SPost13: Postestimation Analysis with Stata
Long & Freese: Regression Models for Categorical Dependent Variables Using Stata
Long: Regression Models for Categorical and Limited Dependent Variables :: Statalist :: StataCorp :: SPost9
Home Teaching Research SPost13 commands SPost9 commands Workflow of Data Analysis Contact and vita
SPost13
Spost13 Home Errata Installation Help FAQs Short courses Comments Disclaimer
Why use m* commands instead of margins?

The m* commands mgen, mtable, and mchange are wrappers for the power -margins- command that is part of official Stata. The m* commands automatically construct the -margins-commands you need and make the output more compact. For example, suppose that you want to compute average marginal effects for the model:

. spex gssclass4, clear // spex is part of SPost
. ologit class i.female i.white i.year i.educ c.age##c.age income
  < output omitted >

To compute marginal effects at the mean (MEM) with mchange:

. mchange, atmeans

ologit: Changes in Pr(y) | Number of obs = 5620

Expression: Pr(class), predict(outcome())

                        |     lower    working     middle      upper 
------------------------+--------------------------------------------
female                  |                                            
         female vs male |    -0.001     -0.003      0.004      0.000 
                p-value |     0.766      0.765      0.765      0.765 
white                   |                                            
      white vs nonwhite |    -0.014     -0.043      0.054      0.003 
                p-value |     0.002      0.001      0.001      0.001 
year                    |                                            
           1996 vs 1980 |     0.004      0.016     -0.019     -0.001 
                p-value |     0.242      0.249      0.247      0.256 
           2012 vs 1980 |     0.029      0.092     -0.115     -0.006 
                p-value |     0.000      0.000      0.000      0.000 
           2012 vs 1996 |     0.026      0.076     -0.097     -0.005 
                p-value |     0.000      0.000      0.000      0.000 
educ                    |                                            
 hs only vs not hs grad |    -0.029     -0.053      0.079      0.003 
                p-value |     0.000      0.000      0.000      0.000 
 college vs not hs grad |    -0.078     -0.294      0.345      0.027 
                p-value |     0.000      0.000      0.000      0.000 
     college vs hs only |    -0.049     -0.240      0.266      0.024 
                p-value |     0.000      0.000      0.000      0.000 
age                     |                                            
                     +1 |    -0.001     -0.003      0.004      0.000 
                p-value |     0.000      0.000      0.000      0.000 
                    +SD |    -0.021     -0.094      0.107      0.008 
                p-value |     0.000      0.000      0.000      0.000 
               Marginal |    -0.001     -0.003      0.004      0.000 
                p-value |     0.000      0.000      0.000      0.000 
income                  |                                            
                     +1 |    -0.001     -0.002      0.003      0.000 
                p-value |     0.000      0.000      0.000      0.000 
                    +SD |    -0.031     -0.159      0.175      0.015 
                p-value |     0.000      0.000      0.000      0.000 
               Marginal |    -0.001     -0.002      0.003      0.000 
                p-value |     0.000      0.000      0.000      0.000 

Predictions at base value

             |     lower    working     middle      upper 
-------------+--------------------------------------------
  Pr(y|base) |     0.059      0.511      0.417      0.013 

Base values of regressors

             |         1.         1.         2.         3.         2.         3.
             |    female      white       year       year       educ       educ 
-------------+------------------------------------------------------------------
          at |      .549       .814       .451        .31       .582       .241 

             |                      
             |       age     income 
-------------+----------------------
          at |      45.2       68.1 

1: Estimates with margins option atmeans.

These reults were generated using margins along with mlincom (an SPost wrapper for lincom). That output, over 1500 lines long, follow:

. margins female, atmeans pwcompare predict(outcome(1))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-----------------------------------------------------------------
                |            Delta-method         Unadjusted
                |   Contrast   Std. Err.     [95% Conf. Interval]
----------------+------------------------------------------------
         female |
female vs male  |  -.0008964    .003006     -.0067881    .0049953
-----------------------------------------------------------------

. margins female, atmeans pwcompare predict(outcome(2))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-----------------------------------------------------------------
                |            Delta-method         Unadjusted
                |   Contrast   Std. Err.     [95% Conf. Interval]
----------------+------------------------------------------------
         female |
female vs male  |  -.0030847   .0103355     -.0233418    .0171724
-----------------------------------------------------------------

. margins female, atmeans pwcompare predict(outcome(3))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-----------------------------------------------------------------
                |            Delta-method         Unadjusted
                |   Contrast   Std. Err.     [95% Conf. Interval]
----------------+------------------------------------------------
         female |
female vs male  |   .0037665   .0126222     -.0209725    .0285055
-----------------------------------------------------------------

