
The Stata Journal (2018-08-08 draft) vv, Number ii, pp. 1–11

Commands for Changing the Working Directory

Draft II – Comments Welcome

Scott Long
Indiana University

Bloomington, IN / USA
jslong@iu.edu

2018-08-10

Abstract. If you work on multiple projects, you need an easy way to
change the working directory. This article describes the savecd command
which automatically creates cdproject commands which lets you change
your working directory by running cdproject. listcd lists your cdproject
commands with a point and click interface for changing directories. Op-
tionally, these commands can be used to customize the environment for
each project.

Acknowledgements Trent Mize, Nic Bussberg, and Long Doan gave me
valuable suggestions.

Keywords: st0001, workingdir package, listcd, savecd, working directory,
managing projects

Note To install the commands in this article, search workingdir and
follow the links.

If you work on multiple projects, changing the working directory is often
the first you do after starting Stata. Sadly, changing working directories in
Stata is like having a sports car that can only be started by opening the trunk
to insert the key. You can use cd which requires you to type a sometimes
lengthy path name or use the menu to click through your directory structure.
On a Mac, Stata opens in the working directory that was used when you last
exited Stata. With Windows and Unix, the default working directory is selected
during installation with no simple way to change the default. The workingdir
package provides commands that simplify changing working directories. For
many users, this will be the only feature of the package that they need. For
more advanced applications, the package also lets you customize the environment
for each project. These commands were inspired by Winters (2002)’s fastcd
package, Baum’s ideas about using global macros to create an environment for a
research project (Baum 2016, 78-79), and Long’s simple commands for changing

c© 2018-08-08 draft StataCorp LP st0001



2 Commands for Changing the Working Directory

the working directories (Long 2009, 111-118).

The workingdir package is organized around the idea of a project. A project
is a distinct activity such as a writing a paper or taking a class. The savecd
command automatically creates commands, called cdproject commands, that
change the working directory. For example, if you are in the working directory
used for a research paper, savecd paper creates the command cdpaper. Run-
ning cdpaper changes to the the working directory used for that paper. The
listcd command lists your cdproject commands along with the path for the
working directory or a note describing the project. Clicking on the name runs
the command. Many users will only use the commands to quickly change their
working directory. For those who want more control over the way work is com-
pleted for each project, however, you can define global macros that specify paths
where datasets are located and automatically run commands after changing the
working directory.

Section 1 illustrates basic features for changing the working directory and
shows how these can be used to change working directory where Stata opens.
Section 2 explains advanced features that allow you to create robust and portable
do-files that use global macros to specify the location of datasets and that can
automatically execute commands when you change projects. Section 3 provides
the full syntax of each command along with some technical information. For
Stata programmers, section 4 discusses how these commands were written.

1 Creating commands to change the working directory

A simple example illustrates how to create commands to switch among working
directories. Suppose that d:/active/paper/work is the working directory used
for a paper, while d:/active/class/work is used for a class.1 To create the
command cdpaper that changes to the working directory for the paper, I start
by changing my working directory to that location, using either the Change
working directory dialog or the cd command. For example,

. cd d:/active/paper/work

d:/active/paper/work

To create the cdpaper command:

. savecd paper

command cdpaper saved in your PERSONAL directory

1. I use forward slashes rather than a backslashes since these works in all operating systems.



Scott Long 3

savecd saves cdpaper.ado to my PERSONAL directory. To create the command
cdclass to change to the working directory for my class:

. cd d:/active/class/work

d:/active/class/work

. savecd class

command cdclass saved in your PERSONAL directory

I can use these commands to move between working directories. To change
to the directory for my paper,

. cdpaper

d:/active/paper/work

where the command echoes the working directory that was set. To change to
the directory for my class,

. cdclass

d:/active/class/work

To list all of my cdproject commands:

. listcd

cdcda d:/active/cda2017/work/ - drop

cdclass d:/class/work/ - drop

cdcouples y:/KI/research/couples/work/ - drop

cddesk c:/users/jslong/desktop/statawork/ - drop

cdpaper d:/active/paper/work/ - drop

cdstart d:/statastart/ - drop

cdworkflow d:/active/workflow/work/ - drop

The command names on the left are shown in blue. When you click on the name,
the command is executed. If you click on drop on the right, also shown in blue,
that command is dropped. You can also run commands from the Command
window or include them in do-files.

