.2699 0.1322 0.4897

2. Each additional year of age decreases support by .01 standard deviations,
holding other variables constant. Alternatively, each additional ten years of age
decreases support by .11 standard deviations (=10x-.011), holding other
variables constant.

b z P>|z] bStdX  bStdY  bStdXY SDofX
age | -0.02167 -8.778 0.000 -0.3635 -0.0112 -0.1873  16.7790

3. Each standard deviation increase in education increases support by .11

standard deviations, holding other variables constant.

b z P>|z] bstdX  bStdY  bStdXY SDofX
ed | 0.06717  4.205 0.000 0.2123 0.0346 0.1094 3.1608

4. We are holding other variables constant, but not constant at specific values.
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#14 Comparing OLM and LRM

. regress warm i.yr89 i.male i.white age ed prst

<snip>
. listcoef
<snip>
Extracted output
I b | z | bstdy | bstd
| Irm olm | Irm olm | Irm olm | Irm olm
______ + e e ——————————
1.yr89 | 0.262 0.524 | 6.944 6.557 | 0.283 0.270 | 0.138 0.132
l1.male | -0.336 -0.733 | -9.171 -9.343 | -0.362 -0.378 | -0.180 -0.188
1.white | -0.177 -0.391 | -3.166 -3.304 | -0.191 -0.202 | -0.063 -0.066
age | -0.010 -0.022 | -8.699 -8.778 | -0.011 -0.011 | -0.183 -0.187
ed | 0.031 0.067 | 4.143 4.205 | 0.034 0.035 | 0.106 0.109
prst | 0.003 0.006 | 1.734 1.844 | 0.003 0.003 | 0.042 0.045
Difference between LRM - OLM
| b t bstdY  bStdXy
1.yr89 | -0.261 0.387 0.013 0.006
1.male | 0.398 0.173 0.016 0.008
1.white | 0.214 0.139 0.011 0.004
age | 0.012 0.078 0.000 0.005
ed | -0.036 -0.062 -0.001 -0.003
prst | -0.003 -0.111 -0.000 -0.003
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#15 Standardized coefficients for OLM and OPM

] olm ] opm
| b bstdy bstd | b bstdy bstd
__________ e
1.yr89 | 0.524 0.270 0.132 | 0.319 0.296 0.145
l1.male | -0.733 -0.378 -0.188 | -0.417 -0.388 -0.193
l.white | -0.391 -0.202 -0.066 | -0.227 -0.210 -0.069
age | -0.022 -0.011 -0.187 | -0.012 -0.011 -0.191
ed | 0.067 0.035 0.109 | 0.039 0.036 0.114
prst | 0.006 0.003 0.045 | 0.003 0.003 0.044

1.The unstandardized OLM coefficients are larger than those for OPM
O This is due to the larger assumed variance of the errors

2.Standardized coefficients are similar

3. Why are they similar but not exactly the same?
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Predicted probabilities
Pr(y=q|x)= F(fq —xﬁ)—F(qul —xﬁ)

orm-prob-3xsV2.do js| 2015-03-12
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Ways to examine predictions
1. Predictions at observed values

2. Discrete change
3.ldeal types
4.Tables

5. Plots
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Predictions at observed values

#21 Compute predicted probabilities

. predict OLMprisd OLMpr2d OLMpr3a OLMpr4sa
(option pr assumed; predicted probabilities)
. label var OLMprilsd "Pr(1SD|X)"

. label var OLMpr2d "Pr(2D|X)"

. label var OLMpr3a "Pr(3A[X)"

. label var OLMpr4sa "Pr(4SA|X)"

sum OLMprilsd OLMpr2d OLMpr3a OLMpr4sa

Variable | Obs Mean Std. Dev. Min Max
___________ e e e
OLMprisd | 2293 .1291898 .0827858 .0078648 .4583639
OLMpr2d | 2293 .3152269 .0702155 .0811076 .4066651
OLMpr3a | 2293 .3740882 .0585058 .1494467 .4274917
OLMprd4sa | 2293 .1814951 .0976008 .018211 .5864362
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#23 Dotplot of predictions

Model: ologit warm yr89 male white age ed prst

irri

Pr(1 §D|X) Pr(Z‘D 1X) Pr(3“A|X) Pr(4§A|X)

#15 cda13lec-orm-warm-notcatvar.do scott long 2013-04-26

Predicted probabilities at observed values
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Tables of predicted probabilities

1. When you have important categorical regressors, tables can be effective
2. An important consideration is where to hold other variables

a. Global means are simpler but can be misleading

b.Local means are harder but sometimes more realistic

3. A sensitivity analysis is needed to determine how important this decision is

Part 11: Ordinal outcomes Page 682

#30 Gender and year
1. We expect

a. Men are more negative toward working women
b. Attitudes are more positive towards working women in 1989
2. Estimates show year and gender are important (see #11):

warm | Coef. Std. Err. z P>|z| [95% Conf. Interval]

A

1.yr89 | .5239025 .0798989 6.56 0.000 .3673036 .6805014
l.male | -.7332997 .0784827 -9.34 0.000 -.887123  -.5794765
l.white | -.3911595 .1183808 -3.30 0.001 -.6231816  -.1591373
age | -.0216655 .0024683 -8.78 0.000 -.0265032 -.0168278

ed | .0671728 .015975 4.20 0.000 .0358624 .0984831
prst | .0060727 .0032929 1.84 0.065 -.0003813 .0125267
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#32 Probabilities by year and gender using global means

A. 1977 SD D A SA
Men 0.19 0.40 0.32 0.10
Women 0.10 0.31 0.41 0.18
Men-Women 0.09 0.09 -0.09 -0.08
B. 1989 SD D A SA
Men 0.12 0.34 0.39 0.15
Women 0.06 0.23 0.44 0.27
Men-Women 0.06 0.11 -0.05 -0.12
C. 1977 to 1989 SD D A SA
Men -0.07 -0.06 0.07 0.05
Women -0.04 -0.08 0.03 0.09
Note: Other variables are held at their means.
Stata code is given below...
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#31 mtable with global means
. mtable, at(yr89=(0 1) male=(0 1)) atmeans clear
Expression: Pr(warm), predict(outcome())
| yra9 male 1 SD 2D 3 A 4_SA
T 0 0  0.09 0308  0.413  0.180
21 0 1 0.186 0.403 0.316 0.095
31 1 0 0.061 0.228 0.441 0.270
4 | 1 1 0.119 0.339 0.390 0.151
Specified values of covariates
1 1.
| white age ed prst
Tourrent | 77 ase 122 396

1.at(yr89=(0 1) male=(0 1)) computes predictions for (yr89, male)

combinations

2.atmeans holds other variable at global means
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3.Since i1 -male was a regressor, dydx(male) computes DC for mal e at the

two values of yr89

. mtable, dydx(male) at(yr89=(0 1)) atvars(l.yr89 1l.male) atmeans

Expression: Marginal effect of Pr(warm), predict(outcome())

| 1. 1
| yr8o male
_——— +
1] 0 .465
2] 1 .465

Specified values of covariates

| 1. 1.
1 male white

_— +
Current | .465 .877
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4.mchange computes the same values

0 Until I am sure | know what I’'m doing, | compute things two ways
. mchange male, at(yr89=0) atmeans brief

ologit: Changes in Pr(y) | Number of obs =

Expression: Pr(warm), predict(outcome())

| 1sD 2D
- +
male |
Male vs Female | 0.087 0.094
p-value | 0.000 0.000

. mchange male,

ologit: Changes

at(yr89=1) atmeans brief

in Pr(y) | Number of obs =

Expression: Pr(warm), predict(outcome())

| 1 sD 2D
- +
male |
Male vs Female | 0.058 0.111
p-value | 0.000 0.000
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2293

3 A 4 SA
-0.097 -0.085
0.000 0.000
2293

3 A 4 SA
-0.050 -0.119
0.000 0.000
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* #32 building a table with global means

Creating tables is tedious, but mtable can help

* predictions for 1977

mtable, at(yr89=0 male=1) atmeans
mtable, at(yr89=0 male=0) atmeans
mtable, dydx(male) at(yr89=0) atmeans

rowname(Men)
rowname (Women)
rowname(Men_Women)

clear roweqnm(1977)
below roweqnm(1977)
below rowegnm(1977)

| 1 sD 2D 3 A 4 SA
A e e
1977 ]
Men | 0.186 0.403 0.316 0.095
Women | 0.099 0.308 0.413 0.180
Men_Women | 0.087 0.094 -0.097 -0.085
<snip>
* predictions for 1989
mtable, at(yr89=1 male=1) atmeans rowname(Men) below roweqnm(1989)
mtable, at(yr89=1 male=0) atmeans rowname(Women) below rowegnm(1989)

mtable, dydx(male) at(yr89=1) atmeans
* DC for year by gender

mtable, dydx(yr89) at(male=1)
mtable, dydx(yr89) at(male=0)

atmeans
atmeans

The table...
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rowname(Men_Women) below roweqnm(1989)

rowname(77to89) below rowegnm(Men)
rowname(77to89) below rowegnm(Women)
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* #32 building a table with global means

Expression:
| 1 sb 2D
+
1977 |
Men | 0.186 0.403 0.
Women | 0.099 0.308 0.
Men Women | 0.087 0.094 -0.
1989 |
Men | 0.119 0.339 0.
Women | 0.061 0.228 0.
Men Women | 0.058 0.111 -0.
Men |
77to89 | -0.067 -0.063 0.
Women |
77to89 | -0.038 -0.080 0.

Specified values of covariates
<snip>
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316
413
097

390
441
050
074

028

Marginal effect of Pr(warm), predict(outcome())

0.095
0.180
-0.085
0.151
0.270
-0.119
0.056

0.090
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#33 predictions with local means

1. Should you assume the same values for age, ed, and prst for men in 1989
and women in 1977?

. sort yr89 male
. by yr89 male: sum white age ed prst

-> yr89 = 1977, male = Female

Variable | Obs Mean Std. Dev. Min Max
white | 718 .8760446 .3297604 0 1
age | 718 45.19638 16.59508 19 88
ed | 718 11.73816 2.813291 3 19
prst | 718 37.38579 13.53379 12 78
-> yr89 = 1977, male = Male
Variable | Obs Mean Std. Dev. Min Max
white | 661 .8910741 .3117821 0 1
age | 661 44 .38729 16.49907 19 89
ed | 661 11.86233 3.53949 0 20
prst | 661 39.26475 14.58292 12 82
-> yr89 = 1989, male = Female
Variable | Obs Mean Std. Dev. Min Max
white | 509 .8447937 .3624574 0 1
age | 509 46.2888 17.17135 18 89
ed | 509 12.6444 2.70048 3 20
prst | 509 41.05108 14.81345 12 78
-> yr89 = 1989, male = Male
Variable | Obs Mean Std. Dev. Min Max
white | 405 .8938272 .3084397 0 1
age | 405 43.66667 16.98412 19 89
ed | 405 13.11358 3.368747 0] 20
prst | 405 42.16543 14.999 12 82
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2.withmtable
a.if | select cases by yr89 and male,

b.then atmeans holds other variables at means for the selected cases

mtable if yr89==0 & male==1, atmeans rowname(Men) 17/
clear roweqnm(1977) nobs

mtable if yr89==0 & male==0, atmeans rowname(Women) ///
below roweqnm(1977) nobs

mtable if yr89==1 & male==1, atmeans rowname(Men) 17/
below roweqnm(1989) nobs

mtable if yr89==1 & male==0, atmeans rowname(Women) ///
below rowegqnm(1989) nobs

3. Alternatively, with less elegant output:

mtable, atmeans over(yr89 male)
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#33 Probabilities by year and gender with local means

A. 1977 SD D A SA
Men 0.19 0.40 0.31 0.09
Women 0.10 0.32 0.41 0.17
Men-Women 0.09 0.09 -0.10 -0.08

B. 1989 SD D A SA
Men 0.11 0.33 0.40 0.16
Women 0.06 0.23 0.44 0.27
Men-Women 0.05 0.10 -0.04 -0.11

C. 1977 to 1989 SD D A SA
Men -0.08 -0.07 0.09 0.07
Women -0.04 -0.09 0.03 0.10

Note: Other variable are held at means for given year and gender.
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Difference between global and local predictions

| 1sb 2D 3A 4SA
_____________ gy S
1977 |
Men | -0.00 -0.00 0.00 0.00
Women | -0.00 -0.01 0.00 0.01
_____________ e
1989 |
Men | 0.01 0.01 -0.01 -0.01
Women | 0.00 0.00 -0.00 -0.00
_____________ o
1977 |
Men_Women | 0.00 0.01 -0.00 -0.01
_____________ e e
1989 |
Men_Women | 0.01 0.01 -0.01 -0.01

1.The differences are small enough that | am confident that the conclusions on
the effects of year and gender are not affect by using global means

2. Which set of probabilities would you use?
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Marginal effects

MEM and MER

1. Discrete change at x* is defined as:
APr(y=q|x’) . .
Tk:Pr(y:q\x ,Endxk)—Pr(y:q|x ,Startxk)

2.The change is interpreted as
When x, changes from the start value to the end value, the predicted
probability of outcome g changes by APr(y =(q| x*)/AXk, holding other
variables at x*.