. margins female, atmeans pwcompare predict(outcome(4))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-----------------------------------------------------------------
                |            Delta-method         Unadjusted
                |   Contrast   Std. Err.     [95% Conf. Interval]
----------------+------------------------------------------------
         female |
female vs male  |   .0002146   .0007191     -.0011947     .001624
-----------------------------------------------------------------

. margins white, atmeans pwcompare predict(outcome(1))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

--------------------------------------------------------------------
                   |            Delta-method         Unadjusted
                   |   Contrast   Std. Err.     [95% Conf. Interval]
-------------------+------------------------------------------------
             white |
white vs nonwhite  |  -.0139377   .0045616     -.0228782   -.0049971
--------------------------------------------------------------------

. margins white, atmeans pwcompare predict(outcome(2))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

--------------------------------------------------------------------
                   |            Delta-method         Unadjusted
                   |   Contrast   Std. Err.     [95% Conf. Interval]
-------------------+------------------------------------------------
             white |
white vs nonwhite  |   -.043283   .0127358     -.0682448   -.0183213
--------------------------------------------------------------------

. margins white, atmeans pwcompare predict(outcome(3))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

--------------------------------------------------------------------
                   |            Delta-method         Unadjusted
                   |   Contrast   Std. Err.     [95% Conf. Interval]
-------------------+------------------------------------------------
             white |
white vs nonwhite  |    .054306   .0163801      .0222015    .0864105
--------------------------------------------------------------------

. margins white, atmeans pwcompare predict(outcome(4))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

--------------------------------------------------------------------
                   |            Delta-method         Unadjusted
                   |   Contrast   Std. Err.     [95% Conf. Interval]
-------------------+------------------------------------------------
             white |
white vs nonwhite  |   .0029146   .0008709      .0012078    .0046215
--------------------------------------------------------------------

. margins year, atmeans pwcompare predict(outcome(1))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

---------------------------------------------------------------
              |            Delta-method         Unadjusted
              |   Contrast   Std. Err.     [95% Conf. Interval]
--------------+------------------------------------------------
         year |
1996 vs 1980  |   .0038516   .0032903     -.0025973    .0103005
2012 vs 1980  |   .0294961    .004607      .0204665    .0385256
2012 vs 1996  |   .0256445    .004218      .0173774    .0339116
---------------------------------------------------------------

. margins year, atmeans pwcompare predict(outcome(2))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

---------------------------------------------------------------
              |            Delta-method         Unadjusted
              |   Contrast   Std. Err.     [95% Conf. Interval]
--------------+------------------------------------------------
         year |
1996 vs 1980  |   .0160524   .0139173      -.011225    .0433299
2012 vs 1980  |   .0923386   .0142494      .0644103     .120267
2012 vs 1996  |   .0762862   .0113535      .0540338    .0985386
---------------------------------------------------------------

. margins year, atmeans pwcompare predict(outcome(3))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

---------------------------------------------------------------
              |            Delta-method         Unadjusted
              |   Contrast   Std. Err.     [95% Conf. Interval]
--------------+------------------------------------------------
         year |
1996 vs 1980  |  -.0186776   .0161237     -.0502796    .0129243
2012 vs 1980  |  -.1154841   .0173947      -.149577   -.0813911
2012 vs 1996  |  -.0968064   .0144821     -.1251908   -.0684221
---------------------------------------------------------------

. margins year, atmeans pwcompare predict(outcome(4))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

---------------------------------------------------------------
              |            Delta-method         Unadjusted
              |   Contrast   Std. Err.     [95% Conf. Interval]
--------------+------------------------------------------------
         year |
1996 vs 1980  |  -.0012264   .0010805     -.0033441    .0008914
2012 vs 1980  |  -.0063506   .0011686      -.008641   -.0040603
2012 vs 1996  |  -.0051243   .0008767     -.0068425    -.003406
---------------------------------------------------------------

. margins educ, atmeans pwcompare predict(outcome(1))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-------------------------------------------------------------------------
                        |            Delta-method         Unadjusted
                        |   Contrast   Std. Err.     [95% Conf. Interval]
------------------------+------------------------------------------------
                   educ |
hs only vs not hs grad  |  -.0290935   .0068661     -.0425509   -.0156361
college vs not hs grad  |  -.0782737   .0073786     -.0927355    -.063812
    college vs hs only  |  -.0491803    .003521     -.0560812   -.0422793
-------------------------------------------------------------------------

. margins educ, atmeans pwcompare predict(outcome(2))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-------------------------------------------------------------------------
                        |            Delta-method         Unadjusted
                        |   Contrast   Std. Err.     [95% Conf. Interval]
------------------------+------------------------------------------------
                   educ |
hs only vs not hs grad  |  -.0532385   .0101575      -.073147   -.0333301
college vs not hs grad  |  -.2936371   .0162028     -.3253939   -.2618802
    college vs hs only  |  -.2403985   .0142774     -.2683817   -.2124154
-------------------------------------------------------------------------