As the number of cdproject commands increases, scanning the list of direc-
tories becomes awkward. A more efficient approach is to describe each project
with a note. For example:

. savecd paper, note(Groups paper with SAM) replace

command cdpaper saved in your PERSONAL directory



4 Commands for Changing the Working Directory

where the replace indicates that if cdpaper.ado exists, replace it with the new
command. After creating several commands using notes,

. listcd

cdcda Stat 503 CDA - drop

cdclass d:/class/work/ - drop

cdcouples Couples 3 paper - drop

cddesk Desktop - drop

cdpaper Groups paper with SAM - drop

cdworkflow WFDAUS - drop

For commands created without the note() option, the path is shown. Even
when notes are available, you can list the paths instead by running listcd,
dir.

1.1 If cdproject commands are not found

Suppose you run a command and obtain an error, such as:

. cdapaper

command cdapaper is unrecognized

r(199);

This would occur if you created the cdpersonal commands on different com-
puter. If that is the case, copy the cdpersonal.ado files to the PERSONAL on the
computer you are using. To find the location of this directory, run adopoth.

A second possibility is that your PERSONAL directory does not exist or it
is not on the adopath. The adopath is the set of folders where Stata looks
for commands, such as cdpaper.ado. Run adopath to check that a PERSONAL

directory is on the adopath. If it is not, Enter help adopath for details on how
to add the PERSONAL directory to the adopath.

1.2 Controlling the starting working directory

Stata does not provide an easy way to change the working directory in which
Stata starts. For simplicity, I refer to this as the starting directory. One so-
lution is to set the starting directory in your profile.do, a do-file that is run
automatically each time Stata opens. To find where profile.do is located, run

findfile profile.do, path(STATA;BASE;SITE;PERSONAL;PLUS)



Scott Long 5

If the file is not found, you need to create it. To determine the best location for
the file, check Stata Installation Guide or Getting Stata with Stata for your op-
erating system. You can find these guides by running help getting started.

To have Stata start in the directory you want, you can add a cd command
to profile.do. For example,

cd d:/active/class/work/

The problem is that if you want to change the starting directory, something I
do when I change my focus to a new project, you have to edit profile.do.

An easier solution is to use savecd to create cdstart to change to the
starting directory you want to use. For example, suppose I want to start the
working directory for a paper that I am writing. I change to that directory and
create cdstart:

. cd d:/active/paper/work/

d:/active/paper/work

. savecd start, replace

command cdstart saved in your PERSONAL directory

Then, I add cdstart to profile.do so that the command is run each time
Stata starts. To change the starting directory, I replace cdstart with a version
that opens up the directory I want. For example, make my class the starting
directory:

. cdclass

d:/class/work/

. savecd start, replace

command cdstart saved in your PERSONAL directory

The next time I start Stata, it opens in the directory for my paper.

Even if Stata opens the the directory where I usually work, I might want to
switch to a different projects. To make this easy, I add listcd to profile.do:

cdstart

listcd

cdstart opens in my starting directory and then listcd shows me other lo-
cations I can choose. To prevent an error if the workingdir package was not
installed or if I have not created cdstart, I use the more robust commands:



6 Commands for Changing the Working Directory

capture noisily cdstart

capture noisily listcd

capture capture errors without ending the do-file, while noisily prevents capture
from suppressing the output from the command. After these two commands are
added to profile.do, I no longer need to edit that file to change my starting
directory.

2 Advanced features for managing projects

cdproject commands can also create global macros with paths where datasets
are located (section 2.1) and automatically run a command when you change
projects (section 2.2). This allows cdproject commands to create the project
environment discussed by Baum (2016, 78-79). While I don’t use these features
often, for some projects they are very useful. If all you want to do is quickly
change your working directory, you can skip the rest of this section.

2.1 Robust specification of data paths

The use command loads a dataset from the current working directory unless
a path is specified. This path can be on your computer, on a LAN, or an URL.
To make do-files portable, you should not hard code paths since they might not
be valid on another computer or at a later time on your computer. For exam-
ple, if your do-file includes the command use d:/datasets/binlfp4, clear, it
will not run on a computer with a different directory structure. To avoid this
problem, I keep datasets in the working directory and use the robust command
use binlfp4, clear. Sometimes, however, it is necessary or convenient to have
datasets in other locations. For example, I might need to access data over the
web or share datasets with collaborators using a shared directory on the LAN.
Or, I might prefer to keep datasets for all of my projects in d:/datasets/.