3.Since the model is nonlinear, the discrete change depends on
a.The level of all variables that are not changing
b.The value at which x starts
¢. The amount of change in x
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4. Mean absolute change summarizes the discrete change for a variable
_ 3 |APr(y=j|x
ily (y=ilx)
Jo AX,
(This is not computed by mtable.)
5.Marginal change can also be computed
6Pr<y =q|x)
X,
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Average marginal effect (AME)
1. Average discrete change

APr(y=jlx) iAPr(Y:”Xi)

ADC = mean = L
AX, N5 AX

2. Interpretation

The average change in the probability of outcome q is (value of AME) when
Xk changes from the start value to the end value.

3. For example

On average being male decreases the probability of strongly agreeing that
working mothers can be good mothers by .10.

4. Test that the change is 0 can be computed

Part 11: Ordinal outcomes Page 696

#44 AME (some p-values cannot be computed in Stata 12)

Lots of numbers that are graphed below

. mchange
ologit: Changes in Pr(y) | Number of obs = 2293

Expression: Pr(warm), predict(outcome())

| 1 sb 2D 3 A 4 SA
- A e e
yrg89 |
1989 vs 1977 | -0.053 -0.064 0.042 0.075
p-value | 0.000 0.000 0.000 0.000
male |
Male vs Female | 0.079 0.087 -0.066 -0.100
p-value | 0.000 0.000 0.000 0.000
white |
White vs NonWhite | 0.038 0.048 -0.026 -0.059
p-value | 0.000 0.001 0.000 0.002
age |
+1 ] 0.002 0.003 -0.002 -0.003
p-value | 0.000 0.000 0.000 0.000
+SD | 0.043 0.038 -0.036 -0.046
p-value | 0.000 0.000 0.000 0.000
Marginal | 0.002 0.003 -0.002 -0.003
p-value | 0.000 0.000 0.000 0.000
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ed 1
+1 ] -0.007 -0.008 0.005 0.010
p-value | 0.000 0.000 0.000 0.000
+SD | -0.021 -0.026 0.015 0.031
p-value | 0.000 0.000 0.000 0.000
Marginal | -0.007 -0.008 0.006 0.009
p-value | 0.000 0.000 0.000 0.000
prst |
+1 ] -0.001 -0.001 0.001 0.001
p-value | 0.066 0.065 0.066 0.065
+SD | -0.009 -0.010 0.007 0.013
p-value | 0.058 0.069 0.052 0.071
Marginal | -0.001 -0.001 0.001 0.001
p-value | 0.066 0.065 0.067 0.065
Average predictions
1 1_SD 2D 3 A 4_SA
- b T
Pr(y|base) | 0.129 0.315 0.374 0.182
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AME for OLM

AME for OLM
Survey year: 1=198£1)929:V3 2377 dD a A
Gender: 1=maIeM(a)‘e=jS2;“aaI: A a Dd
Race: 1=whitev5)h:er1vc:}q::vicit‘§ A a Dd
hoe pyeas Aa ©
vears of ecucaton © an
Occupational gg?ns;ig: B A

T T T T T T T
-15 -1 -.05 0 .05 A 15
Marginal Effect on Outcome Probability

#44 mchangeplot-ame-ologit.emf cdalec-orm-warm.do scott long 2014-07-30
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AME for MNLM: do you see important differences from OLM?
AME for MNLM

Survey year: 1=1989 0=1977|

1989 vs 1977

: 1=male 0=f |
Gender: 1=male 0=female ) d

Male vs Female

Race: 1=white 0=not white
White vs NonWhite

Age in years

SD increase

Y f i
ears of education D daA

SD increase

Occupational prestige d Dfa

SD increase

T T T T T T T
-15 -1 -.05 0 .05 A 15
Marginal Effect on Outcome Probability

#44 mchangeplot-ame-mlogit.emf cdalec-orm-warm.do scott long 2014-07-30
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#45 Second differences

1. Gender has significant effects in 1977 and 1989

. * DC(male) in 1977
. mtable, dydx(male) at(yr89=0) rowname(DCmale_77) clear

.-; DC(male) in 1989
. mtable, dydx(male) at(yr89=1) rowname(DCmale_89) below

| 1 sD 2D 3 A 4 SA
___________ e e e e ——————
DCmale 77 | 0.089 0.081 -0.083 -0.088
DCmale 89 | 0.062 0.099 -0.041 -0.119

2.1s the effect of gender significantly larger in 1977?
3. We can test his by computing the second differences using
omargins, postandmlincom
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#45 margins for predictions with post
1.mtable cannot post predictions for multiple outcomes, so we use margins
0 Simpler code is possible in Stata 14, but | assume you have 13 or earlier

#44 margins by year and gender for outcome 1
. margins, at(yr89=(0 1) male=(0 1)) predict(outcome(1l)) post

Predictive margins Number of obs = 2293
Expression : Pr(warm==1), predict(outcome(l))
1. at : yr89 = 0
male = 0
2._at : yr89 = 0
male = 1
3._at : yr89 = 1
male = 0
4. _at : yr89 = 1
male = 1
| Delta-method
| Margin  Std. Err. z P>|z| [95% Conf. Interval]
- A
_at |
1 ] .1085645 .0077007 14.10 0.000 .0934714 .1236576
2 .1980111 .0116351 17.02 0.000 .1752067 .2208155
3 1 .0680602 .0058309 11.67 0.000 .0566319 .0794886
4 ] .1298218 .0099298 13.07 0.000 .1103597 .1492839
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2.We use Iincom to test the second difference:
. lincom (_b[1lbn._at]-_b[2._at]) - (_b[3._at]-_b[4._at])

(1) 1bn._at - 2._at - 3._at + 4._at = 0

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
- A
|

@ -.027685 -0049492 -5.59 0.000 -.0373854  -.0179847

3.mlincomis more elegant:

mlincom (1-2)-(3-4)

lincom pvalue
Outcomel | -0.028 0.000
4. Combining results we find

| 1 SD 2D 3 A 4 SA
___________ e e
DCmale 77 | 0.089 0.081 -0.083 -0.088
DCmale 89 | 0.062 0.099 -0.041 -0.119
Difference | 0.027 -0.018 -0.042 -0.031

The effects of gender changed significantly between 1977 to 1989.
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*#45 Loop over outcomes

. mlincom, clear // remove any prior results
. estimate restore olmfv

. foreach o0 in 12 3 4 {
2. quietly {

3. margins, at(yr89=(0 1) male=(0 1)) predict(outcome("0")) post
4. mlincom (1-2)-(3-4), add rowname(Outcome 0") stats(est p)
5. estimate restore olmfv
6. 3
7.}
. mlincom
| lTincom pvalue

_____________ S

Outcomel | -0.028 0.000

Outcome2 | 0.018 0.000

Outcome3 | 0.042 0.000

Outcome4 | -0.032 0.000

The effects of gender changed significantly between 1977 to 1989.
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Plotting probabilities
1. Plots are useful for examining effects of continuous variables

2. It is significantly more complicated than for the BRM since
a. With two outcomes,  plot one probability
b. With three outcomes, plot three probabilities
3.The formula for the probabilities and cumulative probabilities are:

Pr(y:q|x):F(r —XB)—F(Tq_l—XB)
Pr(y<qlx) ZPr =jlx)= F(rq—xB)

4.These are computed holding other variables constant
0 Exception: linked variables like x and x? change together
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Computing probabilities to plot
1. For each outcome g compute
a. Probability: Pr(y=q|z,X*) as z changes
b. Cumulative probability: Pr(y<q|z,X*) as z changes
2. Create two plots:
0 probability
0 cumulative probabilities
0 Pick the plot that is most effective

3. We will use the cumulative probability plot to explain the parallel regression
constraint that is implicit in ordinal models.

4.Then, we will use plots to compare ordinal and nominal models.
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#51 mgen for the ORM
For women in 1989, do attitudes change with age?

#51 Computing the predictions

. mgen, at(age=(20(5)80) male=0 yr89=1) atmeans stub(W89)
Predictions from: margins, at(age=(20(5)80) male=0 yr89=1) atmeans predict(outco
> me())

Variable Obs Unique Mean Min Max Label

Ww89pri 13 13 .0720984 .0364676 .121933 pr(y=1_SD) from margins
wsolll 13 13 .0586271 .0281642 .097223 95% lower limit

w8oull 13 13 .0855696 .044771 .146643 95% upper limit

W89age 13 13 50 20 80 Age in years

Ww89Cpri1 13 13 .0720984 .0364676 2121933 pr(y<=1_SD)

W89pr2 13 13 .2465 .1551205 .3431755 pr(y=2_D) from margins
wsoli2 13 13 .2198686 .1308338 .3085207 95% lower limit

wgoul2 13 13 .2731315 .1794073 .3778303 95% upper limit
w89Cpr2 13 13 .3185984 .1915881 .4651085 pr(y<=2_D)

<snip>

Specified values of covariates

1.
yrg8o male white ed prst
1 0 .8765809 12.21805 39.58526
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#52-54 Plotting predictions

. label var W89prl *'SD"

. label var w89pr2 "D

. label var W89pr3 "A"

. label var W89pr4 "SA™

. label var W89Cprl *'SD*

. label var w89Cpr2 *'SD or D"

. label var W89Cpr3 *SD, D or A"

. local warmsym "mcol(red red*.5 green*.5 green) "

. local warmsym "“warmsym® msym(s sh Oh 0) msiz(3.5 3.5 3 3)"

graph twoway connected W89prl W89pr2 W89pr3 W89pr4 W89age, ///
“warmsym® title(Women in 1989, pos(11)) ///
subtitle("'SA indicates support for working women®, pos(11)) ///
xtitle("Age™) xlabel(20(10)80) ///
ylabel (0(.25).50, grid gmin gmax) ///
xl1ine(44.93) ytitle("Probability™)

VVVVV:

graph twoway connected W89Cprl W89Cpr2 W89Cpr3 W89age, ///
“warmsym® title(Women in 1989, pos(11)) mcol(Cwarmcol®) ///
subtitle("’SA indicates support for working women', pos(11)) ///
xtitle("Age'™) xlabel(20(10)80) ylabel(0(-25)1, grid gmin gmax) ///
xline(44.93) ytitle("Cumulative probability™)

VVVV:

5. After viewing these plots, | build the CDF plot in steps
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#53 Predicted probabilities

Women in 1989
SA indicates support for working women

I.O_ -
e R B & D e G R S oW B
9\.‘ O
> ~@- _g--H
£ ‘.\* o -E
S R ) = b
g & —e-cg
8 =-ETTT 00—
< P @—
e - o
o
T T T T T T T
20 30 40 50 60 70 80
Age
—8&— sb -—-5--D
e A —@= - SA
#53 prob-byage-w89-global: cdalec-orm-warm.do scott long 2014-05-03
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#55 Cumulative probabilities with labels
Women in 1989
SA indicates support for working women
Strongly agree
..... ISR
2w | G 5] BRC i © ©
5 NGRS
e
g e
3 (©]
o [To
.g - Agree =
® __g--B
E g-8-8
1=
S Q] _ -+
o E}__—EI-”B - Disagree
- 4._.+._H—l——l——f"sm
T T T T T T T
20 30 40 50 60 70 80

Age

#55 probcum-byage-w89-global-labels: cdalec-orm-warm.do scott long 2014-05-03
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Odds ratios for the OLM

1. What does this picture tell you about ORs for cumulative probabilities?

orm-prob-3xsV2.do js| 2015-03-12
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2.Tedious algebra shows the cumulative probability equals
y<q\x ZPr —j|x (rq—xB) forq=1,J -1
3.This is a BLM with intercept ¢, = (rq —,80) and slopes p* = —p

Pr(ySq\x):A(rq—xB):/\(aq+XB*)

4.The odds of y<qg versus y>q given x is
Pr(y<q|x) .
Q (x)=——L=expl7, —xP)=expl o, +X
8) - (e, p) = exfa, - )
5.The odds ratio for a change in x
Q( X, X +1)
O ( p(ﬂk)
X xk

6. Interpretation

For a unit increase in xi the odds of lower outcomes compared to higher

outcomes change by the factor exp(,b’:), holding other variables constant.
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#62 0dds ratios for supporting working mothers

NOTE: Odds of higher compared to lower outcome

Q[ P(SD) ]: Q[ P(SD, D)] _ Q[ P(SD, D,A)J_
P(D,A SA) P(A,SA) P(SA)

. listcoef, help

ologit (N=2293): Factor change in odds

Odds of: >m vs <=m

| b z P>|z] e”b e~bStdX SDofX
- o
yr89 |
1989 | 0.5239 6.557 0.000 1.689 1.292 0.490
male |
Male | -0.7333 -9.343 0.000 0.480 0.694 0.499
white |
White | -0.3912 -3.304 0.001 0.676 0.879 0.329
age | -0.0217 -8.778 0.000 0.979 0.695 16.779
ed | 0.0672 4.205 0.000 1.069 1.237 3.161
prst | 0.0061 1.844 0.065 1.006 1.092 14.492
b = raw coefficient
e”b = exp(b) = factor change in odds for unit increase in X
ebStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

Interpretations on the next page...
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1.From 1977 to 1989, the odds of being more positive toward working women
increased by a factor of 1.7, holding other variables constant.

| b z P>|z]| e"b  e”bStdX SDofX
o

yr89 |
1989 | 0.5239  6.557  0.000 1.689 1.292 0.490
2.Being male decreases the odds of having more favorable attitudes toward
working women by a factor of .48, holding other variables constant.

| b z P>|z] e”b e~bStdX SDofX
e

male |
Male | -0.7333 -9.343 0.000 0.480 0.694 0.499
3. As standard deviation increase in age, 17 years, decreases the odds of
supporting working mothers by a factor of .70, holding other variables
constant.

warm | b z P>|z]| enb ebStdX SDofX
R R EEE———————.—..

age | -0.02167 -8.778 0.000 0.9786 0.6952 16.7790

4. We do not need to say where variables are held constant.
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Parallel regressions (for 4 outcomes)

1.The ORM is a set of binary logits on outcomes if y < j where each binary logit
has: (a) the same slopes; (b) different intercepts

orm-prob-3xsV2.do jsl 2015-03-12
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Dichotomizing anyplace and the slope is unchanged

©
BN y>1 > y<2
o
o o
y=1
© T T —— — © T T —— ——
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
X X
Y1VZ3% om prob-sV2.do Bl 2015032 Y1234 om-prob-Bv2 do s 20150312
3 ) V=4
© ©
y<3 y=3
©
> B /é y=2
o
o o
y=1
w0 T T T — w0 T T T —
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
X X

Y1234 orm-prob-xsV2 do sl 20150312 om-prob-3sV2.do sl 20150312

Part 11: Ordinal outcomes Page 716




The parallel regression assumption imples

mi(X) = Pr(y<1) .
—== m(x) = Pr(y<2) S
Rl mx) = Pr(y<3) |/

X o]
=
[t}
& -
S ==T T T T 1
0 2 4 6 8 10
X
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Without the parallel regression assumption

m(X) = Pr(y<1) R
- == m(x) = Pr(y<2) S
R R ms(X) = Pr(y<3)

X
=
ITe)
N .
o = T T T T 1
0 2 4 6 8 10
X
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Assessment of parallel regressions

1.You can look at how the curves/coefficients vary when parallel regressions is
imposed with the OLM compared to a set of BRMs.