. margins educ, atmeans pwcompare predict(outcome(3))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-------------------------------------------------------------------------
                        |            Delta-method         Unadjusted
                        |   Contrast   Std. Err.     [95% Conf. Interval]
------------------------+------------------------------------------------
                   educ |
hs only vs not hs grad  |   .0790268   .0160354       .047598    .1104555
college vs not hs grad  |   .3446856   .0196002        .30627    .3831012
    college vs hs only  |   .2656588   .0148654      .2365232    .2947945
-------------------------------------------------------------------------

. margins educ, atmeans pwcompare predict(outcome(4))

Pairwise comparisons of adjusted predictions
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

-------------------------------------------------------------------------
                        |            Delta-method         Unadjusted
                        |   Contrast   Std. Err.     [95% Conf. Interval]
------------------------+------------------------------------------------
                   educ |
hs only vs not hs grad  |   .0033052   .0007015      .0019302    .0046802
college vs not hs grad  |   .0272252   .0028925       .021556    .0328943
    college vs hs only  |   .0239199   .0026517      .0187226    .0291173
-------------------------------------------------------------------------

. margins, at(age=45.15711743772242 age=46.15711743772242) 
> post atmeans predict(outcome(1))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    46.15712
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0585996   .0033006    17.75   0.000     .0521306    .0650686
          2  |    .057725   .0032779    17.61   0.000     .0513004    .0641495
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.001     0.000    -0.001    -0.001 

. margins, at(age=45.15711743772242 age=46.15711743772242) 
> post atmeans predict(outcome(2))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)

               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    46.15712
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .5106898   .0089364    57.15   0.000     .4931747    .5282049
          2  |   .5076452   .0090158    56.31   0.000     .4899745     .525316
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.003     0.000    -0.004    -0.002 

. margins, at(age=45.15711743772242 age=46.15711743772242) 
> post atmeans predict(outcome(3))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    46.15712
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .4173024   .0094484    44.17   0.000     .3987839     .435821
          2  |   .4210088   .0095647    44.02   0.000     .4022622    .4397553
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.004     0.000     0.003     0.005 

. margins, at(age=45.15711743772242 age=46.15711743772242)
> post atmeans predict(outcome(4))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    46.15712
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0134082    .001251    10.72   0.000     .0109563    .0158601
          2  |   .0136211   .0012713    10.71   0.000     .0111294    .0161127
------------------------------------------------------------------------------
 
. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.000     0.000     0.000     0.000 

. margins, at(age=45.15711743772242 age=62.05432488099884) 
> post atmeans predict(outcome(1))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    62.05432
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0585996   .0033006    17.75   0.000     .0521306    .0650686
          2  |   .0377982   .0023986    15.76   0.000     .0330969    .0424994
------------------------------------------------------------------------------

. mlincom  2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.021     0.000    -0.024    -0.017 

. margins, at(age=45.15711743772242 age=62.05432488099884) 
> post atmeans predict(outcome(2))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    62.05432
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .5106898   .0089364    57.15   0.000     .4931747    .5282049
          2  |   .4169832   .0096132    43.38   0.000     .3981416    .4358248
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.094     0.000    -0.107    -0.080 

. margins, at(age=45.15711743772242 age=62.05432488099884) 
> post atmeans predict(outcome(3))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    62.05432
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .4173024   .0094484    44.17   0.000     .3987839     .435821
          2  |   .5241374   .0103705    50.54   0.000     .5038115    .5444633
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.107     0.000     0.092     0.122 

. margins, at(age=45.15711743772242 age=62.05432488099884) 
> post atmeans predict(outcome(4))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712
               income          =    68.07737 (mean)

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    62.05432
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0134082    .001251    10.72   0.000     .0109563    .0158601
          2  |   .0210812   .0018949    11.13   0.000     .0173672    .0247952
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.008     0.000     0.006     0.009 

. margins, dydx(age) atmeans predict(outcome(1))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))
dy/dx w.r.t. : age
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |  -.0008417   .0000993    -8.48   0.000    -.0010362   -.0006471
------------------------------------------------------------------------------

. margins, dydx(age) atmeans predict(outcome(2))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))
dy/dx w.r.t. : age
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |  -.0028994   .0003651    -7.94   0.000    -.0036148   -.0021839
------------------------------------------------------------------------------

. margins, dydx(age) atmeans predict(outcome(3))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))
dy/dx w.r.t. : age
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .0035392   .0004264     8.30   0.000     .0027034     .004375
------------------------------------------------------------------------------

