
The Stata Journal (yyyy) vv, Number ii, pp. 1–10

A Workflow for Changing Working Directories
and Managing Projects

Draft – Comments Welcome

Scott Long
Indiana University

Bloomington, IN/USA
jslong@iu.edu

2017-09-11

Abstract. An effective way to manage multiple projects is to use a different work-
ing directory for each project. This article describes the makecd command which
creates commands that quickly change the working directory. These commands
can also create global macros that customize the environment for each project and
automatically run commands after changing the working directory. The listcd

command provides a point and click interface for changing working directories.

Acknowledgements Trent Mize, Nic Bussberg, and Long Doan gave me valuable
suggestions.

Keywords: st0001, workingdir package, dropcd, listcd, makecd, working directory,
managing projects

Note To install the commands in this article, search workingdir and follow the
links to install the commands.

Using a different working directory for each project is critical for an effective work-
flow. Indeed, changing the working directory is often the first thing people do after
starting Stata. Sadly, changing working directories in Stata is like having a sports car
that can only be started by opening the trunk to insert the key. You can run cd after
entering a sometimes lengthy path name or use the menu to click through your directory
structure. On a Mac, Stata opens in the working directory when you last exited Stata.
For Windows and Unix, the default working directory is selected during installation with
no simple way to change the default. The workingdir package contains commands that
simplify changing working directories and let you create an environment associated with
each working directory.

The workingdir package is organized around the idea of a project. A project is
a distinct activity such as a writing a paper, taking a class, or developing a Stata
command. The makecd command automatically creates (i.e., makes) commands, called
cdproject commands that let you change the working directory by entering a simple
command name, rather than typing a lengthy path name or clicking through your
directory structure. For example, you can easily create the command cdpaper that
changes to the directory for a paper you are writing, while the command cdclass

c© yyyy StataCorp LP st0001



2 A Workflow for Changing Working Directories and Managing Projects

changes to the directory for your class. The listcd command lists your cdproject
commands along with information describing each project. Clicking on a command
name runs the command. For many users being able to easily change working directories
is the only feature of the workingdir package that will be used. However, for those who
want more control over the way work is completed for each project, you can define global
macros that specify paths where datasets are located and automatically run commands
after changing the working directory. The workingdir package includes two primary
commands:

makecd creates cdproject commands that change the working directory, create global
macros with information about each project, and optionally run commands when
projects are switched. These commands are saved in your PERSONAL directory.

listcd displays an annotated list of cdproject commands. You can click on a command
name to change the working directories or run a cdproject command from the
Command window. It also provides a simple way to delete cdproject commands.

Non-programmers can use these commands without knowing anything about Stata pro-
gramming. Programmers can customize the commands to add other features. These
commands were inspired by the fastcd package by Winters (2002), Baum’s ideas about
using globals macros create an environment for a research project (Baum 2016, 78-
79), and Long’s simple commands for changing the working directories (Long 2009,
111-112,117-118).

I begin by illustrating the most basic features for changing the working directory and
show how these can be used to change Stata’s initial working directory. The next section
explains more advanced features that allow you to create robust and portable do-files
that use global macros to specify the location of datasets and that can automatically
execute commands when you change projects.

1 Basic features for changing projects

A simple example shows you how to create commands to move among directories. Sup-
pose that a paper your are writing uses working directory
d:/dropbox/active/paper/work, while a class you are taking uses
d:/dropbox/active/class/work.1 To create the command cdpaper to change the
working directory for this paper, I start by changing my working directory to that
location using either the Change working directory dialog or the cd command. For
example,

. cd d:/dropbox/active/paper/work
d:/dropbox/active/paper/work

Then I create the cdpaper command:

. makecd paper
command cdpaper saved in your PERSONAL directory

1. I use forward slashes rather than a backslashes since these works in all operating systems.



Short article author list 3

makecd saves the file cdpaper.ado in my PERSONAL directory. To find out where that
directory is, run sysdir. Next, I change to the working directory for my class and
create the cdclass command:

. cd d:/dropbox/active/class/work
d:/dropbox/active/class/work

. makecd class
command cdclass saved in your PERSONAL directory

I can now use these commands to move between directories. To change to the directory
for my paper,

. cdpaper
d:/dropbox/active/paper/work

where the command echoes the working directory that was set. To change to the
directory for my class,