2.You can use the Brant test or other formal tests of parallel regressions.

0 My experience is that these are not very good at differentiating between
cases where the parallel regression assumption makes a substantive
difference in the results.

3.1find it more useful to compare the substantive results from the OLM to those
from the MNLM.
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#66 Comparing ologit and mlogit predictions

1. Before accepting or rejecting the OLM based on a test of parallel regressions,
you should examine whether predictions from the OLM differ from those in a
model that does not impose ordinality.

2.Here | compare OLM to MNLM. You could also compare predictions to those
from the generalized ordered logit model.
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#66 estimating models and computing predictions

. ologit warm i.yr89 i.male i.white age ed prst
<snip>

predict OLMprl OLMpr2 OLMpr3 OLMpr4

<snip>

. mlogit warm i.yr89 i.male i.white age ed prst
<snip>

predict NRMprl NRMpr2 NRMpr3 NRMpr4

<snip>

corr OLMprl NRMprl

<snip>

NRMprl & OLMpri: 0.9013
NRMpr2 & OLMpr2: 0.9239
NRMpr3 & OLMpr3: 0.8593
NRMpr4 & OLMpr4: 0.9469
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#44 AME for MNLM and OLM: ordinality?

Do you see major differences in the conclusions from the two models?

AME for MNLM AME for OLM

Survey year: 1=1989 0=1977| '
vy 1989 vs 1677 D d A a dD a A

Gender: 1=male 0=female

Male vs Female

>
[
o
[=%
>
o
g

Race: 1=white 0=not white

Whitevs NorWhite A a d D A a Dd
Age n years aA D d Aa ®
Years of eds\;t‘:na;:aosr: D daA © aA
Occupational ;;g?"s;lg: 4 DA B A
T T T T T T T T T T T T T T
-15 -1 -.05 0 .05 A A5 -15 -1 -.05 0 .05 A 15
Marginal Effect on Outcome Probability Marginal Effect on Outcome Probability

#44 ame-mlogit cdalec-orm-warm\2.do scott long 2015-06-10 #44 ame-ologit cdalec-orm-warm\V2.do scott long 2015-06-10
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Modeling political party (-orm-partyid.do)
1.The parallel regression assumption is a reason to consider alternatives to ORM

2. More fundamentally: is an ordinal regression model appropriate?
3. Consider the voting example from the American National Election Study
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#11 The variables
. tab party, miss
Party ID | Freq. Percent Cum.
- A
StrDem | 266 19.25 19.25
Dem | 427 30.90 50.14
Indep | 151 10.93 61.07
Rep | 369 26.70 87.77
StrRep | 169 12.23 100.00
- A
Total | 1,382 100.00

. sum party age income black female i.educ

Variable | Obs Mean Std. Dev. Min Max
- S
party | 1382 2.817656 1.342787 1 5
age | 1382 45.94645 16.78311 18 91
income | 1382 37.45767 27.78148 1.5 131.25
black | 1382 .1374819 .34448 0 1
female | 1382 .4934877 .5001386 0 1
educ |
hs only | 1382 .5803184 .4936854 0 1
college | 1382 .2590449 .4382689 0 1
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#22 OLM
. ologit party agelO incomelO i.black i.female i.educ
<snip>
. listcoef, help
ologit (N=1382): Factor Change in Odds
Odds of: >m vs <=m
| b z e"b  e”bStdX SDofX
- A o e e o o o e e e e e e e e
agelO | -0.0636  -2.037 0.938 0.899 1.678
incomel0 | 0.0961 4.792 1.101 1.306 2.778
black |
yes | -1.4759  -9.824 0.229 0.601 0.344
female |
yes | -0.1571 -1.584 0.113 0.855 0.924 0.500
educ |
hs only | 0.2942 1.943 0.052 1.342 1.156 0.494
college | 0.6420 3.543 0.000 1.900 1.325 0.438
b = raw coefficient
e"b = exp(b) = factor change in odds for unit increase in X
e”bStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X
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#22 Testing parallel regression assumption
. brant

Brant Test of Parallel Regression Assumption

| chi2 p>chi2 df
_____________ S,
All | 89.84 0.000 18
_____________ S,
agel10 | 42.87 0.000 3
incomelO | 2.11 0.550 3
1.black | 12.82 0.005 3
1.female | 6.54 0.088 3
2.educ | 2.92 0.404 3
3.educ | 12.24 0.007 3
Variable | chi2 p>chi2 df

A significant test statistic provides evidence that the parallel
regression assumption has been violated.

0 We explore effects of age and income in ORM and MNLM
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#23 OLM: Average discrete change

OLM: Average marginal effects

age10

SD increase

income10

SD increase

T T T T T T T
-.06 -.04 -.02 0 .02 .04 .06

Marginal Effect on Outcome Probability
#23 Im.emf cdal rtyid.do scott long 2014-07-01

1. Age increase the probability of both Democratic affiliations and decreases the
probability of both Republican affiliations, while income decrease the
probability of both Democratic affiliations and increases the probability of both
Republican affiliations.

2. Graphs of predicted probabilities show these relationships.
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OLM: Predicted probabilities by age

OLM

-e--6--0
o 0—@——9——@——&—@——@——@—4}—{» o--06

- _—g__
=] —E———D——-E__E__B__D_ .
- —H--g-
-8

e St e - SEE SEP SREP P

Probability of party affiliation
2
L

20 40 60 80
Age

—@— Strong Dem ——G —- Democrat ---<---- Independent
——B —- Republican = —#—— Strong Rep
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#24 OLM: Predicted probabilities by income

Probability of party affiliation

T T
0 20 40 60 80 100
Income in $1,000s

—@— Strong Dem ——G —- Democrat ---<---- Independent
——B —- Republican = —®—— Strong Rep
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#12 MNLM model
1.This model was fit in the chapter on MNLM
2.Here is a summary of results
Wald tests for independent variables (N=1382)
Ho: All coefficients associated with given variable(s) are 0
| chi2 df P>chi2
_________________ S,
agelO | 43.815 4 0.000 p=.042 for OLM
incomelO | 22.985 4 0.000 p=.000 for OLM
agel0 | 43.815 4 0.000
incomelO | 22.985 4 0.000
1.black | 83.978 4 0.000
1.female | 9.087 4 0.059
2.educ | 5.569 4 0.234
3.educ | 20.613 4 0.000
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#13 MNLM: ADC of age and income: What's going on?
MNLM: Average marginal effects

age10

SD increase

income10
D d i R r

SD increase

T T T T T T T
-.06 -.04 -.02 0 .02 .04 .06
Marginal Effect on Outcome Probability

#13 Im.emf cdal partyid.do scott long 2014-07-01

OLM: Average marginal effects

agel10

SD increase

income10

SD increase

T T
-06 -04 -02 0 .02 04 .06
Marginal Effect on Outcome Probability

#23 mchangeplot-ame-olm.emf cdalec-orm-partyid.do scott long 2014-07-01
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#14 MNLM Predicted probabilities by income

MNLM
ﬂ'. .
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#24: OLM Predicted probabilities by income
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#14 MNLM Predicted probabilities by age
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#24 OLM: Predicted probabilities by age
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Ordinal or nominal?

1.1find the ordinal regression models (i.e., those meeting Anderson's definition)
to be overly restrictive for many substantive applications

~ -

Probability

------- Pr(Strongly agree) — — — Pr(Agree)

- Pr(Disagree)

Pr(Strongly disagree)

—— — Pr(Neutral)
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2.The ordinality assumptions is relaxed in the MNLM and the generalized

ordered logit model (GOLM) which often provide similar predictions

0 | prefer MNLM because | find odds of two categories to be more intuitive
than odds of lower categories vs greater categories

0 | also find OR plots for MNLM to be useful

3. Any time you are use an ordinal regression model, compare the result to those

from a model that is not ordinal.

4. Returning to our example of political party, compare what happens in the OLM
and MNLM if we extend the range of age:

oM

1

75

Probability of party affiliation
25 5

1500
Age

Strong Dem  ———~- Democrat Independent

————- Republican Strong Rep
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MNLM

Probability of party affiliation
5

15%
Age

~——~- Democrat
Strong Rep

Strong Dem Independent

————- Republican
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* Alternative models for ordinal outcomes

My web page has a recent paper that examines ordinal models

The stereotype regression model
1.The SORM relaxes the parallel regression assumption

2. As the model is made more complex, it becomes the MNLM
3.SORM is estimated with Stata's slogit

4.See Long and Freese for details
The adjacent logit model

1.This model puts constraints on the MNLM to create an ordinal model

2.Substantively, it is rarely a reasonable model (in my experience)
3.The model is specified as follows where [ is the same for all values of g

Pr(y=q+1|x)
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The continuation ratio model

1.The CRM is for outcomes in which the categories represent the progression of
events or stages in some process through which an individual can advance

2.Model is estimated by Stata's ocratio
Pr(y=m|x)

Pr(y>m|x) = exp (7, ~xB)

GOLM relaxes the assumption of equal B's

1. Define
Pr(y<qlx)
Q S © i RV}
=)= By o)
2.0LM

InQ, . (x)=z7,-xB
3.GOLM removes the restriction of equal Bs and is not an ordinal model
nQ,  (x)=7,-xp, forqg=1J-1
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Overview of ordinal LHS

1.1f you are using LRM for ordinal outcomes, consider y* standardized
coefficients from the ORM. If you must use the LRM, at least verify that the
conclusions are consistent with those from the ORM.

2. Before using ordinal models, consider whether your variable is ordinal as
Stevens defined it:
0 Categories are ranked on a single dimension

3. Always do a sensitivity analysis before accepting the results of ORM. Compare
results to those from a nominal model (MNLM or GOLM)

4. Even if you don't find the ORM useful for your work, this model is the
foundation for the IRT and Rasch models for ordinal indicators
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Part 12: Count outcomes

Read and run

Long & Freese  Chapter 9
cdalec*.do cdalec17-crm-couart-.do

Roadmap
1. What random process generates counts?

2.1n what ways can people/countries/... differ in the rate at which something
occurs?
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How many times does the spinner land on green?
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Explaining count outcomes

Chance alone

1. Poisson PDF Chance alone explains variation.

Chance and heterogeneity

1. Poisson regression model Add observed heterogeneity.

2. Negative binomial regression  Add unobserved continuous heterogeneity.
3. Mixture count models Add unobserved discrete heterogeneity.
Overview

1. Start with a Poisson process for modeling counts
0 The bigger the green region, the bigger the rate
2. Let the be determined by observed characteristics
0 Characteristics affect the size of the green region

3.This is rarely sufficient so allow unobserved heterogeneity
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The Poisson Process
Siméon-Denis Poisson (1781 — 1840)
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A Poisson process

1.The Poisson distribution is derived from a stochastic process

2.Start the counter at 0

3.Spin

4.If a green success, increase the counter; if not green, no change in counter
5.Spin again with next outcome independent of prior outcomes

6. Continuing this process leads to a Poisson PDF for the number of successes

7.Repeat for every person in your sample.
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Examples of Poisson PDFs with different rates
The size of the green region determines the rate at which success occurs.