When datasets are not in the working directory, you can create robust do-
files by using a global macro that contains the path where datasets are located.
For example, if in d:/datasets/, I create the global with this path:

global S_cddata "d:/datasets/"

Two things are important. First, This global is created outside of my do-file since
I want the do-file to run on other computers without without any changes. If I



Scott Long 7

created the global inside the do-file, I would have to change the do-file. Second,
the name of the global begins with S_ which makes it a system global. These
globals are not dropped by macro drop _all. This is important since you want
the global to persist even if the do-file that use it includes macro drop _all.

My do-file loads a dataset with the command

use "${S cddata}binlfp4", clear

When the global S_cddata is expanded, the command is interpreted as

use "d:/datasets/binlfp4", clear

If S_cddata was not defined, the use command is interpreted as

use "binlfp4", clear

and Stata looks for the dataset in the working directory. When I work on a
computer with a different directory structure, my do-file will run if I first create
the global S_cddata with the correct path for that computer. For example,

global S_cddata "c:/users/jslong/documents/datasets/"

The ending slash in the path is critical. Here’s why. If the slash is missing, I
would load the dataset with the command

use "${S cddata}/binlfp4", clear

where I added / before the dataset name. While this works if the global has
been defined, an error occurs if the global was not defined since the command
is interpreted as

use "/binlfp4", clear

The savecd command can create cdproject commands that define three
global macros that contain data locations. The data(path) option creates the
global S_cddata with the first data path. For example,

savecd paper, data(d:/datasets/source)

savecd automatically adds an ending slash and converts \ to / since slashes
work with in operating systems while back slashes only work in Windows. The
data2(path) option adds a second data path saved in the global S_cddata2.
For example,



8 Commands for Changing the Working Directory

savecd paper, data(d:/datasets/source) data2(d:/datasets/derived)

Two data paths are useful if you keep source datasets in one directory and
datasets you create in another. For example, after running cdpaper that includes
data locations, a do-file can use or save data in different locations. For example,

use "${S cddata}mrozsource", clear

(output omitted )

save "${S cddata2}binlfp5", replace

(output omitted )

Quotes are included in case a path contains a space. You can create the global
S_cdurl with a web address by using the url(address) option. For example,

savecd paper, url(http://www.indiana.edu/~jslsoc/stata/spex data)

2.2 Further customization of the project environment

The autorun(command) option specifies a command that is run by cdproject
after the working directory is changed and the global macros are defined. For
example, to list the datasets in the working directory:

savecd paper, auto(dir *.dta)

When I run cdpaper,

. cdpaper

d:/dropbox/active/paper/work

. dir *.dta

338.2M 11/16/16 14:36 34802-0001-Data-compressed.dta

64.4M 11/16/16 14:34 gss2015-extract01.dta

Or, I could automatically load a dataset:

savecd paper, auto(use 34802-0001-Data-compressed, clear)

Then,

. cdpaper

d:/dropbox/active/paper/work

. use 34802-0001-Data-compressed, clear



Scott Long 9

(General Social Survey, 1972-2012 [Cumulative File])

where cdpaper ran use 34802-0001-Data-compressed, clear.

If you want to automatically run more than one command, create a do-file in
the project’s working directory, say paper-setup.do, with the commands you
want to run to initiate the project. For example,

savecd paper, autorun(do paper-setup)

Finally, you can create another global macro with another data path or
other information that I have not anticipated. Option user(string) creates the
global S_cduser that contains a string. Unlike the data(), data2(), and url()
options, an ending slash is not automatically added to the string. If you want
S_cduser to contain a path, be sure to include and ending slash.

3 Command syntax for workflow commands

The syntax for each command is given, followed by a brief discussion of Stata
programming features used by these commands.

3.1 savecd: creating cdproject commands

savecd creates a cdproject.ado file that is saved in the PERSONAL directory. If
no options are specified, the only thing that the cdproject command does is
change the working directory to the directory that was active when savecd was
run. The syntax is:

savecd project
[
, note(string) data(data-path) data2(data-path) url(url)

user(string) autorun(command) details noslash replace
]

where project is the mnemonic for your project. Commands created by savecd
begin with cd, but you do not need to include cd in project.