. cdclass
d:/dropbox/active/class/work

I can create cdproject commands for all of my projects. To list these commands,

. listcd

cdcda - d:/dropbox/active/cda2017/work/
cdclass - d:/dropbox/class/work/

cdcouples - d:/boxsync/kinsey/couples/work/
cddesk - c:/users/jslong/desktop/statawork/

cdpaper - d:/dropbox/active/paper/work/
cdstart - d:/statastart/

cdworkflow - d:/dropbox/active/workflow/work/

Command names on the left are shown in blue. If I click on a name, the command is
executed. (This feature is not available when running Stata in console mode.) I can also
run commands from the Command window or include them in do-files. As the number
of cdproject commands increases, scanning the list of directories becomes awkward. A
more efficient approach is to use the note() option when creating a command:

. makecd paper, note(Groups paper with SAM) replace
command cdpaper saved in your PERSONAL directory

After creating several commands using notes,

. listcd

cdcda - Stat 503 CDA
cdclass - d:/dropbox/class/work/

cdcouples - Couples 3 paper
cddesk - Desktop

cdpaper - Groups paper with SAM
cdstart - d:/statastart/

cdworkflow - Workflow 2nd

For commands that were not created with the note() option, the path is shown. Even
when notes are available, you can list the directories by running listcd, dir.



4 A Workflow for Changing Working Directories and Managing Projects

You can delete a cdproject command by deleting cdproject.ado in PERSONAL. Easier
yet,

. listcd, delete

cdcda - Stat 503 CDA (delete)
cdclass - d:/dropbox/class/work/ (delete)

cdcouples - Couples 3 paper (delete)
cddesk - Desktop (delete)

cdpaper - Groups paper with SAM (delete)
cdstart - d:/statastart/ (delete)

cdworkflow - Workflow 2nd (delete)

and click on delete which is shown in blue.

Controlling the starting working directory

There is no easy way to change the working directory in which Stata starts, hereafter
referred to as the starting directory. One solution is to run listcd as soon as Stata
starts and click on the project where you want to start. Alternatively, you can modify
your profile.do which is run automatically each time Stata is started. To find where
profile.do is located, run

findfile profile.do, path(STATA;BASE;SITE;PERSONAL;PLUS)

If the file is not found, you need to create it. To determine the best location for the file,
check Stata Installation Guide or Getting Stata with Stata for your operating system.
You can find these guides by running help getting started.

You could add a cd command to profile.do to set the starting directory. For
example,

cd d:/statastart

This works, but if you want to change the starting directory, you must edit profile.do.
Since I want Stata to open in my most active project, and since that project changes
frequently, editing profile.do is cumbersome. An easier solution is to use makecd to
create the command cdstart to change to the working directory you want to start in.
Then, add cdstart to profile.do so that it is run each time Stata starts. To change
the startup directory, simply replace cdstart with a version that opens up the directory
I want. For example, to make d:/statastart the starting directory:

cd d:/statastart
makecd start, replace

If I am working on a paper whose working directory is set with cdpaper, I run:

cdpaper
makecd start, replace

The next time I start Stata, it opens in the directory for my paper.



Short article author list 5

Even if Stata opens the the directory where I am usually working, I often work on
other projects. To make it easy to change directories immediately after I start Stata, I
add listcd to profile.do:

cdstart
listcd

cdstart opens in my preferred working directory and then listcd shows me other
locations I can chose. To prevent an error if the workingdir package was not installed
or if I haven’t created cdstart, I can use the more robust commands:

capture noisily cdstart
capture noisily listcd

This will capture errors without ending the do-file, but also shows the output if an error
does not occur.

2 Advanced features for managing projects

cdproject commands can set global macros with paths where datasets are located (sec-
tion 2.1). While I prefer to keep my datasets in the working directory, if you keep
datasets in locations other than your working directory, these globals let you create
robust do-files. You can also have a cdproject command automatically run a command
when you change projects (section 2.2). While I don’t use these features often, for some
projects they are very useful. Feel free to skip these sections if these are not features
you need.

2.1 Robust specifications of data paths

The use command loads a dataset from the current working directory unless a path has
been specified. This path can be on your computer, on a LAN, or an URL. To make do-
files portable, you should not hard code these paths since they might not be valid on an-
other computer. For example, if your do-file includes use d:/datasets/binlfp4, clear,
it will not run on a computer with a different directory structure. Accordingly, I
prefer to keep datasets in the working directory and use the robust command use
binlfp4, clear. Sometimes, however, it is necessary or convenient to have datasets
in other locations. For example, I might access data over the web or share datasets
with collaborators on a shared directory on a LAN. Or, I might prefer to have datasets
located someplace other than the working directory. If this is the case, you can create
robust do-files by using a global macro created outside of the do-file that has the path
where datasets are located. makecd can create cdproject commands that define global
macros with data paths, where each project can have different paths.