Poisson PDF with mean 0.8 Poisson PDF with mean 1.5

o~ E~d \

o o 0o 0000 oA ® o 0o 0 00
— 77— 77— 71— R s e e e e e DY
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

# of successes # of successes
crm-posson-pasV1 dojs 20150310 - polsson sV do B 2015.03:10
Poisson PDF with mean 2.9 Poisson PDF with mean 10.5
0 ]

=k)
3

-4 / Y - %00y
o ¥ ] L)
= oo = -lsssee®® ."“"

T T
o 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20
# of successes # of successes

Pr(y
2
\\’
|
o
/
.
Pr(y
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Formula for Poisson PDF

1.y is arandom variable that counts the # of successes
2.e=2.71828... and yl=y*(y-1)*(y-2)*...*3*2*1

3. A Poisson distribution with the rate u>0 is

—u
Pr(y|y):eT’jl fory=0,1,2,...

4. Examples
e’
Pr(y:0|/u): O"u =g
ey
Pr(y:1|/u): l;u =e ﬂ‘u
-u 3 —-u 3
H €u
Pr =3 = =
(y |,u) 3! 6
—u 20
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The effect of p on the Poisson distribution

Poisson PDF with mean 0.8 Poisson PDF with mean 1.5 Poisson PDF with mean 2.9 Poisson PDF with mean 10.5

4 s
3 4

Prly =k)

3
Priy=k)
12 3 a4
Priy=K)

2 3

’/-/
o«
"
»
i
Priy=k)

1.u is the rate: u= E(y)

2.As [ increases, mass moves right

3.Variance equals rate: E(y)=Var(y)=u

4. As uincreases, the distribution approaches normal

5.As pincreases, the probability of 0's decreases rapidly as shown here...
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Pr(y=0]u)
5

crm-poisson-pdfsV1.do jsl 2015-03-10

Pr(y=0|u=.8)=.45 Pr(y=0|u=15)=.22
Pr(y=0|u=29)=.05 Pr(y=0| #=10.5)=.00002
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Fitting Poisson PDF to # of articles

<I:,
e /!\\
AN
— AN
= FARR NN
[ N N
> LR
N\
o N
\ AN
< \)—\\
~,
B
>
- __
o oo -2--a

0 1 2 3 4 5 6 7 8 9
Number of articles

‘——0-—- Observed Probability =~ ——® —- Poisson PDF

#12 cdat 3lec-crm-couart scott long 2013-04-28

1. Mean articles is 1.7 with variance 3.7

2.Compared to Poisson PDF, observed data has: 1) more Os; 2) fewer cases in
middle; and 3) more cases in the upper tail

3. Data are not consistent with a Poisson process
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#11 & 12 Plotting a Poisson PDF (-crm-couart.do)

. poisson art, nolog

Poisson regression Number of obs = 915
LR chi2(0) = 0.00
Prob > chi2 = -

Log likelihood = -1742.5735 Pseudo R2 = 0.0000

art | Coef. Std. Err. z P>]z| [95% Conf. Interval]
_cons | .5264408 .0254082 20.72  0.000 .4766416 .57624
. * create variables with mean predictions
. mgen, pr(0/10) meanpred stub(pdf)
<snip>

. label var pdfpreq "Poisson PDF'" // label for plot

. label var pdfobeq "Observed Probability” // label for plot

Generated variables are listed on next page...

Part 12: Count outcomes Page 751

Results from mgen
. list pdfval pdfobeq pdfpreq in 1/12, clean

pdfval pdfobeq pdfpreq

1. 0 .3005464 .1839859
2. 1 .2688525 .311469
3. 2 .1945355 .2636424
4. 3 .0918033 .148773
5. 4 .073224 -0629643
6. 5 -0295082 .0213184
7. 6 -0185792 -006015
8. 7 .0131148 .0014547
9. 8 -0010929 .0003078
10. 9 -0021858 .0000579
11. 10 .0010929  9.80e-06
12. - - -

To create the graph

twoway connected pdfobeq pdfpreq pdfval, ///
msym(0O s) msiz(2 2.4) mcol(black red) lIcol(black red) lIpat(dash dash) 77/
ytitle("Pr(y = k)") xtitle(“Number of articles™) ///
ylab(0(.1).4, grid gmax gmin) xlab(0(1)9, nogrid)

Part 12: Count outcomes Page 752




The BIG idea of heterogeneity

A 50/50 mix of two Poisson distributions

<
: —@— Poisson PDF with ,=1.5
—©— Poisson PDF with ,=4.5
o — 4 - Mixture of Poisson PDFs

0 1 2 3 4 5 6 7 8 9
Count value
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Mixture of Poissons vs Poisson at combined mean

—@— Poisson PDF with ;=3.0
— 4 - Mixture of Poisson PDFs

Count value
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Summary of heterogeneity

Panel A: Mixture versus Poisson at mixed mean Panel B: Observed data compared to
predictions from Poisson PDF

—@— Poisson PDF with ;;=1.5 B —@— Poisson PDF with ;=3.0
—©— Poisson PDF with y=4.5 ~ A~ Mixture of Poisson PDFs

o] A Mixture of Poisson PDFs

Count value Count value

1. Mixture of Poisson distributions does not have a Poisson distribution
2. Mixture has excess low and high counts, just like our observed data
3. Failure to account for heterogeneity leads to overdispersion
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The Poisson regression model (PRM)
1.The PRM adds observed heterogeneity
:ui:E(yi |x; ) = exp(xﬁ)
=exp(f, + B X, + LoXi, + BiXis)
In g = By + B X, + BoXin + By Xis
where I is the mean of Poisson distribution for observation i
2.Taking the exponential of xB forces p to be positive

3. For observation i,

—g . m
Pr(y; :m|Xi):e—#i
m!

which differs for each i

4.PRM is didactically useful, but / do not recommend the PRM for reasons
considered below.
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PRM with a single binary regressor
1. Let
= exp(—.12—.13Female)
2. Rates differ by gender
Hreme = €Xp(—.12—.13) = exp(—.25) =.779
e =€Xp(—.12) =887

3.Since y is distributed Poisson: Pr(y, | Female;)=e ™ " / y,!

Women Men
Pr(y=0) 46 41
Pr(y=1) 36 37
Pr(y=2) 14 16
Pr(y=3) 04 05
Priy=4)  .007 .011
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PRM with a single continuous regressor
1.Let

1 =exp(—.25+.13x)
2.Since y is Poisson
Pr(yi Ix; ) =e /!
3.For example, at x=0, p=exp(-.25)=.78

Pr(y=0[u=.78)=.46
Pr(y=1|x=.78)=.36
Pr(y=2|u=.78)=.14
Pr(y=3|u=.78)=.04

4. Plotting the counts by x...
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PRM with a single continuous regressor

PRM

10
d

- e = e
1
0 5 10 15 20 25
X

prm crm-reglinewithpdfV1.do js| 2015-03-01

1. Distribution around E(y|x) is Poisson
2.As pincreases: a) Var(y|x) increases; b) proportion of Os decreases; and
3) distribution becomes normal
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PRM with a single continuous regressor at large mean counts

o PRM
N
© ] 3 fo
ol ", . . . —
ot | . N . .z
ok A .
15 16 17 18 19 20

X
prm-largemean crm-reglinewithpdfV/1.do js| 2015-03-01

1.For larger E(y|x), LRM i approximates PRM

2.1s LRM acceptable with count outcomes?
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LRM with count outcomes

1. Counts are sometimes treated as continuous using the LRM

2.LRM is inefficient, inconsistent, and biased due to nonlinearity and
heteroscedasticity

3.LRM of sqrt(y) has some theoretical justification

4. With large mean counts, LRM often works well

5. Count models are preferred, easy to compute, and easy to interpret
O Isincome a count?
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ML estimation

1. We maximize the likelihood

L(my,x){[m(yi 1)

2.Convergence is usually fast and problems are rarely encountered
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Example of scientific productivity (-crm-couart.do)

Descriptive statistics

. use couart4, clear

(couart4.dta | Long data on productivity of biochemists | 2013-07-15)

. nmlab art fem mar kid5 phd ment

art Articles in last 3 yrs of PhD
fem Gender: 1=female O=male

mar  Married: 1l=yes 0=no

kid5 Number of children < 6

phd PhD prestige

ment Article by mentor in last 3 yrs

. sum art fem mar kid5 phd ment

Variable | Obs Mean Std. Dev. Min Max
- A o e e o e o e e e e e e e e e e e e e e
art | 915 1.692896 1.926069 (0] 19
fem | 915 .4601093 .4986788 0 1
mar | 915 .6622951 .473186 0 1
kid5 | 915 .495082 .76488 (0] 3
phd | 915 3.103109 .9842491 .755 4.62
ment | 915 8.767213 9.483916 0 77
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#22 Poisson regression model
. poisson art i.fem i.mar kid5 phd ment
Poisson regression Number of obs = 915
LR chi2(5) = 183.03
Prob > chi2 = 0.0000
Log likelihood = -1651.0563 Pseudo R2 = 0.0525
art | Coef. Std. Err. z [95% Conf. Interval]
- e
female |
Female | -.2245942 .0546138 -4.11 0.000 -.3316352 -.1175532
|
married |
Married | .1552434 .0613747 2.53 0.011 .0349512 .2755356
kid5 | -.1848827 .0401272 -4.61 0.000 -.2635305 -.1062349
phd | .0128226 .0263972 0.49 0.627 -.038915 .0645601
mentor | .0255427  .0020061 12.73  0.000 .0216109 .0294746
_cons | .3046168  .1029822 2.96 0.003 .1027755 .5064581

1. All regressors but phd are significant

2. We begin by interpreting effects on rates
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Factor change in the rate E(y|x)
1.The expected count focusing on the level of xsis
Startatxs: E(y|x,X,)=e®eMef e/
2.Increasing x3 by 1
End at xs+1: E(Y|x,X, +1)=e e/fefe/ 2!
3.The factor change in the expected count is

End level 3 E(y | X, X; + 1) _ eﬁn eﬂIXW eﬂzxzeﬂ;x; eﬁx

A
= = —e
Startlevel — E(y[x,X,) g gfinghrgh

4.The effect of a change in x, does not depend on values of the x's
Factor change: For a unit change in x, the expected count (rate) changes
by a factor of exp(B«) holding other variables constant.
Standardized factor change: For a SD change in x the expected count
changes by a factor of exp(s«B«) holding other variables constant.
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#22 Factor change in rate
listcoef fem ment, help

poisson (N=915): Factor change in expected count
Observed SD: 1.9261

| b z P>]z| e”b e~bStdX SDofX

- e
female |

Female | -0.2246  -4.112 0.000 0.799 0.894 0.499

mentor | 0.0255 12.733 0.000 1.026 1.274 9.484

e”b = exp(b) = factor change in expected count for unit increase in X
enbStdX = exp(b*SD of X) = change in expected count for SD increase in X
listcoef fem ment, percent help
poisson (N=915): Percentage change in expected count
Observed SD: 1.9261

| b % %StdX SDofX

- A o e o e o e e e e e e e
female |

Female | -0.2246  -4.112 0.000 -20.1 -10.6 0.499

mentor | 0.0255 12.733 0.000 2.6 27.4 9.484

%
%StdX

percent change in expected count for unit increase in X
percent change in expected count for SD increase in X

Interpretations on next page...
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female
| b z P>|z] e”b e~bStdX SDofX
— A
female |
Female | -0.2246 -4.112 0.000 0.799 0.894 0.499

Being a female scientist decreases the expected number of articles by a factor
of .80, holding other variables constant.

mentor

| b z P>]z| % %StdX SDofX
- o
mentor | 0.0255 12.733 0.000 2.6 27.4 9.484

For every additional article by the mentor, a scientist's mean productivity
increases by 2.6 percent, holding other variables constant.

For a standard deviation increase in the mentor's productivity, about ten
articles, a scientist's mean productivity increases by 27 percent, holding other
variables constants.
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#22 Plotting the rate
. margins, atmeans at(ment=(0(5)50))
. marginsplot, ylabel(0(1)6, grid gmin gmax)

Adjusted Predictions with 95% Cls

Predicted Number Of Events
3
L

T
10 15 20 25 30 35 40 45 50
Mentor's articles last 3 yrs

o
o
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Marginal effects on rates are not constant

The larger the rate, the greater the rate of change

Adjusted Predictions

Predicted Number Of Events
400
L

T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 225 250
Mentor's articles last 3 yrs
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Discrete change in the rate

1.The factor change is constant

2.The DC depends on the values of the regressors

3. Let x¢ change from start value to end value
AE(y|x’ . .
%: E(y [x,X, =end value)—E(y |x,X, =start value)

k

4. Interpretation
For a change in x from start value to end value, the expected count changes
by AE(y | x*)/AXk, holding other variables at the given values.
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#23 DCM in the rate

. mchange female kid5, amount(one) atmean
poisson: Changes in mu | Number of obs = 915

Expression: Predicted number of art, predict()

| Change p-value
e
female |
Female vs Male | -0.359 0.000
kid5 |
+1 | -0.272 0.000
<snip>

1: Estimates with margins option atmeans
For an average scientist, being female decreases expected productivity by .37
articles.
For an average scientists, an additional young child decreases expected
productivity by .29.
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#25 DCM in rate at mean with CIs

1.1 compute predictions at the mean for men and women

. qui mtable, at(fem=0) atmeans ci rowname(Men)
. qui mtable, at(fem=1) atmeans ci rowname(Women) below

2.The DC for female is:

. mtable, dydx(fem) atmeans ci rowname(Diff) below
Expression: Predicted number of art, predict()

| mu 1 ul
A
Men | 1.785 1.664 1.907
Women | 1.426 1.310 1.542
Diff | -0.359 -0.529 -0.190
Specified values of covariates
] 1. 1.
| female married kids phd mentor female
A
Set 1 | 0 .662 .495 3.1 8.77 R
Set 2 | 1 .662 .495 3.1 8.77 R
Current | - .662 .495 3.1 8.77 .46

The expected number of publications for an average man is 1.78 compared to
an average of 1.43 for women, a statistically significant difference of .36.
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#23 Aside: ADC in the rate

. mchange female kid5, amount(one)
poisson: Changes in mu | Number of obs = 915

Expression: Predicted number of art, predict()

| Change p-value
e
female |
Female vs Male | -0.375 0.000
kids |
+1 ] -0.286 0.000

On average being a female scientist decreases expected productivity by .38
articles.