Options

note(string) describes the project. These notes are shown by listcd to docu-
ment the project. To make adding notes faster, you can use the alternative
syntax where everything after the project name and before the comma is
the note, so that savecd paper My project description is equivalent to



10 Commands for Changing the Working Directory

savecd, note(paper My project description).

data(data-path) is a path where datasets are located which is stored in the global
macro S cddata. An ending / is added to the path unless the noslash option
is used. You can load a dataset from this path with use ${S cddata}filename
or save a dataset with save ${S cddata}filename.

data2(data-path) is a second path where datasets are located which is stored
in the global S cddata2. An ending / is added to the path unless the
noslash option is used. You can load a dataset from this path with use
${S cddata2}filename or save a dataset with save ${S cddata2}filename.

url(web-address) is a web address which is stored in the global S cdurl. An
ending / is added unless the noslash option is used. You can load datasets
with use ${S cdurl}filename.

user(string) is any string, such as another data directory or URL. The string is
stored in the global S cduser. No ending slash is added.

autorun(command) is a command to be run by cdproject after the the global
macros are created and the working directory is changed. Examples are
auto(dir *.dta)) and auto(do project-startup).

details lists the globals created when cdproject is run.

noslash prevents an ending / from being added to the data path or URL.

replace overwrite cdproject.ado if it exists.

Globals created by cdproject commands are not removed by macro drop _all.
To drop these globals, you must run macro drop name, such as
macro drop S_cddata or macro drop S_cd*.

3.2 listcd: point and click interface for cdproject commands

listcd lists the cdproject commands in PERSONAL along with the note or working
directory for each project. If you click on the name of a command, which is shown
in blue, the command is executed. - drop is shown in blue to the right of the
command name and the path/note. If you click on drop for cdproject, the file
cdproject.ado in PERSONAL is deleted.

The syntax is:

listcd
[
file-specification , directories details

]



Scott Long 11

If the working directory for a command is not found, a warning is given.

Options

file-specification is a valid Mac, Unix, or Windows file specification to select
the cdproject commands that are listed. For example, listcd *tch* lists
commands that have tch in the project name.

details displays the S_cd globals created by each command.

directories displays the directory being set even if a note is defined.

4 Programming features used by the workflow package

While non-programmers can use these commands without knowing anything
about Stata programming, programmers can easily customize these commands.
If you want to do this, there are two points to keep in mind.

Writing cdproject.ado files savecd uses file write to create cdproject.ado.
While these commands are straight forward, you need to be careful with the
quotes in commands like this:

file write `adohandle´ _col(5) `"global S_cdcmd "`adoname´""´

System global macros The cdproject commands created by savecd use global
macros to hold information about the project. To prevent these globals from
being dropped by macro drop _all, the cdproject commands use system glob-
als which are not dropped. remove by macro drop _all. The following globals
are created cdproject commands:

S_cdauto User specified command run by cdproject.
S_cdcmd Name of cdproject command.
S_cddata Path for datasets.
S_cddata2 Second path for datasets.
S_cdnote Note describing cdproject.
S_cdurl Web address.
S_cduser Any string.
S_cdwd Working directory set by cdproject.

listcd, details lists each cdproject command along with the associated global
macros. cdproject, details lists the globals for that command.



12 Commands for Changing the Working Directory

5 Conclusions

I hope these commands are useful for developing an efficient workflow that sup-
ports reproducible results.

About the authors

Scott Long started writing these commands while teaching a course on reproducible
results at the ICPSR Summer Program.

6 References

Baum, C. F. 2016. An introduction to Stata programming. 2nd ed. Stata Press
College Station.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station,
TX: Stata Press.

Winters, N. 2002. fastcd: module to automate changing directories.


	Commands for Changing the Working Directoryto.44em.Scott Long
	Creating commands to change the working directory
	If cdproject commands are not found
	Controlling the starting working directory

	 Advanced features for managing projects
	Robust specification of data paths
	Further customization of the project environment

	Command syntax for workflow commands
	savecd: creating cdproject commands
	listcd: point and click interface for cdproject commands

	 Programming features used by the workflow package
	Conclusions
	References