An example illustrates how to use globals that contain paths. I create a global with
the path:

global S_cddata "d:/datasets/"



6 A Workflow for Changing Working Directories and Managing Projects

The global is created outside of my do-file since I want the do-file to run without changes
on other computers. My do-file loads a dataset with the command

use "${S cddata}binlfp4", clear

When the global S cddata is expanded, the command is interpreted as

use "d:/datasets/binlfp4", clear

If the global was not defined, the command is interpreted as

use "binlfp4", clear

and Stata would look for the data in the working directory. When I work on a computer
with a different file structure, my do-file will run if I first create the global S cddata
with the correct path for that computer. For example,

global S_cddata "c:/users/jslong/documents/datasets/"

The ending slash in the path is important. If the slash was missing, I would need to
load the dataset with the command

use "${S cddata}/binlfp4", clear

where I added a / before the dataset name. While this works, an error occurs if the
global is not defined since the command is interpreted as

use "/binlfp4", clear

The makecd command lets your make cdproject commands that define three global
macros containing data locations. The data(path) option creates the global S cddata
with the first data path. For example,

makecd paper, data(d:/datasets/source)

makecd automatically adds an ending slash and converts \ to / since slashes work with
all operating systems while back slashes only work for Windows. The data2(path)
option adds a second data path saved in the global S cddata2. For example,

makecd paper, data(d:/datasets/source) data2(d:/datasets/derived)

Two data paths would be useful if you keep source datasets in one directory and datasets
you create in another. You can create the global S cdurl with a web address by using
the url(address) option. For example,

makecd paper, url(http://www.indiana.edu/~jslsoc/stata/spex data)

You can add all of the paths at the same time. For example,

makecd paper, data(d:/datasets/source) data2(d:/datasets/derived) ///
url(http://www.indiana.edu/~jslsoc/stata/spex_data) replace



Short article author list 7

If you do not want makecd to add an ending slash, include the noslash option.

After running a cdproject that includes data locations, a do-file can use or save data
from multiple locations. For example,

use "${S cddata}mrozsource", clear
(output omitted )

save "${S cddata2}binlfp5", replace
(output omitted )

use ${S cdurl}nomocc4, clear
(output omitted )

use "couart4", clear // load data from working directory
(output omitted )

Quotes are included in case a path contains a space.

2.2 Further customization of your research environment

The autorun(command) option specifies a command that is run by cdproject after the
working directory is changed and the global macros are defined. For example, to list
the datasets in the working directory:

makecd paper, auto(dir *.dta)

When I run cdpaper,

. cdpaper
d:/dropbox/active/paper/work

. dir *.dta
338.2M 11/16/16 14:36 34802-0001-Data-compressed.dta
64.4M 11/16/16 14:34 gss2015-extract01.dta

Or, I could automatically load a dataset:

makecd paper, auto(use 34802-0001-Data-compressed, clear)

Then,

. cdpaper
d:/dropbox/active/paper/work

. use 34802-0001-Data-compressed, clear
(General Social Survey, 1972-2012 [Cumulative File])

where cdpaper ran use 34802-0001-Data-compressed, clear. If you want to auto-
matically run more than one command, create a do-file in the project’s working directory,
say paper-setup.do, with the commands you want to run to initiate the project. For
example,

makecd paper, autorun(do paper-setup)

Finally, you can create another global macro with another data path or other infor-
mation that I have not anticipated. Option user(string) creates the global S cduser



8 A Workflow for Changing Working Directories and Managing Projects

that contains a string. Unlike the data(), data2(), and url() options, an ending slash
is not automatically added to the string. If you want S cduser to contain a path, be
sure to include and ending slash.

3 Command syntax for workflow commands

The syntax for each command is given, followed by a brief discussion of Stata program-
ming features used by these commands. The dropcd is a utility for deleting cdproject
commands if you do not want to use the listcd interface.

3.1 makecd: creating cdproject commands

makecd creates a cdproject.ado file that is saved in the PERSONAL directory. When no
options are specified, the only thing that the cdproject command does is change the
working directory to the directory that was active when makecd was run. The syntax
is:

makecd project
[
, note(string) data(data-path) data2(data-path) url(url)

user(string) autorun(command) details noslash replace
]

where project is the mnemonic for your project. Commands created by makecd begin
with cd, but you do not need to include cd in project.