On average an additional young child decreases expected productivity by
.29.
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#24 Relationship between exp(f) and DCM
1.The factor or percent change and the DCM are related

2. A change of .36 articles from 1.79 to 1.42 is a 20.1 percent decrease
3. Computed with regression coefficient

listcoef fem, percent
poisson (N=915): Percentage Change in Expected Count

art | b z P>|z| % %StdX SDoFX
- e

1.fem | -0.22459 -4.112 0.000 -20.1 -10.6 0.4987

4. Computed with predictions

. qui mtable, at(fem=0) atmeans stat(est Il ub) rowname(Men)
. qui mtable, at(fem=1) atmeans stat(est Il ub) rowname(Women) below
. mtable, dydx(fem) atmeans stat(est Il ub) below rowname(Diff)

| mu 11 ul

e e e e e ——————————

Men | 1.785 1.664 1.907
Women | 1.426 1.310 1.542
Diff | -0.359 -0.529 -0.190

. di 100%(-0.359/1.785)
-20.112045
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Probabilities

1.For a given the rate
efﬂ'/lm
Pr(y, =m|x;)=—7+——
m!

2.Sometimes probabilities provide more substantively useful information than
the mean count or rate.
3.Suppose we want to compare the productivity of men and women.

0 We know from above

. mtable, dydx(fem) atmeans ci rowname(Diff) below
Expression: Predicted number of art, predict()

Men | 1.785 1.664 1.907
Women | 1.426 1.310 1.542
Diff | -0.359 -0.529 -0.190

0 Can probabilities tell us more?
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#27 Comparing probabilities for men and women

. qui mtable, at(fem=0) atmeans pr(0/5) stat(est) clear roweq(Men)

. qui mtable, at(fem=1) atmeans pr(0/5) stat(est) below roweq(Women)
. mtable, dydx(fem) atmeans pr(0/5) stat(est p) below roweq(Change)

Expression: Marginal effect of Pr(art), predict(pr()) <= from last mtable

| 0 1 2 3 4 5
A

Men |
1] 0.168 0.299 0.267 0.159 0.071 0.025

Women |
1] 0.240 0.343 0.244 0.116 0.041 0.012

Change |
d Pr(y) | 0.072 0.043 -0.023 -0.043 -0.030 -0.014
pl 0.000 0.000 0.000 0.000 0.000 0.000

1.The largest difference is the greater probability of women having no articles

0 Does this make substantive sense?
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Assessing models with average predictions

1.The probability that y=m given x
e (x)

m!
2. Mean predicted probability summarizes predictions

Pr(y, =m|x;)=

= 1 &~
PY(Y=m):WZPr(yi =m|x;)
i=1

3. Observed probability

n(y =m)

Probserved (y = m) = N

4.If model is correct, we expect f’\r(y =M) = Prgned (Y =M)

5.This is how mgen,meanpred computes this informaton
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What is the mean prediction?
#31 Predictions for 1st two observations
. list art fem mar kid5 phd ment in 1/2, nolabel clean
art fem mar kid5 phd ment
1. 0 0 1 0 2.52 7
2. 0 1 0 0 2.05 6
. qui mtable, at(fem=0 mar=1 kid5=0 phd=2.52 ment=7) ///
> pr(0/5) atmeans rowname(casel) colstub(pr)
. mtable, at(fem=1 mar=0 kid5=0 phd=2.05 ment=6) ///
> pr(0/5) atmeans below rowname(case2) colstub(pr)
Expression: Pr(art), predict(pr())
| pro pri pr2 pr3 pra pr5
________ .
casel | 0.141 0.277 0.271 0.176 0.086 0.034
case2 | 0.274 0.355 0.230 0.099 0.032 0.008
Specified values of covariates
| female married kid5 phd mentor
__________ S,
Set 1 | 0 1 0 2.52
Current | 1 0 0 2.05
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#32 predict for all observation
. predict estpr0, pr(0)
. predict estprl, pr(1)
. predict estpr2,pr(2)
. list estprO-estpr2 art fem mar kid5 phd ment in 1/2, nolabel clean
estpro estprl estpr2 art fem mar kid5 phd ment
1. .1414034 .2766047 .2705385 0 0 1 0 2.52 7
2. .2735238 .3545871 .2298374 0 1 0 0 2.05 6
. * average predictions for all observations
. sum estpr*
Variable | Obs Mean Std. Dev Min Max
estpro | 915 .2092071 .0794247 .0000659 .4113403
estprl | 915 -3098447 .0634931 .0006345 .3678775
estpr2 | 915 .242096 .0311473 .0030544 .2706704

mgen ,meanpred makes these computations automatically
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#33 mgen for average predictions
. mgen, pr(0/9) meanpred stub(prm)

Variable Obs Unique Mean Min Max Label

prmval 10 10 4.5 0 9 Articles in last 3 ...
prmobeq 10 10 .0993443 0010929 .3005464 Observed proportion
prmoble 10 10 .8328962 .3005464 .9934427 Observed cum. propo...
prmpreq 10 10 .0998819 -0009304 .3098447 Avg predicted Pr(y=#)
prmprile 10 10 .8308733 .2092071 .9988188 Avg predicted cum. P..

prmob_pr 10 10 -.0005376 -.0475604 .0913393 Observed - Avg Pr(y=#)

. list art prmval prmpreq prmobeq in 1/12, nodisplay clean

art  prmval prmpreq prmobeq
1. 0 0 .2092071 .3005464
2. 0 1 .3098447 .2688525
3. 0 2 -242096 .1945355
4. 0 3 .1346656 .0918033
5. 0 4 .0611696 .073224
6. 0 5 .0249554 .0295082
7. 0 6  .0099346  .0185792
8. 0 7 .0041384 .0131148
9. 0 8 .001877 .0010929
10. 0 9 .0009304 .0021858
11. 0 R R
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#34 distribution of observed counts

. tab art
Articles in |
last 3 yrs |
of PhD | Freq. Percent Cum.
- U
01 275 30.05 30.05 <= see prmobeq from mgen
1] 246 26.89 56.94 <= see prmobeq from mgen
2] 178 19.45 76.39 <= see prmobeq from mgen
3] 84 9.18 85.57
4 | 67 7.32 92.90
5] 27 2.95 95.85
6 | 17 1.86 97.70
<snip>
12 | 2 0.22 99.78
16 | 1 0.11 99.89
19 | 1 0.11 100.00
- A
Total | 915 100.00

#35 plotting observed probabilities and mean predictions
. twoway connected prmobeq prmpreq prmval, ///

> msym(O d) msiz(2 2.4) mcol(gs6 green) lcol(gs6 green) Ipat(dot dot) ///
> ytitle("Pr(y = k)™) xtitle("Number of articles"™) ///

> ylab(0(-1).4, grid gmax gmin) xlab(0(1)9, nogrid)
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#35 Observed probabilities and average predictions from PRM

:k)

Pr(y

0 1 2 3 4 5 6 7 8 9
Number of articles

~~~~~~~ @ Observed probability - ®- Poisson PDF
~~~~~~ - Poisson regression

#36 cda13lec-crm-couart-prm-pdf-obs: cda13l rt scott long 2013-09-27
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Negative binomial regression model
1.The PRM rarely fits due to overdispersion
2.The model typically under-predicts 0's and over-predicts larger counts
3.If the PRM mean structure is correct, but there is over-dispersion

a. Estimates are consistent, but inefficient

b.Z-values are spuriously large; things appear significant that are not
4.In the PRM

Var(y|x)=E(y|x)=exp(xB)
5.The NBRM adds a parameter so that
Var(y|x)>E(y|x)

6.The single parameter often makes a huge difference in fit
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Unobserved heterogeneity

1.In the NBRM, a new source of error is added
u=exp(fy+ BX +BrX + BiX;) for the PRM
f=exp(fy+ BX + Lo Xy + X +€) for the NBRM

2.¢eis assumed uncorrelated with x

3.& can be due to
a. Combined effects of excluded variables
b.Pure randomness

4. ji from NBRM and x from PRM are related

ﬁ:exp(ﬂo+ﬂlxl + 8%, +ﬂ3X3)Xexp(g)
= pxexp(e)
= pv where v=exp(¢)
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Identification

1.In the LRM, we assume E(g)=0 to identify the model

2.We need a similar assumption for NBRM

3. Most conveniently assume
E(v)=1= E[exp(g)J

4. With this assumption, PRM and NBRM have the same mean structure
E(&)=E(uv)=pE(v)=p
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The negative binomial distribution

Roadmap
1.Show the distribution of y given both x and v.

2.Since v is unobserved, we average over v to compute distribution of y given x

3.This is results in the NB distribution

Poisson distribution given x and v

1.vis unobserved, but assume we know the value of v for each observation

2.Knowing v, we treat it as a regressor with B,=1

3.The distribution of y given both x and v is Poisson (since v is just another x)

e—[l ﬂy B ef,uv (,UV)Y
ybooy!

4.However, v is unobserved so we cannot compute Pr(y|x, v)!

Pr(y|x,v)=

5.Instead, we compute Pr(y|x) by mixing across v
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Example of binary mixing
1.Suppose:
a.Let v =1 for those with low motivation
b.Let v = 2 for those with hi motivation
c. Let Pr(v = v*) be the probability someone is in group v*
2.The distribution of y|x differs for the two groups
a.Pr(y [x,v=1)
b.Pry |x,v=2)
3. We mix these distributions by how frequently v=1and v = 2 occur
Pr(y |x) =[Pr(v=1)Pr(y [x,v=1)]
+[Pr(v=2)Pr(y |x,v=2)]

4.Pr(y|x) is a mixture of the distribution of y in the two groups
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Continuous mixing (the Poisson-gamma mixture model)

1.1f the mixing variable is continuous (infinite v groups)

Pr(y|x):I:[Pr(y | ,u,v)xg(v)]dv

2.Assume v has a gamma distribution with parameter §

) .
g(v)= O, 1e™ for §>0 where [(5) = [t e " dt
1)
3. With the gamma distribution
a.E(v)=1

b.var(v)=1/6 = a.
4.The distribution varies in shape with changes in a

Graph on next page...
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Gamma distributions with varying parameters

a=0.25

\ —=—- a=1.00

crm-gamma-pdfsV1.do jsl 2015-03-10
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Negative binomial distribution

1.The mixture of Poisson PDFs by gamma is a negative binomial distribution
T y+a71 a_l o y
Pr(y|x)= ( 71) i 71,U
y'T(a) L +u at+u
2.1t has the same mean structure as the PRM
E(y|x) = exp(xB) = u
3. Where the variance is larger
Var(y|x)=pu(1+au)= exp(xﬁ)(l + aexp(x[})) > u

0 Since p and a are positive, the NB has overdispersion

Graphs on next pages...
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PRM or NBRM with a = 0.0

- PRM
N
o ]
N
w ]
> ’
o 4 4
© 3 s
. P SV n
1 1
0 5 10 15 20 25

X
prm crm-reglinewithpdfV1.do jsl 2015-03-01
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NBRM with a = .5

_NBRM with a=0..5

[Te)
N
o
N
© ]
>
o
of L
O;_._._——i/:
T 1 1
0 5 10 15 20 25

nbrm-alpha05 crm-reglinewithpdfV1.do jsl 2015-03-01
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NBRM with a=1.0

 NBRM with a=1.0

2

Q4

13

w4

>
o 4 ,
’ :
04 E :
e
T T 1
0 5 10 15 20 25
X
nbrm-alpha10 crm-reglinewithpdfV1.do jsl 2015-03-01
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NBRM with a =2.0

_NBRM with 0=2.0

25

li Tieeveee

15 20 25

o
)]
-
o

X
nbrm-alpha20 crm-reglinewithpdfV1.do jsl 2015-03-01
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NBRM with a = 0.0

o PRM
N
IS
N
o ] :
0
> b}

10
i

0 : / . o
o _’,_//’-. a 3
1
0 5 10 15 20 25
X

prm crm-reglinewithpdfV1.do jsl 2015-03-01
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Heterogeneity and contagion
1. Our derivation is based on unobserved heterogeneity (v)

2. Contagion also leads to the NB distribution

0 Contagion is when people start with the same rate but the rate changes

when an event occurs

3.Two, identical scientists start with the same productivity rate p
a. Success in publishing increases the rate of future publishing
b. If scientist 1 publishes, her rate increases as the result of contagion

c. Scientist 2's rate does not change
d. Now scientist 1 has an advantage that will accumulate
4. Contagion violates the independence assumption of the PRM

5. With cross-sectional data, heterogeneity and contagion are indistinguishable
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ML Estimation
The NBRM model can be estimated by ML

L(ﬁ|y,X)=li[Pr(yi x,)

i) et Y )
s yi!l"(a’]) [al+,ui] (al+yij

where 1 = exp(xp).
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#41 The NBRM for articles

. nbreg art i.fem i.mar kid5 phd ment, nolog

Negative binomial regression Number of obs = 915
LR chi2(5) = 97.96

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -1560.9583 Pseudo R2 = 0.0304
art | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ e
1.fem | -.2164184 .0726724 -2.98 0.003 -.3588537  -.0739832

1.mar | .1504895 .0821063 1.83 0.067 -.0104359 .3114148

kids | -.1764152 .0530598 -3.32 0.001 -.2804105 -.07242

phd | .0152712 .0360396 0.42 0.672 -.0553652 .0859075

ment | .0290823 .0034701 8.38 0.000 .0222811 .0358836

cons | .256144 .1385604 1.85 0.065 -.0154294 5277174
_____________ o
/lnalpha | -.8173044 1199372 -1.052377  -.5822318
_____________ A e o o e e e e e e e e e e e e e o e e e e e
alpha | .4416205 0529667 .3491069 5586502

Likelihood-ratio test of alpha=0: chibar2(01) = 180.20 Prob>=chibar2 = 0.000

Clicking on the blue...
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What is chibar2? The likelihood-ratio (LR) test that is displayed is testing on the boundary of
the parameter space. You are probably testing whether an estimated variance component
(something that is always greater than zero) is different from zero by using an LR test.