. margins, dydx(age) atmeans predict(outcome(4))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))
dy/dx w.r.t. : age
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .0002018   .0000309     6.53   0.000     .0001412    .0002624
------------------------------------------------------------------------------

. margins, at(income=68.0773737314545 income=69.0773737314545) 
> post atmeans predict(outcome(1))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    69.07737

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0585996   .0033006    17.75   0.000     .0521306    .0650686
          2  |   .0579618   .0032691    17.73   0.000     .0515545    .0643691
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.001     0.000    -0.001    -0.001 

. margins, at(income=68.0773737314545 income=69.0773737314545) 
> post atmeans predict(outcome(2))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    69.07737

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .5106898   .0089364    57.15   0.000     .4931747    .5282049
          2  |    .508476   .0089442    56.85   0.000     .4909457    .5260062
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.002     0.000    -0.002    -0.002 

. margins, at(income=68.0773737314545 income=69.0773737314545) 
> post atmeans predict(outcome(3))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    69.07737

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .4173024   .0094484    44.17   0.000     .3987839     .435821
          2  |   .4199994   .0094616    44.39   0.000      .401455    .4385439
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.003     0.000     0.002     0.003 

. margins, at(income=68.0773737314545 income=69.0773737314545) 
> post atmeans predict(outcome(4))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    69.07737

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0134082    .001251    10.72   0.000     .0109563    .0158601
          2  |   .0135628   .0012624    10.74   0.000     .0110886     .016037
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.000     0.000     0.000     0.000 

. margins, at(income=68.0773737314545 income=134.3357033891054) 
> post atmeans predict(outcome(1))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    134.3357

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0585996   .0033006    17.75   0.000     .0521306    .0650686
          2  |   .0280149   .0019427    14.42   0.000     .0242072    .0318226
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.031     0.000    -0.034    -0.027 

. margins, at(income=68.0773737314545 income=134.3357033891054) 
> post atmeans predict(outcome(2))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    134.3357

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .5106898   .0089364    57.15   0.000     .4931747    .5282049
          2  |   .3516408   .0109497    32.11   0.000     .3301799    .3731018
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |   -0.159     0.000    -0.174    -0.144 

. margins, at(income=68.0773737314545 income=134.3357033891054) 
> post atmeans predict(outcome(3))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    134.3357

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .4173024   .0094484    44.17   0.000     .3987839     .435821
          2  |   .5918301   .0118435    49.97   0.000     .5686174    .6150429
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.175     0.000     0.159     0.190 

. margins, at(income=68.0773737314545 income=134.3357033891054) 
> post atmeans predict(outcome(4))

Adjusted predictions                              Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))

1._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737

2._at        : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    134.3357

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   .0134082    .001251    10.72   0.000     .0109563    .0158601
          2  |   .0285141   .0023898    11.93   0.000     .0238301    .0331981
------------------------------------------------------------------------------

. mlincom 2 - 1

             |   lincom    pvalue        ll        ul 
-------------+----------------------------------------
           1 |    0.015     0.000     0.013     0.018 

. margins, dydx(income) atmeans predict(outcome(1))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==1), predict(outcome(1))
dy/dx w.r.t. : income
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |  -.0006411   .0000428   -14.96   0.000     -.000725   -.0005571
------------------------------------------------------------------------------

. margins, dydx(income) atmeans predict(outcome(2))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==2), predict(outcome(2))
dy/dx w.r.t. : income
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |  -.0022083   .0001096   -20.15   0.000    -.0024231   -.0019935
------------------------------------------------------------------------------

. margins, dydx(income) atmeans predict(outcome(3))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==3), predict(outcome(3))
dy/dx w.r.t. : income
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |   .0026956   .0001275    21.14   0.000     .0024457    .0029455
------------------------------------------------------------------------------

. margins, dydx(income) atmeans predict(outcome(4))

Conditional marginal effects                      Number of obs   =       5620
Model VCE    : OIM

Expression   : Pr(class==4), predict(outcome(4))
dy/dx w.r.t. : income
at           : 0.female        =    .4508897 (mean)
               1.female        =    .5491103 (mean)
               0.white         =    .1859431 (mean)
               1.white         =    .8140569 (mean)
               1.year          =     .238968 (mean)
               2.year          =    .4510676 (mean)
               3.year          =    .3099644 (mean)
               1.educ          =    .1766904 (mean)
               2.educ          =    .5818505 (mean)
               3.educ          =    .2414591 (mean)
               age             =    45.15712 (mean)
               income          =    68.07737 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |   .0001537   .0000129    11.88   0.000     .0001284    .0001791
------------------------------------------------------------------------------

margins does the work, but the m* commands make margins easier to use.

© 2014 J. Scott Long    
SPost13 - Postestimation commands for Stata 11 and later.