Options

note(string) describes the project. Notes are shown by listcd to help you remember
what each command does.

data(data-path) is a path where datasets are located which is stored in the global macro
S cddata, with an ending / added to the path unless the noslash option is used.
You can load a dataset from this path with use ${S cddata}filename or save a
dataset with save ${S cddata}filename.

data2(data-path) is a second path where datasets are located which is stored in the
global S cddata2. An ending / is added to the path unless the noslash option is
used. You can load a dataset from this path with use ${S cddata2}filename or
save a dataset with save ${S cddata2}filename.

url(web-address) is a web address which is stored in the global S cdurl. An ending
/ is added unless the noslash option is used. You can load datasets with use
${S cdurl}filename.

user(string) is any string, such as another data directory or URL. The string is stored
in the global S cduser. No ending slash is added.

autorun(command) is a command to be run by cdproject after the the global macros



Short article author list 9

are created and the working directory is changed. Examples are auto(dir *.dta))
and auto(do project-startup).

details lists the globals created when cdproject is run.

noslash prevents an ending / from being added to the data path or URL.

replace overwrite cdproject.ado if it exists.

Globals created by cdproject commands are not removed by macro drop all. To
remove them you must run macro drop name, such as macro drop S cddata or macro
drop S cd*.

3.2 The listcd command

listcd lists the cdproject commands in PERSONAL along with the note or working
directory for each project. If you click on the name of a command, which is shown in
blue, the command is executed. The syntax is:

listcd
[
, directories details delete

]

If the working directory for a command is not found, a warning is given.

Options

details displays the S cd globals created by each command.

directories displays the directory being set even if a note is defined.

delete displays (delete) in blue; if you click on delete, the ado file for that command
is deleted.

3.3 The dropcd command

dropcd delete cdproject.ado files in PERSONAL.

dropcd cdproject | all

The file cdproject.ado is deleted from the PERSONAL directory.

3.4 Programming features used by the workflow package

The workingdir commands depends on several features of Stata.

Dynamically creating ado files Non-programmers are unlikely to learn how to pro-
gram simply to make it easier to change working directories. Programmers are un-
likely to want to write such mundane commands. makecd uses file write to create



10 A Workflow for Changing Working Directories and Managing Projects

cdproject.ado with the commands for changing the work directory, creating globals,
and automatically running commands.

The PERSONAL directory The cdproject.ado files are saved in the PERSONAL di-
rectory so that they will run regardless of your current working directory. If PERSONAL

is not defined or the directory specified in PERSONAL does not exist, makecd exists with
an error. Run sysdir to determine where your PERSONAL is located. If no directory
is listed or it points to a directory that does not exist, you can set the directory with
sysdir set; enter help sysdir for details.

System global macros It is generally better if your do-files do not depend on globals
created outside of the do-file. If they do, the do-file might not run correctly if those
globals do not exist, making it difficult to reproduce your analyses. Accordingly, I
recommend including macro drop all at the start of each do-file. To prevent this
command from deleting the global macros created by cdproject commands, these globals
are system globals which are ignored by macro drop all. To be a system global, the
name must begin with S . The following globals are created cdproject commands:

S cdauto User specified command run by cdproject.
S cdcmd Name of cdproject command.
S cddata Path for datasets.
S cddata2 Second path for datasets.
S cdnote Note describing cdproject.
S cdurl Web address.
S cduser Any string.
S cdwd Working directory set by cdproject.

To list the content of these globals, you can run macro dir. Or, run listcd, details
to list all cdproject commands along with the global macros they create. Running
cdproject, details lists the globals created by the command.

4 Conclusions

I hope these commands are useful for developing an efficient workflow that supports
reproducible results. Hopefully, the functionality of these commands will find its way
into a future release of Stata.

About the authors

Scott Long started writing these commands while teaching a course on reproducible results at

the ICPSR Summer Program.



Short article author list 11

5 References
Baum, C. F. 2016. An introduction to Stata programming, vol. 2. 2nd ed. Stata Press

College Station.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX:
Stata Press.

Winters, N. 2002. fastcd: module to automate changing directories.


	A Workflow for Changing Working Directories and Managing Projectsto.44em.to.44em.Short article author list
	Basic features for changing projects
	Controlling the starting working directory

	 Advanced features for managing projects
	Robust specifications of data paths
	Further customization of your research environment

	Command syntax for workflow commands
	makecd: creating cdproject commands
	The listcd command
	The dropcd command
	 Programming features used by the workflow package

	Conclusions
	References