Suppose for now that the two models being compared differ only with respect to the variance
component in question, in which case the test statistic will be displayed as "chibar(01)". In
such cases, the limiting distribution of the maximum-likelihood estimate of the parameter in
question is a normal distribution that is halved, or chopped off at the boundary -- zero here.
The distribution of the LR test statistic is therefore not the usual chi-squared with 1 degree of
freedom but is instead a 50:50 mixture of a chi-squared with no degrees of freedom (that is, a
point mass at zero) and a chi-squared with 1 degree of freedom.

The p-value of the LR test takes this into account and will be set to 1 if it is determined that
your estimate is close enough to zero to be, in effect, zero for purposes of significance.
Otherwise, the p-value displayed is set to one-half of the probability that a chi-squared with 1
degree of freedom is greater than the calculated LR test statistic.

Sometimes you are testing whether a variance component is zero in addition to testing
whether k other parameters (not affected by boundary conditions) are zero. Such situations
often arise when comparing mixed-effects models, such as those fit by xtmixed. For such
tests, the distribution of the likelihood-ratio test statistic is a 50:50 mixture of chi-squared
distributions with k and k+1 degrees of freedom, shown on the output as "chibar(4_5)", for
example. As for chibar(01), significance levels are adjusted accordingly.

Finally, if you are testing more than one boundary-affected parameter, the theory is much
more complex and usually intractable. When this occurs, Stata will either display significance
levels that are conservative and marked as such or will not display an LR test at all.
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#42 Comparing PRM and NBRM

. estimates table prm nbrm, stats(N bic r2_p) b(%9.3f) t(%6.2f) eform

Variable | prm nbrm

_____________ S,

fem 1 | 0.799 0.805

| -4.11 -2.98

mar 1 | 1.168 1.162

| 2.53 1.83

kid5 | 0.831 0.838

| -4.61 -3.32

phd | 1.013 1.015

| 0.49 0.42

ment | 1.026 1.030

| 12.73 8.38

_cons | 1.356 1.292

| 2.96 1.85
_____________ S,

Inalpha_cons | 0.442

| -6.81
_____________ S,

Statistics |

| 915 915

bic | 3343.026 3169.649

r2_p | 0.053 0.030
legend: b/t
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Testing for overdispersion

1. With overdispersion PRM estimates are inefficient with standard errors that
are biased downward.

2. We test Ho: =0 since when a=0 the NBRM becomes the PRM
3.To estimate the NBRM, Stata maximizes a function with /n a, not with a

0 Testing Ho: In(a)=0 is equivalent to Ho: a=1 which we do not want
4.A LR test of Hp: a=0 is

G’ = 2(ln Lugry — 10 LPRM)
5.1n this example, there is strong evidence of overdispersion:

Likelihood-ratio test of alpha=0: chibar2(01) = 180.20 Prob>=chibar2 = 0.000

Since there is significant evidence of overdispersion (G?(1)=180.2, p<.001), the
NBRM is preferred to the PRM.
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Interpretation of the NBRM
1.Interpretation based on rates is identical to the PRM
2.The same methods for predicted probabilities can be used where
rly+a') &' Y/( a Y
Pr(y[x)= ( H) | |7
y!F(a ) a +pu a +pu
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Comparing PRM and NBRM using mgen

#43 Comparing rates

. estimates restore nbrm
. mgen, at(ment=(0(2)50)) atmeans stub(NB)

Predictions from: margins, at(ment=(0(2)50)) atmeans

Variable Obs Unique Mean Min Max Label
NBmu 26 26 2.82001 1.241455 5.314301 mean art from margins
NBII 26 26 2.333907 1.122784 3.825262 95% lower limit
NBul 26 26 3.306114 1.360127 6.80334 95% upper limit
NBment 26 26 25 0 50 Mentor®s arts last 3...
Specified values of covariates
1. 1.
female married kid5 phd
.4601093 .6622951 .49508 3.103109

. estimates restore prm

. mgen, at(ment=(0(2)50)) atmeans stub(PR)

<snip>
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Comparing rates for PRM and NBRM

[%2]
K
o
b=
<<
c
[15]
9]
=
o
T T T T T T
0 10 20 30 40 50
Articles by mentor in last three years
————— pforPRM ——  for NBRM
#43a cdat3l rt-pi br : cda13le rt scott long 2013-09-27
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#44 Comparing probabilities of 0

. estimates restore nbrm
. mgen, at(ment=(0(2)50)) pr(0/9) atmeans stub(NB)

Predictions from: margins, at(ment=(0(2)50)) atmeans predict(pr(9))

Variable Obs Unique Mean Min Max Label

NBpro 26 26 .1939652 .0648641 .371642 pr(y=0) from margins

NBIIO 26 26 .1615177 .0318453 .3382501 95% lower limit

NBulO 26 26 .2264127 .0978828 .4050339 95% upper limit

NBment 26 26 25 0 50 Mentor®s articles last 3...
<snip>

Specified values of covariates

1. 1.
female married kid5 phd
.4601093  .6622951 .495082  3.103109

estimates restore prm
. mgen, at(ment=(0(2)50)) pr(0/9) atmeans stub(PR)
<snip>
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Probabilities of no articles for PRM and NBRM

Which model makes the most substantive sense?

T
10 20 30 40 50
Articles by mentor in last three years

o4

————— Pr(0) for PRM  ——— Pr(0) for NBRM

#43 cda13lec-crm-couart scott long 2013-04-28
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Average predictions

<r_ -
o6 ®
oy m
= . *
I °* o
N |V .
2 = N
[on ‘
- sy
(= ' . . 5 *
T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9
Number of articles
o Observed - ®m - Poisson PDF
= 2 Predicted: PRM A Predicted: NBRM
#46 cdal rt-nbrm-prm-pdf-obs: cdal rt scott long 2014-05-04
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Zero modified count models
1.NBRM increases 0 over PRM by increasing the conditional variance
2.PRM and NBRM assume every scientist has a positive probability of publishing
3.1n zero modified models
a.Zeros
0Some people always have 0 counts; some might have 0 counts
OThis leads to a greater proportion of Os since they occur two ways
0We say, “The zeros are inflated”
OThe variance increases since mass is added to the end of the PDF

b. Positive counts are generated by one process just like PRM or NBRM
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The with zeros model: didactically useful
1.Zeroes occur through two processes
Group A: people who always have 0 counts
Group S: people who sometimes have 0s, but sometimes not
2. Probabilities of being in each group
Pr(Group A)=y
Pr(Group S)=1-y
3. An observed 0 could come from either group
4. Probabilities of counts by group
Group A: Pr(y=0 | x)=1
efﬂ’uy
y!

GroupS:  Pr(y|x)= where 1 = exp(xB)

Pr(y =0 | x)=exp(~4)

5.This is discrete, unobserved heterogeneity.
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6. Total probability of 0 mixes the two sources of 0's
Pr(y=0|x)={Pr(Group A)x1}+{Pr(Group S)x PRM (0 |Group S)}
:{y/xl}-k{(l—t//)xe""}
=y +(l-y)e™
7.The Poisson process applies to those in S
Pr(Group S)=1-
8.The probability of positive counts is adjusted
Pr(y|x):(1—l//)e;—’jly fory>0

0 | could use a NB distribution in stead of a Poisson distribution
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Zero inflated models model Y
Next we model whether a personisin AorS
Step 1: Model group membership as a BRM
Pr(Group A |z )=Pr(Always 0|z )=y, =F(zy)
where F() is logistic or normal.
Step 2: Model counts in Group S as PRM or NBRM
1.Zero inflated Poisson (ZIP) model

e*# y
y!

Pr(y |x & Group S) = where £ = exp(xB)

2.Zero inflated NB (ZINB) model

-1

Pr(yx&emups)j(ywl)( o M . j

y!F(a'l) a'+u a’+u
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Step 3: Model counts in Group A (always 0)
Pr(y=0|x&Group A)=1
Step 4: Mixing Group A and Group S
Predicted probabilities
Pr(y=0|x)=(1-y)xPr(y=0[x&Group S)+y
Pr(y|x)=(1-y)xPr(y|x&Group S)

Rates
E(y|x,z)={0xPr(Group A)}+ {xxPr(Group S)}
= {0xyp+{u(i-y)}
=u(l-y)<u
Variance for the ZIP

1.If Y =0, we have the standard PRM/NBRM
2.1f >0 the dispersion is greater than for the PRM/NBRM

Part 12: Count outcomes Page 812




Two types of zeroes
1.Zeros come from two groups
Pr(y=0|x)=(1-y)Pr(y=0|x&Group S)+y
2.Splitting the groups
Pr(always 0|x) =y
Pr(sometimes 0|x) = (1—y)Pr(y=0|x&Group S)
3.For ZIP:
Pr(y=0[x)=y+(1-y)e™”

y

—Hi
Pr(y|x):(1—l//)eT"u fory>0
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4.For ZINB
a’ <
Pr(y=0|x)=y+(1- _—
(=01 (v 5
Ny+a a! ! y
Pr(y|x)=(1-y) ( 71) - 71,u fory >0
y!F(a ) a +u a +u
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Example of scientific productivity
#51 Estimation of ZIP

. zip art i.fem i.mar kid5 phd ment, inflate(i.fem i.mar kid5 phd

Zero-inflated Poisson regression Number of obs
Nonzero obs
Zero obs
Inflation model = logit LR chi2(5)
Log likelihood = -1604.773 Prob > chi2
art | Coef. Std. Err. z P>]z] [95% Con
- e
art |
1.fem | -.2091446 .0634047 -3.30 0.001 -.3334155
1.mar | .103751 .071111 1.46 0.145 -.035624
kid5 | -.1433196 .0474293 -3.02 0.003 -.2362793
phd | -.0061662 .0310086 -0.20 0.842 -.066942
ment | .0180977 .0022948 7.89  0.000 .0135999
_cons | .640839 .1213072 5.28 0.000 .4030814
inflate |
1.fem | .1097465 .2800813 0.39 0.695 -.4392028
l.mar | -.3540107 .3176103 -1.11 0.265 -.9765155
kid5 | .2171001 .196481 1.10 0.269 -.1679956
phd | .0012702 .1452639 0.01 0.993 -.2834418
ment | -.134111 .0452461 -2.96 0.003 -.2227918
_cons | -.5770618 .5093853 -1.13 0.257 -1.575439
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ment) nolog

915
640
275
78.56
0.0000

T. Interval]

-.0848737
.243126
-.0503599
.0546096
.0225955
.8785967

.6586958
.2684941
.6021958
.2859821
-.0454302
-421315
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#51 factor change coefficients for ZIP

listcoef, help
zip (N=915): Factor change in expected count
Observed SD: 1.9261

Count equation: Factor change in expected count for those not always 0O

| b z P>|z] e”b e~bStdX SDofX
- P
female |
Female | -0.2091 -3.299 0.001 0.811 0.901 0.499
|
married |
Married | 0.1038 1.459 0.145 1.109 1.050 0.473
kid5 | -0.1433 -3.022 0.003 0.866 0.896 0.765
phd | -0.0062 -0.199 0.842 0.994 0.994 0.984
mentor | 0.0181 7.886 0.000 1.018 1.187 9.484
constant | 0.6408 5.283 0.000 R - R
b = raw coefficient
z = z-score for test of b=0
P>|z] = p-value for z-test
e”b = exp(b) = factor change in expected count for unit increase in X
e~bStdX = exp(b*SD of X) = change in expected count for SD increase in X
SDofX = standard deviation of X
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Binary equation: factor change in odds of always 0

| b z P>|z] e”b e~bStdX SDofX
- e
female |
Female | 0.1097 0.392 0.695 1.116 1.056 0.499
|
married |
Married | -0.3540 -1.115 0.265 0.702 0.846 0.473
kid5 | 0.2171 1.105 0.269 1.242 1.181 0.765
phd | 0.0013 0.009 0.993 1.001 1.001 0.984
mentor | -0.1341 -2.964 0.003 0.874 0.280 9.484
constant | -0.5771  -1.133 0.257 R . R
b = raw coefficient
z = z-score for test of b=0
P>|z] = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
enbStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X
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#52 Plotting sometimes 0's and total 0's from ZIP

ZIP

T T T T T T
0 10 20 30 40 50

Mentor's Publications

Always or sometimes0 ~ ————- Always 0

#52 cda13lec-crm-couart scott long 2013-04-28
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#52 Comparing mean rates for ZIP and NBRM

Mean Articles

o
T T T T T T
0 10 20 30 40 50
Articles by mentor in last three years
————— u for ZIP u for NBRM
#52a cdal rt-p bi : cdale rt scott long 2014-05-04
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Comparisons among count models

Count models we have considered
PRM:  Poisson regression
NBRM: Negative binomial regression model
ZIP: Zero inflated Poisson model
ZINB:  Zero inflated negative binomial model
countfit

1.This program that was so successful that SAS released countreg without
citing countfit, although used my dataset as an example!

2.P. Trivedi suggested they change their name to count(er)fit.
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Comparing mean observed probabilities

1.The mean predicted probability at observed values is
J— 1
Pr(y=m) :szr(yi =mJx;)
i=l

2. We plot the difference between observed and mean probability
(Observed - Mean predicted) = y —Pr(y =m)
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Lambert plot: summarizing mean predictions

Note: positive deviations show underpredictions.

w
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0 1 2 3 4 5 6 8 9
Articles in last 3 yrs of PhD
el PRM & NBRM
| o - ZINB
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Tests to compare count models

#62 LR tests of nested models
1. PRM vs NBRM: Test the dispersion parameter a
We found that a was significant (G?=180.2) supporting NBRM over PRM

2.ZIP vs ZINB can be compared the same way

. qui zip art fem mar kid5 phd ment, inflate(fem mar kid5 phd ment)
. est store zip

. qui zinb art fem mar kid5 phd ment, inf(fem mar kid5 phd ment)

. est store zinb

. Irtest zip zinb, force

Likelihood-ratio test LR chi2(1l) = 109.56
(Assumption: zip nested in zinb) Prob > chi2 = 0.0000
There is evidence that the ZINB improves the fit over the ZIP model.
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#63 Vuong test of non-nested models
1.PRM and ZIP are not nested; NBRM and ZINB are not nested.

a. For ZIP to reduce to PRM, { must equal 0
b.You cannot constrain the parameters to make {=0.
c. If y=0, then Y=F(z0)=.5
2.A Vuong test is used instead of a LR test to compare the models

Details on next page...
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3.The Vuong test compares non-nested models
a. Pr‘(yi |Xi) is probability of y; from the first model

b. Prz(yi \X,) is probability for the second model

c. Define
Pr,(yi ‘ Xi)

m =In ———%
Prz(yi|xi)

N
J— m.
d.let m= Zﬁl and s, be the standard deviation of m,

i=1
e. The Vuong statistic is
m a
_INme o
Sm

olfV >1.96, the first model is favored
0 IfV < -1.96, the second model is favored

\

For example...
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. zip art i.fem mar kid5 phd ment, ///
> inflate(i.fem mar kid5 phd ment) vuong nolog
<snip>
Vuong test of zip vs. standard Poisson: z = 4.18 Pr>z = 0.0000
. zinb art i.fem mar kid5 phd ment, ///
> inflate(i.fem mar kid5 phd ment) vuong nolog
<snip>
Vuong test of zinb vs. standard negative binomial: z = 2.24 Pr>z = 0.0125
countfit makes it easier to interpret the results
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#63 countfit
. countfit art i.fem i.mar kid5 phd ment, ///
> inf(i.fem i.mar kid5 phd ment)
Variable | PRM NBRM ZIP ZINB
art |
female |
Female | 0.799 0.805 0.811 0.822
1 -4.11 -2.98 -3.30 -2.59
married |
Married | 1.168 1.162 1.109 1.103
1 2.53 1.83 1.46 1.16
# of kids < 6 | 0.831 0.838 0.866 0.859
1 -4.61 -3.32 -3.02 -2.80
PhD prestige | 1.013 1.015 0.994 0.999
1 0.49 0.42 -0.20 -0.02
Mentor®s # of articles | 1.026 1.030 1.018 1.025
1 12.73 8.38 7.89 7.10
Constant | 1.356 1.292 1.898 1.517
1 2.96 1.85 5.28 2.90
Inalpha 1
Constant | 0.442 0.377
] -6.81 -7.21

i+ plus inflation results ::

And so on for all models...
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Comparison of Mean Observed and Predicted Count

Maximum At Mean
Model Difference Value |Diff|
PRM 0.091 0 0.026
NBRM -0.015 3 0.006
ZIP 0.054 1 0.015
ZINB -0.019 3 0.008

PRM: Predicted and actual probabilities

Count  Actual Predicted |Diff| Pearson
0 0.301 0.209 0.091 36.489
1 0.269 0.310 0.041 4.962
2 0.195 0.242 0.048 8.549
3 0.092 0.135 0.043 12.483
4 0.073 0.061 0.012 2.174
5 0.030 0.025 0.005 0.760
6 0.019 0.010 0.009 6.883
7 0.013 0.004 0.009 17.815
8 0.001 0.002 0.001 0.300
9 0.002 0.001 0.001 1.550
Sum 0.993 0.999 0.259 91.964
And so on for all models...
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Tests and Fit Statistics
PRM BIC= 3343.026 AIC= 3314.113 Prefer Over Evidence
vs NBRM BIC= 3169.649 dif= 173.377 NBRM PRM Very strong
AIC= 3135.917 dif= 178.196 NBRM PRM
LRX2= 180.196 prob= 0.000 NBRM PRM p=0.000
vs ZIP BIC= 3291.373 dif= 51.653 ZIP PRM Very strong
AlIC= 3233.546 dif= 80.567 ZIP PRM
Vuong= 4.180 prob= 0.000 ZIP PRM p=0.000
vs ZINB BIC= 3188.
AIC= 3125.
NBRM BIC= 3169.
vs ZIP BIC= 3291.
AIC= 3233.
vs ZINB BIC= 3188.
AIC= 3125.
Vuong= 2.
BIC= 3291.
vs ZINB BIC= 3188.628 dif= 102.745 ZINB ZIP Very strong
AIC= 3125.982 dif= 107.564 ZINB ZIP
LRX2= 109.564 prob= 0.000 ZINB ZIP p=0.000
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Commands and model extensions

1. predict after count-data models, such as gnbreg, nbreg, poisson,
xtgee, xtnbreg, xtpoisson, zinb, and zip has two new options

predictvarname, [pr(n) pr(a,b)]

a. pr(n) stores the probability Pr(y = n) in varname.

b.pr(a,b) stores the probability Pr(a<y<b) for varname.
2.margins and m* commands compute predicted rates and probabilities

3.tnbreg is for the truncated negative binomial regression for any nonnegative
truncation point; tpoisson is for truncated Poisson regression

4. Mixed models for counts were added to Stata 13

5.Exposure time can be added to include the amount of time each case is "at
risk" of the event occurring.
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*Finite Mixture Models

Fmm by Partha Deb fits a finite mixture regression model using ML. maximum
likelihood estimation. In Stata, fFindit fmm

1. Unobserved discrete heterogeneity: Assume two or more types of people in the
population but you do not know which group a person is in

2.Suppose we have groups A and B
3.For Group A

e
Pr(y, | x;, Group; = A) == where 1, =exp(xB,)
4.For Group B
e_”B',uy!
Pr(y; |x;,Group; =B) === where 14, =exp(xB;)
Yi'

5.The parameters can be interpreted for each groups
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6.The observed counts come from both sources

—tia Vi “Hig g, Yi
Pr(y, |x;) = {Pr(Groupi = A)M}+{Pr(Groupi = B)e#}

7.When would a mixture model make sense? Why do we need latent classes?
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Review of count LHS

1.The PRM is rarely appropriate.

2. Start with NBRM since you use NBRM to test if PRM is appropriate.
3. Inflated models deal with "excess" zeros.

4. Statistical and ad hoc tests help select a model, but knowing what makes
substantive sense is essential

0 If you don't think, you will use ZIP when you need a 1/P model!
5. Other models deal with hurdles, mixtures, truncation and censoring.
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Part 15: Conclusions

1.LRM, BRM, ORM, MNLM, PRM, NBRM, and ZIP/ZINB are building blocks for
models in many areas.

0 Extensions add panels, hierarchies, clustering, survey sampling, and more
0 The basic structure of the models stays the same

2.Since the models are nonlinear, the challenge is to determine what is
substantively important and to find the best way to summarize the results

0 Alternative strategies need to be tried to find the most convincing approach
3.Remember what Neal Henry told me many years ago:
Don't let the numbers get in the way of the data.

Think about what you want to know, then focus on answering that question.
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** Part 9: Comparing groups

A motivating example
mm Eﬂ[ Are the "effects" of scientific productivity

on the probability of tenures the same for

m\!lsmlllly

mﬂm
in the Careers
of Doctoral
Scientists

Read and run
Long 2009; Long & Mustillo 2017

cdalec*.do cdalec*-brmgroups-tenure-.do
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Statistical and substantive issues
1. Traditional LRM approach for comparing groups

a. Estimate model for women.

b. Estimate same model for men.

c. Compare coefficients across groups.

2. Substantive concern: Academy panel did not find logit coefficients informative.

3. Statistical problem: Paul Allison sent me a working paper that said:

Differences in the estimated coefficients tell us nothing about the
differences in the underlying impact of [publications] on [tenure for] the
two groups.
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Roadmap

1. Linear regression model for group comparisons

2. Binary regression model: review of Chapter 3

a. A latent variable model for y*
b. A probability model for Pr(y=1]|x)
3. Identification in the BRM

4. Group comparisons in BRM

a. Allison's test for comparing coefficients.
b. Tests to compare predictions between groups.

5.1 discuss predictions; see Long & Mustillo for comparing effects across groups
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Group comparisons in the LRM

Men: y=a" + [l articles+ g . prestige + &
Women: y=a"+ [ articles+ g . prestige+¢
81 Men
————— Women
g -
Pl
3
81
(=
=
0 2 4 6 8
Articles
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LRM: testing equality of regression coefficients
1.Do men and women have the same return for articles?
H(;\: Biriicies = Parites
2.Standard t-test
— /éz:\,\rllicles — ﬁ;ndes
\/\/ar (Bamrllicles ) +Var (ﬂ,\amrlicles )
3. More generally, tests that all regression coefficients are equal

B. w__ . m, W __m . W _m
HO o =0 articles — /articles » /gprestige — Moprestige

4. This hypothesis does not imply the models are the same for men and women!

Here's why...
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LRM: differences in explained variation (R?)
1.0f
w m, W M . w — [RMm
a =a, articles — ﬂanicles’ ﬂprestige - ﬂprestige
2.This does not imply
R, =R’

3.Since | expect less explained variation for women, unexplained variation is
critical for group comparison in the BRM
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BRM review

Logit
pr(y=11x) =P+ Ax+f2)
1+exp(ﬂ0 +ﬂXX+,BZZ)
Probit
pboxpz 1 [ =t
PI'(y:1|X):JA7OO E 7 dt
Generally

Pr(y=1|x)= F(ﬁ0+ﬂxx+ﬂzz)
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Gender differences in tenure (-brmgroups-tenure.do)

Variable Mean StdDev Minimum Maximum Label

tenure 0.12 0.33 0.00 1.00 Is tenured?

female 0.38 0.48 0.00 1.00 Scientist is female?

year 3.86 2.30 1.00 10.00 Years in rank.

yearsq 20.17 22.15 1.00 100.00 Years in rank squared.
select 5.00 1.41 1.00 7.00 Selectivity of bachelor®s
articles 7.05 6.58 0.00 73.00 Total number of articles.
prestige 2.65 0.78 0.65 4.80 Prestige of department.
presthi 0.05 0.21 0.00 1.00 Prestige is 4 or higher?

N = 2797 (person-years)
Models consider (## indicates interaction)

M1: tenure on female + controls

M2: tenure on female#articles

M3: tenure on female##(articles presthi)

Ma4: tenure on female##(articles other controls)
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Testing group differences in the BRM

Tests of coefficients

1.In M1, test of dummy variable
HO: IBfemale = 0
2.In M2+: Equality of regression coefficients across gender
. RV __ Mm
HO' articles _ﬁarliclcs
Tests of predictions
1. Equality of probabilities for men and women
Hy: Pr(y=1[x) =Pr(y=1|x)
2. Equivalently, the discrete change is 0:

H: A, (x)=Pr(y=1[x) —Pr(y=1|x) =0
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#2 M1: dummy variable for gender

Pr (tenure _ 1 | X) _ A[ ﬂo + ﬂfemaleferﬂale + ﬂyearyear+ﬂyearsqyearsq ]

+ﬂselectseleCt + ﬂartlclesartiCIGS + /BpresthipreSthi

0dds of: Tenure vs NoTenure

tenure | b z P>]z]| e”b e~bStdX SDofX
___________ S
female | -0.35260 -2.677 0.007 0.7029 0.8429 0.4849
year | 1.69865 10.426 0.000 5.4666 49.9816 2.3028
c.year#c.y.| -0.12295 -8.748 0.000 0.8843 0.0656 22.1512
select | 0.12228 2.699 0.007 1.1301 1.1878 1.4075
articles | 0.04948 5.986 0.000 1.0507 1.3845 6.5757
presthi | -1.05052 -2.662 0.008 0.3498 0.8009 0.2113
b = raw coefficient
z = z-score for test of b=0
P>]z| = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
e~bStdX = exp(b*SD of X) = change in odds for SD increase in X
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Predicted probabilities at given x's
1. Compute predictions at specific values of the variables

ﬂo + ﬂfemalefemale + ﬂyearyear+:3yearsq yearsq J

Pr(tenure=1|x)=A
(tenu %) (+ eecSelect + S articles + S ipresthi

rticles presthi

2. Probability for women in year 7 with selectivity 4, low prestige, and no articles

:80 + :Bfemale (1) + IByear (7) + ﬁyearsq (49)
+ select (4) + articles (0) + ﬂpresthi (05)

3. Extending this idea, plots of probabilities are constructed

0.16=A(

0 Probability curves for x, for men and women have the same slope but
intercepts differ by Bremale

Part 15: Conclusions Page 845




#3 M1: Probabilities for men & women by # of articles

Model 1: For average scientists in year seven

| —e— women
——A—- Men

5 .75
| |

Probability of Tenure

.25
|

T T
0 10 20 30 40 50
Number of Articles

1.Pr(Tenure) is about .06 greater for men than women at all levels of
productivity

2.The lack of gender interactions is unrealistic
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BRM with 8's differing by group
1. Allowing different coefficients for men and women:

Women:  Pr(y=1)=A(a" + fi.articles + By, prestige)

Men:  Pr(y=1)=A(a" + f],.articles + /3], prestige)
2.Can we use a Chow-type test?

. w _ m

HO‘ ﬂarticles — Farticles
3. Allison (1999) writes:

Because of an identification problem, the usual tests of this

hypothesis tell us nothing about the underlying impact of articles

for men and women.
4.1s he right? Why?
Part 15: Conclusions Page 847

Identification in the BRM
1. Start with a regression with a latent y*
V'=a+fX+e
2. For identification, the mean and variance of € are assumed
0 € is normal(0,1) for probit or logistic(0, m%/3) for logit.
3.y and y* are linked by
it ify" >0
- {0 ify <0
4.Pr(y=1|x) is the shaded region in the following graph
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Linear model for y*

10
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Computing Pr(y) from y*
1.The probability depends on
a.The error distribution
b.The regression coefficients
c. The value of x
2.To compute the probability:
Pr(y=1[x)=Pr(y >0|x)
=Pr(z<[a+px]|X)

3.The identification problem is illustrated in this graph
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Group W: a=-12, f=2, 0=2 Group M: a=-6, =1, o=1

e AP . -

2 4 & B 10 0 2 4 6 8 10
x X

1.The change in y* is twice as large for Women than Men
2.The change in probability is identical for Women and Men

3. Empirically, the effect of x is indistinguishable for the two groups

Part 15: Conclusions Page 851




Identification and group comparisons in the BRM
1.Regress y* on articles
Women: Yy =a" +f. .articles+ ¢,
Men: y'=ao"+ gl articles+¢,
2.1 want to test
,Bavrvncles = ﬁar:ticlcs
3. Substantively, | expect
o, >0
4. For identification, software assumes
Logit: Var(¢)=7"/3 Probit: Var(g)=1
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6. For probit, software rescales the "true" € to have variance 1

Var [ﬁj =Var(&)=1

o

7.The estimated model for women is

* w w
a : . &
y_o, Poses articles + —-

Oy Oy Oy Oy

Il
—

=a" + B .articles+ £, where 6,
8.For men

* m m
y — a + lBarliclcs

OnOn Onm

. &
articles + —-

On

=a" + gl articles+ &, , where 6, =1
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9. Substantively, we want to test

NoTilda, pHw _ pm
Ho ™ Biiees =

articles articles

10. Standard software tests

Tilda, pHw _ pm
HO . ﬂarticles - ﬂarticles
11. The problem is

. _ w _ pm
a. Equal tilde coefficients ﬂam-cles = Particles

. . w _ m
b.Does not imply equal non-tilde ,Bamcles = ﬂamclcs
2

_ 2
c. Unless Opn =0y

and we think the variances vary by gender

12. This is the problem raised by Allison (1999)
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* Aside: rescaling errors in logit
1.The model
V' =a+ B atticles + &

2.Rescale the errors

2
Var (5) = % rather than 1 for probit

3.The estimated equation

*
7 T < ) T €
y _ Puices articles + ——

o o' d o Go
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Allison's test of the equality of non-tilde coefficients
1. Assume for some variable z
ﬁw
B =/ orequivalently — =1
B,
2.The ratio BZW /,ézm is the relative size of 0, and 7,
B Lo _on
ﬂzm /gzm /Gm Gw
3.This provides leverage to test the underlying coefficients
Hy: ﬁ:v = ﬁ;n
4.This works only if you can justify the assumption 3, = /3"
5.To avoid this assumption, | use tests of probabilities
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Testing probabilities
1.1am interested in the probabilities, not the slopes

2.Probabilities are invariant to Var (&) which allows us to test

Hy: Pr(y=1[x), =Pr(y=1|x)_

Women: a=-12, =2, 0=2 Men: a=-6, f=1, o=1
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#4 M2: articles and gender

logit (N=2797): Factor Change in Odds
0dds of: Tenure vs NoTenure

WOMEN b z P>]z] e”b e~bStdX

constant -2.50116 -17.858 0.000 0.0820 0.2974
articles 0.04714 4.490 0.000 1.0483 1.3150

constant -2.72101 -22.402 0.000 0.0658 0.2673
articles 0.10239 9.756 0.000 1.1078 1.8054

b = raw coefficient
z = z-score for test of b=0
P>|z]| = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
e~bStdX = exp(b*SD of X) = change in odds for SD increase in X
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Comparing groups using probabilities

1. Compute the discrete change for gender (group difference):
A,_, (articles) = Pr(y =1]articles) —Pr(y=1[articles)

2. With a 95% confidence interval (Cl):

|:Am—w (articles) A, (articles)

LowerBound * UpperBoundj|
3. With repeated sampling, we expect Am.y to fall within interval 95% of the time.
4.The Cl can be computed using

a. Delta method using margins which is fast

b.Bootstrap which is 1,000 time slower

5. With one RHS variable, we can plot all probabilities and discrete changes....
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#6 Probabilities and group difference

A: Probabilities by group B: Discrete change with CI
Model 2 Model 2
“--2— Men e 95% confidence interval
—&— Women A,AA’ o ; 1 Difference is not significant
e 5.
I £ 2+
e e 2.
:gm, 2 &
&g & _|

T T
0 10 20 30 40 50 0 10 20 30 40 50
Number of Articles Number of Articles
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Group difference with Cl or a broken line
B: Group difference with CI C: Group difference with broken line

Model 2 Model 2

77777 95% confidence interval
Difference is not significant

Difference is significant
----- Difference is not significant

Pr(men) - Pr(women)
-1 0 1 2 3 4 5 6 7 8
| TR S h

Pr(men) - Pr(women)
-1 0 1 2 3 4 5 6 7 8
| T S h

T T u U T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Number of Articles Number of Articles
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Adding variables

1. Adding variables complicates things

2. With two independent variables
Pr(y=1|x,2)=F(a+Bx+p,1)
3.Setting z = Z" changes the intercept in an equation including only x
Pr(y:1|x,Z*): F(a+ﬂxx+ﬁzz*)
= F([a+ﬂzz*]+ﬂxx)
=F (o' +BX)

4.The probabilities and group differences depend on the levels of all variables
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Comparing groups with additional variables

1.For a given z=2*
Men: Pr(y:I\X,Z*)m:F(a*m+[)’:"X)
Women: Pr(y:1|X,Z*)W:F(a*W+,BXWX)
2. Group difference depends on the level of all variables

Any(%.27) =Pr(y:1|x,z*)m —Pr(y:I\X,Z*)W
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#7 M3: articles and prestigious jobs
logit (N=2797): Factor Change in Odds

Odds of: Tenure vs NoTenure

WOMEN b z P>]z] e  e”bStdX
constant -2.60432 -17.320 0.000 0.0740  0.2829
articles  0.06761  5.358 0.000 1.0699 1.4811

presthi  -1.98396 -2.685 0.007 0.1375 0.7484

constant  -2.71499 -22.268 0.000 0.0662 0.2681
articles 0.10554 9.890 0.000 1.1113 1.8385
presthi -0.94529 -2.058 0.040 0.3886 0.8627
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M3: Plot of probabilities

Model 3

---4x - Men - not distinguished

—&— Men - distinguished

== -+ Women - not distinguished £x
—@— Women - distinguished

5 .75
| |

Probability of Tenure

.25
|

T T T T T T
0 10 20 30 40 50
Number of Articles

otplc

>dalec15-brmgroups-tenureV1 2014-07-30
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M3: Group differences

Model 3
CQ -
——— Distinguished
N e if not significant
© —+H— Not distinguished
= | ----- if not significant
£ @
<)
2«
o
A
c
()
£ N+
=
o ~
od=z—===—

T
0 10 20 30 40 50
Number of Articles

otplots cdalec15-brmgroups-tenureV1 2014-07-30
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#10 M4: full model for women

logit (N= 2797): Factor Change in Odds

0dds of: Tenure vs NoTenure
WOMEN b z P>|z]| e”b e"bStdX
constant -5.84198 -6.747 0.000 0.0029 0.0589
year 1.40777 5.472 0.000 4.0868 30.1273
yearsq -0.09559 -4.364 0.000 0.9088 0.1857
select 0.05513 0.769 0.442 1.0567 1.1534
articles 0.03395 2.693 0.007 1.0345 1.2181
prestige -0.37079 -2.376 0.017 0.6902 0.6013
b = raw coefficient
z = z-score for test of b=0
P>]z] = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
e”bStdX = exp(b*SD of X) = change in odds for SD increase in X
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#10 M4: full model for men
logit (N= 2797): Factor Change in Odds
0dds of: Tenure vs NoTenure
MEN b z P>]z| e”b e~bStdX
constant -7.68016 -11.271 0.000 0.0005 0.0241
year 1.90885 8.915 0.000 6.7454 130.9789
yearsq -0.14322 -7.699 0.000 0.8666 0.0622
select 0.21577 3.513 0.000 1.2408 1.7711
articles 0.07369 6.367 0.000 1.0765 1.5299
prestige -0.43119 -3.963 0.000 0.6497 0.5418
b = raw coefficient
z = z-score for test of b=0
P>]z] = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
e”bStdX = exp(b*SD of X) = change in odds for SD increase in X
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M4: Plots with prestige =5
A. Probabilities by gender B. Group differences with Cl

Model 4: Plotted at prestige = 5 Model 4: Plotted at prestige = 5

——&—- Men
—&— Women

(not significant) -

Pr(women)
2 3 4 5 6 7
|

Probability of Tenure

Pr(men) -

R

0
I

Upper bound -

50 0 o
Number of Articles Number of Articles
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M4: Plots with prestige =5
Converting Cl to a broken line
B. Group difference with Cl

Model 4: Plotted at prestige = 5 Model 4: Plotted at prestige = 5

C. Group difference with broken line

iy Upper bound - =
© (not significant) o = ©4
g < - § < -
2 o et - 2 o "
Tl el Sl —
a I o
]; N ; e
Number of Articles Number of Articles
1. Do this for each level of prestige
2.Then combine the group differences in a single graph
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M4: Group differences by articles & prestige
Model 4
I.O. -
—— Weak (prestige=1)
—— Adequate (prestige=2)
~. 4 ——— Good (prestige=3)
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M4: Group differences by prestige & articles
Model 4
I.O. -
no articles 10 articles
20 articles 30 articles
= A 40 articles 50 articles /
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M4: Group differences by prestige and articles
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Conclusions
1.LRM: Chow-type tests are used to compare coefficients across groups
2.BRM: Chow-type tests should not be used due to identification
3.Two approaches for comparing groups

a. Slope coefficients: With added assumptions tests are possible

b. Probabilities: Tests are not affected by the identification issues

4.Both approaches have limitations

Tests of regression coefficients

1. Can the equality assumption be justified?
2.Technical issues regarding tests (see Williams 2009).
3. Are the coefficients what you want to test?

4. Does it matter whether gender differences in tenure are due to differences in
the effect of articles or differences in unexplained variation?
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Tests of predictions
1.The substantive question is
"Is the effect of articles the same for men and women?"
2. With probabilities, this does not have a simple answer
3. Do you need to adjust for multiple tests? If so, how?

4. Do you have sufficient observations to support your conclusions?
Are the predictions on the support?

Was Allison right?

"Differences in the estimated coefficients tell us nothing about the differences in the
underlying impact of [publications] on [tenure for] the two groups."

1. Predicted probabilities are not affected by the identification problem

2.0dds ratios can be computed as an average of predicted probabilities

3. Accordingly, you can test if the OR's are equal across groups. But would you
want to?
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Fundamentally, what is an effect?
1. Can probabilities show the effect of articles?

2. Are regression coefficients required to describe an effect?
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